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ABSTRACT

Decreasing time resolution is the simplest possible privacy
enhancing technique for energy consumption data. However,
its impact on privacy analyses of load signals has never been
studied systematically. Non-intrusive appliance load moni-
toring algorithms (NIALM) have originally been designed
for energy disaggregation for subsequent energy feedback.
However, the information on appliance use may also be mis-
used for the extraction of personal information. In this work,
the effect of decreasing the time resolution in the usual first
step, namely edge detection, is studied. It is shown that
event values can be estimated rather reliably, but the de-
tection rate of events significantly decreases with increasing
measurement time interval.
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1. INTRODUCTION

There is a lot of public concern and discussions on the
privacy impact of smart metering. However, the discussion
is led without knowing the extent of personal information
that can be read out of smart meter load profiles. Even more
so, there is nearly a complete lack of knowledge about how
the amount of personal information relates to the measured
time interval. For example, in many European countries, it
is planned, that people can opt-in for delivering their load
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data in 15 minute time intervals. To our knowledge, no one
has tried to assess the amount of personal information that
can be extracted on 15 minute time interval load profiles.

Note that the decrease in time resolution can be viewed
as the most straightforward and simplest privacy enhancing
technology (PET), cf. [3]. The goal of this work is making a
first step towards the study of its actual impact. This work
is a first step, because we focus on determining appliances.
The main reasoning behind this approach is that activities of
persons in the house trigger appliances that sum up to the
total load. The activities themselves are already personal
information of which some general habits could be deduced.
However, such an analysis of general habits is out of scope
of this work.

Information on the appliances are usually extracted from
the load profiles by means of so-called ‘non-intrusive appli-
ance load monitoring analysis” (NIALM). There is a lot of
literature on NIALM algorithms ([5, 15, 2, 1, 14, 8, 6, 13]).
The goal of these algorithms is the disaggregation of the to-
tal load into the individual appliances loads, e.g., for sake
of providing energy feedback to the end-user. From the pri-
vacy viewpoint, such NIALM analyses can be seen as a first
step of attacking methods, which aim at the unauthorized
extraction of personal information.

There are only a few papers treating the technical details
of privacy implications of smart metering. In [9], load data
were recorded with parallel video data which were processed
into activity logs. A NIALM analysis was done yielding
the input for subsequent behavior-extraction routines. Ex-
tracted behaviors include, e.g., presence, sleep cycles or meal
times. In [12] the load profile is divided into so-called power
segments using a density based clustering technique. These
power segments are described by features such as start time,
average power and duration. It is illustrated how such power
events could be used for answering several privacy questions.
In [4], it is shown that under ideal conditions load curves can
be used to identify the currently viewed TV-program.

In this work, the impact of reducing the time granular-
ity on the first part of typical low-frequency NTALM algo-
rithms, namely edge detection ([5, 9, 1, 2, 8, 13]) is studied.
In Section 2.1, event detection is described as part of low
frequency NIALM analyses. In Section 2.2 the investigated
edge detection methods are reviewed. After describing the
experimental setup in Section 3, the performance of different
edge detection methods is compared in Section 4.1. The core
Section 4.2 of this work describes the effect of the time reso-



Time | 1s | 3s | 15s | 20s | 1min
Paper | [12, 11, 2, 1] | [8, 6] | [9] | [14] | [13]

Table 1: Time Granularities of low-frequency
NIALM-studies

lution on the detection of events. Finally, Section 5 contains
conclusion and outlook.

2. EVENT DETECTION METHODS

Event detection methods are the typical first analysis step
in low frequency NIALM algorithms. Decreasing the per-
formance of event detection is a countermeasure against a
possible NIALM-privacy-attack and increase privacy. After
discussing why event detection is such a useful first step of
NIALM analysis, the event detection methods that are in-
vestigated in the experimental part are described.

2.1 Event Detection asPart of NIALM

NIALM approaches are divided broadly into two kinds of
methods: high frequency methods look at the waveform of
appliances or study transients or higher order harmonics.
While high-frequency methods usually need a sampling in
the range of kHz, low-frequency methods typically analyze
load profiles which are sampled using time intervals in the
order of seconds (see Table 1).

Since in this work the time granularity is decreased for pri-
vacy purposes, the focus is laid on low-frequency instead of
high frequency NIALM methods. Supervised low frequency
methods usually consist of several blocks: edge detection,
cluster analysis and finding pairs of on-and off clusters for
the determination of the duration of an appliance. Edges
are sharp increases or decreases of the load signal due to
turning on or off an appliance. More generally, edges arise
due to the change from one state to another state of an
appliance when modeled as a finite state machines (FSM).
NIALM algorithms commonly use edges instead of the ab-
solute values for two reasons: First, using absolute values in
the presence of unknown appliances, these unknown appli-
ances could be described as a combination of other known
appliances. Second, there are adverse cases where a small
change in the measured power would result in a big change
in the configuration of used appliances, which is an implausi-
ble result [5]. Since edge detection is a common first step of
a NIALM algorithm, if a decrease of time resolution is able
to negatively influence edge detection, the subsequent part
of the NTALM algorithm is expected to suffer significantly
as well. Considering a possible abuse of NTALM algorithms
the diminished disaggregation ability is beneficial from the
privacy perspective. For sake of completeness it is noted
that the use of edges is common but not mandatory, e.g., in
[12] shape features are used instead of edges.

