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Abstract—The ability to detect appliances in load data highly
depends on the resolution of the data. While a lot of related work
exists on detecting appliances in second or sub-second granularity
load data, in this paper, we detect swimming pools through
their filter pumps in load data with the 15-minute granularity
prescribed by the European Union for smart meters. We model
the filter pump based on exemplary measurements and describe
a prototypical algorithm to extract the filter pump’s consumption
from the aggregated mains signal of a real-world household. We
evaluate pool detection performance with different classifiers on
a data set with 843 households, where the information on the
existence of a swimming pool is available. We achieve 94.8%
detection accuracy with a precision of 68.5% with an off-the-shelf
classifier. Decreasing the temporal resolution in several steps to
8 hours negatively affects the recall while the precision stays at
the same level. We find that these results raise privacy concerns
even at the minimum temporal resolution of smart meter data
that is legally required in the European Union.

I. INTRODUCTION

Non-intrusive load monitoring (NILM) aims at disaggregat-
ing load data [1], i.e., splitting consumption patterns based
on the devices which incurred them. NILM algorithms are
typically applied to data with relatively high temporal resolu-
tion [2]–[4]. High-resolution NILM approaches typically use
sampling frequencies in the order of kHz, while so-called low-
frequency approaches typically measure at frequencies in the
order of 1 Hz [5], [6]. Even lower resolutions should also be
investigated since the European Union requires 15 minutes as
the minimum measurement interval of smart meters [7]. While
it is known that frequencies of the order of 1 Hz pose privacy
issues [8], [9], this also needs to be investigated for lower
frequencies.

Low-resolution approaches can be divided into unsupervised
and supervised approaches. Unsupervised approaches typically
use some variant of hidden Markov models like Conditional
Factorial Hidden Semi-Markov models [10] or difference
Factorial Hidden Markov Models [11]. Supervised approaches
for the most part still use a variant of the method that has
originally been outlined in [12].

It is well-known that the performance of low-resolution
methods decreases when multiple events of different appli-
ances occur within the measurement interval. This situation
occurs when (i) many appliances are used in a household [10];
and, of course, when (ii) the measurement interval increases.
The decrease of resolution has been shown to lead to worse
performance (and higher privacy) for methods relying on edge
detection [13].

Compared to the wealth of research on methods using low
or high resolution, research about very coarse resolutions, i.e.,

in the order of 15 minutes, is rare. While occupancy detection
methods largely use low resolutions, the approach in [14]
uses 1-minute resolution data. Similarly, in a recent paper,
data with a granularity of 15-minutes has been analyzed for
holiday detection [15]. In [16], load data with resolutions of
one minute, 15 minutes and one hour are used to disaggregate
air conditioning appliances to detect households with air leaks.
This approach works well for one-minute data but achieves a
poor performance for the lower resolutions.

In this paper, a new algorithm is developed that for the
first time enables to detect an appliance (a swimming pool)
in low-resolution data (∆t ≥ 15min) of regular households.
This would not be possible by using low-resolution NILM
approaches due to the comparably high number of appliances
present in normal households and the coarse time interval.

It must in turn be noted that the practical use of this method
for applications such as home automation is limited. The
proposed method requires a rather long measurement history
and it only states whether or not the appliance is present. While
the accuracy is not perfect, the results clearly can be exploited,
e.g., by marketing applications. Most importantly, this analysis
shows that even the coarse 15-minute time intervals can
possibly be misused, resulting in a privacy decrease for the
end-user.

This paper is structured as follows: In Section II, we show
which effect swimming pools have on load profiles and how to
detect this effect. We apply the developed detection algorithm
to a large set of real-world load profiles in Section III and
examine the influence of lower temporal resolutions on the
pool detection performance in Section IV. We conclude the
paper in Section V.

II. SWIMMING POOL MODEL

In this section, we describe how to detect swimming pools
in consumption data with 15-minute granularity. To motivate
the features used in our detection algorithm, we first describe
which electrical appliances are typically required to operate
a swimming pool and how they behave in terms of power
consumption over time.

A. Filter pump sample data

Usually, a swimming pool requires a filter pump in order
to clean the water and prevent accumulations of algae. Since
filter pumps typically run at regular time intervals over several
months consuming several hundred Watts of electrical power,
it is plausible to expect easily detectable patterns in the load
data.



Fig. 1. Load profile of a filter pump over five days.

(a) Image construction from the normalized load profile with a color palette

(b) Removal of the fall and winter months from (a)

(c) Opening of (b) with a rectangular 10 · 2 structuring element

(d) Binarization of (c) with Otsu thresholding

(e) Detection of rectangles as bounding-boxes of 8-connected areas in (d)

Fig. 2. Pre-processing steps: A load profile visualization (a) is pre-processed
((b)-(d)) to simplify rectangle detection (e). Rectangular patterns in the spring
and summer are likely to indicate additional consumption due to a filter pump.

