
Wavelet-based Load Profile Representation for
Smart Meter Privacy

Dominik Engel
Josef Ressel Center for

User-Centric Smart Grid Privacy, Security and Control
Salzburg University of Applied Sciences

Urstein Sued 1, A–5412 Urstein/Salzburg, Austria
Email: dominik.engel@en-trust.at

Abstract—A significant portion of (potential) end-users at this
point in time are wary about possible disadvantages of smart
grid technologies. A critical issue raised by end-users in various
studies is the lack of trust in the level of privacy. Smart metering
is the component in the end-user domain around which the most
intense debate on privacy revolves, because load profiles are
made available at high resolutions. Non-intrusive load monitoring
(NILM) techniques allow the analysis of these load profiles to
infer user behaviour, such as sleep-wake cycles. We investigate
and compare the utility of different variants of the wavelet
transform for creating a multi-resolution representation of load
profiles. In combination with selective encryption, this multi-
resolution representation allows end-users to grant or deny access
to different resolutions on a “need-to-know” basis. Access to the
different resolutions is thereby only granted to parties holding the
needed keys. The whole datastream can be transmitted over the
smart grid communications network. The lifting implementation
of the wavelet transform has computationally low demands and
can be run in embedded environments, e.g. on ARM-based
architectures, in acceptable time. The proposed approach is
evaluated based on the provided level of security, computational
demands and feasibility in an economic sense.

I. INTRODUCTION

The move towards smart grids has spawned a large number
of industry initiatives, research programmes and standardiza-
tion efforts, see e.g. [1] for a current overview. Many of the
earlier contributions focused on the smart grid ecosystem at
a larger scale, without exploring in detail the ramifications
of the move towards smart grid technology for the end-user.
More recent programmes increasingly accommodate the user
perspective, cf. [1]. Addressing the topic of user acceptance is
pointed out as a key issue by almost all authors.

Spreading Smart Grid technologies will be inherently diffi-
cult without addressing user concerns and actively managing
user acceptance by providing secure methods and demonstrat-
ing safety of user data and privacy. Methods for privacy and
security will be a critical in establishing end user trust and
thereby enabling end user participation.

Smart meters form a core component of smart grids. Each
of these devices contains a processor, as well as storage
and communication facilities and is capable of transmitting
detailed load profiles on a daily basis or even in real-time. The
exact granularity of the transmitted load profiles is not finally
specified, and may differ by country. The intervals between

single measurements will lie between a few seconds and 30
minutes.

The availability of data at such fine granularities has raised
privacy concerns: Apart from the data needed for regular op-
eration, a number of other information items can be extracted
from this data, some of them related to sensitive and personal
information on the end user. Especially in the area of indi-
vidual high resolution load profiles made available by smart
meters, severe privacy concerns have been expressed in numer-
ous contributions, e.g. [2]–[6]. In [5] results of a collaboration
between researchers from law and engineering are reported.
The authors argue that there “exist strong motivations for
entities involved in law enforcement, advertising, and criminal
enterprises to collect and repurpose power consumption data”
[5, p. 1]. For example, burglars could use the data to determine
occupancy patterns of houses to time break-ins. Marketing
agencies could identify specific brands of appliances used,
which could then be used for targeted advertising.

There are a number of approaches for matching appliance
signatures to load profiles to determine which appliances
were used at what time and for how long, e.g. [7]–[9].
This type of method is termed “non-intrusive load monitor-
ing” (NILM) or “non-intrusive appliance load monitoring”
(NALM). Detection based on NILM is remarkably accurate:
In [5] over 90% accuracy are reported in detecting presence
and sleep cycle intervals. The results show that “personal
information can be estimated with a high degree of accuracy,
even with relatively unsophisticated hardware and algorithms”
[5, p. 2]. The authors of [10] use genetic algorithms for iden-
tification and report flawless identification for up to 10 types
of appliances. In [11] successful identification of appliances
in low resolution load profiles is reported, e.g. 30 minute
intervals, with the use of data-mining techniques.