2.2 Investigated Event Detection Methods

In this section event detection methods used in the ex-
perimental part are reviewed. A main assumption of this
work is the modeling of appliances as finite state machines
(FSMs) having different power values for different states. In
this work an event e = (t., AP.) is a transition between two
such states which is represented by its onset time t. and

the difference between the two power levels of the states
AP.. Many appliances have only two states and can sim-
ply only be turned on or off. Correspondingly, events for
which the signal increases (AP > 0) are called on-events
because they should typically arise from turning on such an
onoff-appliance. Analogously, events for which the signal
decreases are called off-events.

The most straightforward method detects an edge, if the
backward difference AP, = P; — P;_1 between consecutive
points exceeds a threshold. Each detected edge is considered
to be an event e = (t;, AP;). This method can be classified
as one that focuses on the transition between two levels of
a signal [10]. If the transition needs several time intervals,
this method divides the transition between two levels in sev-
eral edges having smaller values than the transition which
is usually an unwanted behavior.

The drawback of the backward difference method can be
accommodated by merging of subsequent occurring edges
stemming from backward differences into a single event [1].
The value of the event is the sum of the individual edge
values which can be both positive and negative. The time
where the event occurs is defined as the onset time, i.e., the
time of the first edge contributing to the event.

Another method proposed in [5] is called ‘transient pass-
ing edge detection.” As its names suggests it is a method
focusing on the power levels of the two transition states in-
stead of the transition itself. A transition is defined as being
not steady. In the first step the method finds the steady sub-
sequences of the signal. This is done using a sliding window
approach where a point is considered part of a steady sub-
sequence, if the range of it and the next n — 1 does not
exceed a given threshold. The whole signal is thus divided
into consecutive steady parts st and transitions tr. For the
description of the event, all subsequences (st;, t7i41, Stit+2)
are considered. The onset-time t.; for the description of the
event is the last time point of the first steady part st;. The
transition value AP; is the difference between the median
of the values of the first steady part st; and the median of
the values of the consecutive steady part st;41. Taking the
median value over the whole steady part leads to a greater
robustness in the determination of the event value AP;.

3. EXPERIMENTAL SETUP

The experiments were done using a so-called low frequency
dataset of the publicly available REDD-dataset [7]. This
dataset consists of measurements of the apparent power for
6 different houses. Measurements are available for the main
circuits mains1 and mains2, and for subcircuits like for ex-
ample kitchen outlets and measurements of individual ap-
pliances.

Although the decrease of the time granularity seems
straightforward (integrating over the period), it is in fact
not. There are several possibilities. First, considering a
time interval, different statistics could be computed for this
interval. The most straightforward statistic is the average
load value which should be enough for most practical solu-
tions such as normal billing or time-of-use billing. However,
for some reasons, e.g., pricing based on the maximum load
or for control reasons, the maximum load needed during the
time interval, could be another useful number. Other statis-
tics as for example the standard deviation of the load values,
are also possible but will not be considered further. Finally,



there is still the possibility of simple sampling, i.e., taking
the load value at the specific point in time.

In the subsequent experiments, three variants are consid-
ered: (i) taking the average load in a time interval, (ii) taking
the maximum load in a time interval and (iii) sampling at
time points.

In order to account for noise, for all methods, events e
with a value AP smaller than a threshold of 20 Watt are
discarded. The same threshold was used for the detection
of the stable parts of transient edge detection. The minimal
required number of steady points n in transient passing was
set to 3 which has good detection properties at reasonable
stability.

4. RESULTS

In this section, different edge detection methods are com-
pared with respect to their ability to detect events in smart
meter load profiles. Then the effect of the decrease of time
resolution on the events found is described.

4.1 Event detection

Since the results are based on the events found, the per-
formance of the event detection methods is assessed for the
highest available time resolution of 3 seconds first. A value
of 20W was used as threshold for the removal of events oc-
curring due to noise. If the threshold is set too low, ad-
ditional edges can occur which tends to happen for high-
power devices. For low-power devices such as lighting, a
noise threshold that is in turn too high can lead to a loss of
events. Therefore, the tradeoff between noise removal and
the detection of events from low-power devices has to be
considered.