In order to test these assumptions, we installed a measure-
ment device (Allnet ALL3075v3) to monitor the consumption
of an existing filter pump (Miganeo Speedclean 8500) and a
saltwater system (Intex ECO8220) for a period of five days
in the month of August. Fig. 1 visualizes the measured power
consumption with 15-minute granularity. The X axis shows
the months from April to May of the following year (which is
identical to the measurement period of test data as explained
in Section III). The Y axis shows the time of day in 15-minute

intervals. Dark tones indicate low or zero power, bright tones
indicate higher power, with the maximum being 480 Watts.

From the measurements visualized in Fig. 1, we observe the
following properties:

• Significant power consumption: The pump consumes
either near-zero or about 450 Watts with relatively little
variation;

• Regular time interval: Due to an automatically sched-
uled on-off mechanism, the pump has identical operating
times each day.

In addition, we assume that the filter pump is only op-
erational during the warmer period of the year, i.e., the
consumption pattern of the filter pump is expected to last
as long as this period. Furhermore, we assume that these
three properties apply to typical setups with filter pumps and
therefore allow detecting swimming pools with reasonable
accuracy. This leads to the assumption that households without
swimming pools lack filter-pump-like consumption patterns.

B. Pre-processing

Based on the three properties discussed in the previous
section, we propose a simple algorithm to extract features
from load data suitable to distinugish filter pumps from other
appliances. Our algorithm consists of five steps which are
illustrated in Fig. 2:

• Normalization: 15-minute load data is normalized by
dividing by the maximum value. Fig. 2a depicts a vi-
sualization of the data with Matlab’s jet color map. The
same visualization resulted in Fig. 1 for our filter pump
sample data;

• Scoping: Based on the assumptions from Section II-A,
filter pumps are only active during warmer months,
which, in the case of Austria, are the spring and summer
months. Thus, the months between October and March
are removed as depicted in Fig. 2b;

• Opening: As discussed in Section II-A, filter pumps are
active during the same time of day and over long periods
of time, resulting in rectangular-like shapes as is apparent
(for humans) in Fig. 2b. To detect and isolate these
rectangular structures, we need to do both, preserve the
structure itself and remove consumption characteristics
from other appliances. In image processing, this can be
achieved by a morphological opening [17]. We use a
rectangular 10 · 2 structuring element, representing a ten-
day load of half an hour duration, similar to the structure
and properties shown in Fig. 1. The opening operation
yields Fig. 2c;

• Binarization: In order to separate the rectangular shapes
(supposedly representing the consumption of a filter
pump) in the foreground from the background, we bi-
narize the pre-processed data using Otsu’s thresholding
algorithm [18]. Through that, the foreground (white) is
distinct from the background (black), as illustrated in
Fig. 2d.

• Rectangle detection: The position and size of the indi-
vidual rectangular shapes are not yet accessible. In order



to obtain this information, we compute bounding boxes
(illustrated as gray borders in Fig. 2e) around all fore-
ground pixels which are connected to their neighboring
pixels. This results in a list of rectangles together with
their size and position.

Note that the detected rectangles by themselves are not the
features used to classify whether or not a household has a
swimming pool. In the next section, we will develop features
from the properties of the rectangles to allow for such a
classification.

III. EVALUATION

In this section, we apply the pre-processing algorithm from
Section II to a real-world data set. Before doing so, we
describe the data set and our evaluation methodology.

A. Data set

The smart meter data used for evaluation has been collected
between April 2010 and May 2011 from households located
in the federal state of Upper Austria in Austria. The data has
been collected in a study conducted by the Energieinstitut at
the Johannes Kepler University Linz.

In addition to the electrical power consumption in 15-
minute intervals collected by the smart meters, the data set
contains demographic data from conducted surveys, including
information on the existence of residential swimming pools
per household. The sample contains 843 households, 64 of
which have a pool.

B. Methodology

The algorithm proposed in Section II is designed to detect
regions (bounding boxes) suspected to represent times where
the filter pump of a swimming pool is powered on. To
determine whether a filter pump is present, the original load
data is first divided into n + 1 parts – the n bounding boxes
Bi, i = 1, . . . , n likely to represent filter pump activity from
pre-processing; and the (one) remaining part of the load data,
R. For example, Fig. 2e contains n = 4 bounding boxes
(highlighted in gray) and the (black) remainder R outside of
these bounding boxes.