In summary, while there are many useful applications of
smart meter data, such as energy saving and tailor-made
energy rates, the privacy of this kind of data needs to be
secured, even within communication environments secured
against unauthorized external access. The authors of [1] make
the case for a system in which insiders will access “data in an
authorized manner and will only use this data in an acceptable
manner” [1, p. 8].



In this paper we evaluate wavelet-based multi-resolution
representations to secure load profiles and to provide a user-
centric privacy approach. In previous work [12], the Haar
wavelet was used in a preliminary proof of concept. In this
paper, we detail the approach, show that aggregates are pre-
served and apply the approach in an embedded environment.
Furthermore, we investigate the utility of integer-based wavelet
filters and compare the filter variants. We provide a detailed
evaluation regarding computational demands, and investigate
the preservation of aggregates in real-world conditions, as
well as the level of security provided and feasibility from an
economic perspective.

The rest of this paper is organized as follows: Section II
discusses the state of the art as well as prior and related
work. The proposed scheme is detailed in Sections III and
IV and evaluated in Section V. Section VI summarizes the
most important findings and conludes.

II. RELATED WORK

There are two kinds of privacy approaches: regulatory-based
and technology-based [1]. An important source for regulatory
scenarios and recommendations are the reports of the Euro-
pean Commission Smart Grid Expert Group Two for regula-
tory recommendations for data safety, data handling and data
protection, e.g. [13]. Other sources include Common Criteria
for Information Technology Security Evaluation (ISO/EIC
15408) and country-specific recommendations, such as the
Federal Office for Information Security (BSI) in Germany, e.g.
[14].

In the context of smart grid privacy, there is a number
of contributions that deal with technological approaches to
end-user privacy in general, for an overview see [15]. In
[16] an anonymization scheme that is based on two different
resolutions is proposed. This scheme employs a trusted third
party escrow service. Two smart meter data sets are generated:
One of low frequency that can be used for billing purposes, and
one of high frequency that allows further investigation. The
authors of [17] propose the anonymization of smart metering
readings through the use of aggregation, i.e. high resolution
smart meter readings are aggregated at the NAN level and only
the aggregate is sent to the utility provider. They introduce
two solutions both with and without involvement of trusted
third parties. In [18] a scheme that allows to obfuscate smart
meter data is proposed that does not affect the performance
of overall state estimation. The authors of [19] propose a
scheme that trades off interests of utility and users based on
lossy source coding. In [20] the use of random sequences
in compressed sensing of load profiles to provide privacy
and integrity is proposed. The authors of [9] propose a zero-
knowledge protocol for privacy enhanced-smart metering. The
authors of [21] propose a privacy-preserving protocol for
general calculations on meter readings on high resolutions.
They use simple cryptography on the meters to certify readings
and propose to off-load high-integrity calculations to other user
devices. The authors show correctness through cryptographic
verification.

Secure transmission of smart meter data is a key topic
addressed by many contributions. A security protocol for smart
meter aggregation that provides hop-by-hop security, while
still providing end-to-end security, is proposed by [22]. In [23],
a comprehensive proposal for securing smart grid infrastruc-
ture is given, including a proposal for a key infrastructure.
The authors of [24] propose a scheme for authentication
in the smart grid that is privacy aware. In [25] a secure
transport protocol for smart grid data collection in general is
presented. The authors of [26] propose a model-based access
control system. In [27] a zero-configuration identity-based
signcryption scheme for the smart grid is proposed.

Privacy-enabling encryption for smart meter data by the
use of homomorphic encryption is suggested by both [28]
and [29]. Specifically, a Paillier [30] cryptosystem is used in
both contributions, which supports the additive homomorphic
property, to enable aggregation of smart meter data in the
encrypted domain. The approach suggested by [29] is eval-
uated in an honest-but-curious adversary model. The system
proposed by [31] uses multi-party computation in combination
with homomorphic encryption.

The need to deal with multiple resolutions of the available
data has been widely acknowledged, e.g. [1], [16]. Fur-
thermore multi-resolution representation can serve to protect
privacy while at the same time preserving essential statistics of
the underlying data [32]. We have previously proposed the use
of the Haar wavelet to create a multi-resolution representation
and to use selective encryption to grant conditional access to
the individual resolutions on a “need-to-know” principle [12].