The form of the load consumption of appliances can be
quite complex. As an example, the load consumed for a
full run of the dishwasher is shown in Figure 1. Since the
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Figure 1: Dishwasher events, marked as “+”, de-
tected using transient detection at the highest time
resolution

dishwasher’s load profile has such a rich structure with long
and short on-durations at different power levels and power
levels that are decreasing, it was chosen for demonstration of
effects of different edge detection settings and of the change

of time granularity. Simpler devices for heating are usually
purely ohmic and show high power values. These are the
appliances whose load profiles have the highest similarity to
a rectangular profile.

As expected, the simple backward difference yields more,
but disturbing, events and can therefore not be recommend-
ed (compare Figures 1 and 2).
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Figure 2: Dishwasher events, marked as “+”, de-
tected using backward differences at the highest
time resolution. Too many events are detected
(compare with Figure 1).

Generally, in terms of detecting appliances, both tran-
sient passing and edge merging give good and very similar
results. There are also only tiny differences due to the use of
the different variants of decreasing the time resolution. The
correctness of the edges found was visually verified for all
appliances. Additionally, the edge values of all appliances
are shown in Figure 3. It can be seen that for all appli-
ances rather distinct edge values can be found. The expected
strong similarity of the absolute values of the on-events and
the off-events leads to the symmetric look of Figure 3. More
importantly, this figure suggests that some appliances such
as washerDryer3 should be easily distinguishable from oth-
ers. Other appliances such as kitchen outlets 2 and 4 are ex-
pected to be hardly distinguishable from others. For another
class of appliances such as the dishwasher only some levels
are distinguishable from the events of other appliances. The
fact that the result of edge detection enables to formulate
such an expected behavior shows the value of edge detection
for a possibly privacy invading analysis of load profiles.

4.2 Effect of Decrease of Time Resolution

In this section, the influence of time granularity At on
the events found above is studied. First, transient passing
using the averaging statistic is studied. As can be seen in
Figure 4 with increasing the time interval fewer edges are
detected. Especially short-lived states cannot be detected
anymore. The edges that are still detected have surprisingly
stable heights AP.

Another remarkable point is that already with a time in-
terval of 5 minutes, nearly the whole finer structure can-
not be seen any more. These results can also be seen for
the mains signals which was calculated as the sum of the
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Figure 3: All events found at the highest time resolution, detected using transient detection. The symmetry
of the figure stems from the strong similarity of the absolute values of on-events and their corresponding

off-events.

mainsl and the mains2 signals. Using a 5 minute interval the REDD-data [7] the simple backward difference cannot
mostly privacy-irrelevant refrigerator events remain. be recommended as an edge detection tool in this setting
Possible effects on the decrease in privacy due to the de- leading to too many edges.
crease in time resolution can already be estimated. Since The decrease of the measurement time interval as a pri-
the edge heights are rather stable it seems reasonable that vacy enhancing operation has the effect that edge detection
the edges of different appliances can still be distinguished still works in the sense that edge heights can be detected in
at higher time intervals. However, the detection rate of ap- a stable manner. Privacy is enhanced in a way that not ev-
pliances is diminished. In summary, the effect of a decrease ery edge is detected. The longer the time interval the fewer
in time resolution means that single events cannot be de- edges can be detected. Already with 5 minute intervals, for
tected reliably. However, for the identification of habits, the most of the appliances, the number of detected edges is sig-
detection of each single event is not necessary. nificantly decreased. A potential privacy consequence would
Comparing the different edge detection and time decrease state that not every single event but rather regular habits
variants, the following behavior could be seen: For high time can be detected.
resolution, edge merging and transient passing lead to nearly This work constitutes the first, descriptive assessment of
identical results, however, for lower time resolutions tran- the effect of a decrease of data granularity on smart meter
sient passing seems to better preserve the edge values. The privacy focusing on the detection of appliance use. Next
results of both transient passing and edge merging are quite logical steps include the development of quantifiable per-
insensitive to the kind of statistic. Although still leading formance indicators, e.g., based on the result of subsequent
worse results, it should be noted that the performance of pattern recognition algorithms. Using these performance in-
the backward difference method is better with taking the dicators the difference of the effect on different appliances
max statistic or with sampling than with taking the average should be described and visualized in a way that is also
statistic where extensive smearing of edge values occurs. understandable for non-experts. Furthermore, when appro-

5. CONCLUSION AND OUTLOOK

priate datasets are available, personal information such as
activities or habits should be considered in addition to ap-
pliance usage.

The impact of decreasing the time resolution on privacy
analysis of load signals obtained from smart metering to date

has not been studied systematically. Based on the reasoning 6. ACKNOWLEDGMENTS
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Figure 4: Dishwasher events, marked as “+”, de-
tected for At =30s (top) and 5 minutes (bottom).
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