Second, the following five properties are calculated from the
load data L and the derived binarization Lbin from Fig. 2d so
that they can be used as features:

• Number of regions: n;
• Total region area: Let wi and hi denote the width and

height of the bounding box Bi, respectively. The total
region area is calculated as a :=

∑
i wi · hi;

• Average region coverage: Let fi := cnt(Lbin(Bi))
denote the number of (white) foreground pixels within
the bounding box Bi, where cnt(·) computes the number
of white pixels in the given area. The average coverage
is calculated as c := 1

a

∑
i fi;

• Median of region-medians: mb := medi(med(L(Bi))),
where L(Bi) denotes the load data in the region Bi and
med is the median function;

• Median of remainder: mr := med(L(R)).

TABLE I
PERFORMANCE OF DIFFERENT CLASSIFIERS FOR THE 580 HOUSEHOLDS

IN THE multi-region CASE: THE 5-NEAREST-NEIGHBOR CLASSIFIER
OUTPERFORMS THE UNINFORMED ONES IN TERMS OF PRECISION.

Classifier Accuracy Precision
All-positive 10.5% 10.5%
All-negative 89.5% –
SVM Gaussian 93.1% 66.7%
5-NN 94.0% 68.5%
1-NN 93.4% 66.7%

Third, all five properties are standardized so that they have
a mean of 0 and a standard deviation of 1. This results in the
five features ñ, ã, c̃, m̃b and m̃r.

Finally, these features are used to build a classifier to detect
the presence of swimming pools distinguishing two cases: If
the whole picture is covered by regions, i.e., R = {}, mr

is not defined. In this case, the corresponding household is
considered not to have a swimming pool (y = 0). We refer
to this case as single-region. In the opposite case, R 6= {} or
multi-region, we use one of several classifiers that are trained
with the aforementioned five standardized features – ñ, ã, c̃,
m̃b and m̃r. The performance of each classifier was assessed
using the leave-one-out error because the low number of 64
households with pools (positive samples).

C. Results

In the data set, the single-region case applies to 263 house-
holds. 9 of these households have a swimming pool, whereas
254 do not have one. Since all these 263 households are
classified as having no pools (negatives), the 9 households with
a swimming pool are predicted as false negatives by the first
step of our classification algorithm. Conversely, the remaining
254 true negatives are predicted correctly.

For the remaining 580 of the total 843 households, i.e., those
for which the multi-region case applies, 525 have no swim-
ming pool, whereas 55 have one. We trained the classifiers
listed in Table I for these households as described in Section
III-B. Since knowledge about a swimming pool is expected to
correlate with properties such as large lots, high income and
wealth, this information is considered privacy-sensitive due to
the potential abuse. For example, as part of targeted marketing,
advertisements may be sent only to households classified as
having a swimming pool. Therefore, we use the precision as
our main performance criterion.

It is clear from Table I that uninformed classifiers, i.e., those
whose output (all positive or all negative) does not depend on
the features, perform poorly in terms of precision. In contrast,
the 5-nearest-neighbor classifier outperforms the all-positive
classifier by about a factor of 6.5. Note that more sophisticated
classifiers may perform even better. However, our goal was
to show that low-resolution consumption information can be
used to detect swimming pools in principle with reasonable
accuracy.

The overall performance is determined by combining the
single-region and multi-region classification results. When us-
ing the 5-nearest-neighbor classifier for the multi-region case,
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Predicted class
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no pool 762
96.6%
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pool 27
3.4%

37
68.5%

64

total 789 54 843
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Fig. 3. Confusion matrix for the 5-nearest-neighbor classifier: The overall
performance of our pool detection algorithm, i.e., both, the single-region and
the multi-region case, is 68.5% in terms of precision. The overall accuracy is
94.8%.

the overall performance for all 843 households is illustrated in
Fig. 3 as a confusion matrix. Note that the overall precision
does not differ from the precision in the multi-region case
(see Table I), since single-region households are classified as
having no swimming pool. However, the overall performance
of an uninformed classifier is 7.6%, which is a factor of 9 less.
In addition, the overall accuracy of 94.8% is slightly higher
than that of an uninformed classifier, which is 91.8%.

IV. LOWER RESOLUTION

So far the considered time interval has been 15 minutes
(original sampling rate). Now we study the influence of an
increasing time interval (i.e., decreasing sampling rate) on the
pool detection performance.

A. Experimental Setup

The method above was applied to data of lower temporal
resolution which were obtained by averaging consecutive
values in the original data. However, in order to ensure that
every pixel of the resulting heatmap represents the same
timespan, only certain time intervals were considered (see Fig.
4). The resulting heatmap contains the same number of days
but is vertically squeezed. In section II-B a rectangular 10 · 2
structuring element (representing ten days and 30 minutes)
has been used in the pre-processing step. Since the new
time intervals are at least of twice the original length, the
corresponding size of the structuring element only has a height
of one pixel. This modified structuring element was used for
all temporal resolutions but the original one.

For each time resolution previously chosen 5NN-classifier
was evaluated using the leave-one-out error in the same way
as for the original data.

B. Results

Analogously to the previous analysis the precision was
chosen as the primary performance measure. Figure 4 shows

Fig. 4. The precision of the proposed method, though considerably higher
than the all-positive classifier’s precision, shows no statistically significant
dependency on the time interval.

Fig. 5. Dependency of the recall on the time granularity. Two categories
of missed swimming pools (positives) lead to a decrease with growing time
interval.

Fig. 6. The proportion of households where the multi-region case applies
decreases with increasing time interval. The dependency holds for both
households with and without swimming pool.

the dependency of the precision on the time interval. For all
intervals the precision is in the range between 45% and 75%
which is considerably higher than the precision of the all-
positive classifier. Although the values change in a range of
about 30%, due to the small number of positives (64) these
differences are not statistically significant.

While the precision shows no clear tendency, Figure 5 illus-
trates that an increase of the time interval negatively affects the
number of detected pools (recall). The reason for this behavior
is mainly the effect that with lower time resolution, more
single-region cases (hence fewer multi-region cases) occur
(Figure 5). Since single-region cases are classified as having
no swimming pool (Section III-B), the recall decreases.

Figure 6 shows that multi-region cases are converted to
single-region cases in general, i.e., it occurs for both house-



holds with and without swimming pools.
Although our analysis method is very different from the

method in [13] the results obtained in this paper are analogous
to theirs: with decreasing time granularity the recall drops
while the precision remains rather constant.

V. CONCLUSION

We showed that it is possible to detect swimming pools in
15-minute household load data by relatively simple algorithms.
The privacy-relevant precision achieved by our classifier is
nine times higher than that of an uninformed classifier. Due to
the correlation between swimming pools and more expensive
homes, the ability to detect swimming pools can be considered
a privacy issue. Since the European Union requires smart
meters to provide measurement intervals not longer than 15
minutes, the performance of our algorithm suggests that a
15-minute interval might still be too short from a privacy
perspective. The proposed approach is surprisingly robust and
works at even lower resolutions in the sense that the precision
remains high. We showed that in turn using coarser resolutions
would enhance privacy by decreasing the recall, i.e., number
of detected households with swimming pools.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry
of Science, Research and Economy, the Austrian National
Foundation for Research, Technology and Development and
the Federal State of Salzburg is gratefully acknowledged.
Futhermore, the authors would like to thank the Energieinstitut
at the Johannes Kepler University Linz for providing the data
set.

REFERENCES

[1] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart Meter Data
Privacy: A Survey,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2820–2835, 2017.

[2] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin,
“Private memoirs of a smart meter,” in Proceedings of the 2nd
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Building, ser. BuildSys ’10. New York, NY, USA: ACM, 2010, pp. 61–
66. [Online]. Available: http://doi.acm.org/10.1145/1878431.1878446

[3] D. C. Bergman, D. Jin, J. Juen, N. Tanaka, C. Gunter, and A. Wright,
“Distributed Non-Intrusive Load Monitoring,” in Proceedings of the
IEEE/PES Conference on Innovative Smart Grid Technologies (ISGT
2011), Anaheim, CA, USA, January 2011, 2011.

[4] J. Kolter and M. J. Johnson, “Redd: A Public Data Set for Energy
Disaggregation Research,” in Workshop on Data Mining Applications
in Sustainability (SIGKDD), aug 2011, pp. 1–6. [Online]. Available:
http://redd.csail.mit.edu/kolter-kddsust11.pdf

[5] M. Zeifman and K. Roth, “Nonintrusive Appliance Load Monitoring:
Review and Outlook,” IEEE Transactions on Consumer Electronics,
vol. 57, pp. 76–84, 2011.

[6] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar, “Non-intrusive
Load Monitoring approaches for disaggregated energy sensing: A sur-
vey,” Sensors (Switzerland), vol. 12, no. 12, pp. 16 838–16 866, 2012.

[7] European Commission, “2012/148/EU: Commission Recommendation
of 9 March 2012 on preparations for the roll-out of smart metering
systems,” 2012. [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX%3A32012H0148

[8] M. a. Lisovich and S. B. Wicker, “Privacy Concerns in Upcoming Resi-
dential and Commercial Demand-Response Systems,” IEEE Proceedings
on Power Systems, vol. 1, no. 1, pp. 1–10, 2008.
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