III. MULTI-RESOLUTION REPRESENTATION OF LOAD
PROFILES

The basis for both, regulatory-based and technology-based
approaches to preserve privacy is detailed knowledge of what
information can be extracted with which tools from the
available user data. To date, there is little systematic research
on this subject in the context of smart grids. In [33] an
information theoretic approach to abstract privacy and utility
requirements is used. The authors aim at providing a measure
for the amount of information leaked, and also for the utility
that is retained in the data at different levels of abstraction.

In [9] the information revealed from load profiles at different
granularities is investigated. The authors show that with off-the
shelf statistical methods detailed information on the behavior
of users can be inferred from load profiles without prior
knowledge or precomputed appliance signatures. They argue
that “the information leaks directly correlate with the time
granularity that a meter measures power consumption” [9,
p.61] and list a number of privacy-relevant questions that can
be answered using load profiles at granularities ranging from
hours to seconds.

While a detailed empirical investigation of the exact amount
of information that can be extracted from load profiles at each
granularity is missing, current results, such as reported by
[9], indicate that it is safe to assume an increase in the order
of magnitude in detection accuracy each time the number of



available samples for a specific time are doubled. In other
words, based on existing investigations it seems that classes
of detection accuracy can be based on a resolution increases
of powers of two.

A representation of load profiles in different resolutions
corresponds to these classes of detecting accuracy. The clas-
sical wavelet transformation in the lifting implementation is
the ideal tool to create integrated, dyadic multi-resolution
representations of load profiles. Each resolution contained in
the multi-resolution load profile can be tailored to correspond
to a class of detection accuracy. Granting access to third party
based on this multi-resolution representation allows informed,
privacy-aware data exchange to the user.

A. Wavelet-based Representation

A suitable wavelet transform is applied to the original load
profile. This leads to a low frequency and a high frequency
band. To obtain a multi-resolution representation of the orig-
inal signal, the wavelet analysis step is recursively applied
to the low pass subband, up to a maximum level m. The
low-frequency portion in each step presents the data at a
resolution with half the number of samples of the next higher
resolution. The resolution level corresponding to the highest
decomposition depth m is referred to as R0, and has a size of
2−m samples.

The synthesis step of the inverse wavelet transform starts
with R0. Each next higher resolution can be obtained by ap-
plying the inverse wavelet transform to the low-pass subband
(i.e., the lower resolution) and the corresponding high-pass
subband. In this way, m further resolutions can be obtained.
The resulting subbands are represented in a single bitstream.

To implement multi-resolution analysis in a manner that
is suitable for smart metering devices, wavelet lifting [34] is
the best approach. This view on the wavelet transform factors
wavelet filters into lifting steps, which for many filters rely on
simple operations only.

B. Haar Wavelet Filter

The Haar wavelet filter realizes low-pass filtering as averag-
ing of the sample values. The high-pass step is realized by the
corresponding differences to allow for lossless reconstruction.
Let xl be the input signal, and sl and dl be the low-pass and
high-pass output signals, respectively. The lifting steps for the
forward transform with the Haar wavelet can be written as
follows [34]:
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with the inverse transform written as:
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The Haar wavelet filter perfectly preserves1. the first mo-
ment, i.e. the average of the whole sequence is preserved in
the lowpass signal with each transformation step:∑

l

xl =
1

2

∑
k

sk. (9)

This is an important property as it allows the use of lower
resolutions for functions like accurate billing, as the sum of
the original sequence can be derived from any of the lower
resolutions.

Furthermore, the transformation is lossless, and the aggrega-
tion is equivalent to subsampling. In effect, the Haar wavelet in
the proposed approach is equivalent to reducing the sampling
rate.

C. LeGall 5/3 Wavelet Filter

The LeGall 5/3 wavelet filter [35] is a biorthogonal wavelet
filter, frequently used in image coding. An interesting property
of this filter is that its lifting implementation can be realized
using integer operations only. With the background of an
advanced metering infrastructure with limited computational
capacity this can be seen as an advantage.

On the other hand, the LeGall 5/3 filter uses more samples
for prediction in the lifting implementation than the Haar
wavelet. This may result in longer processing times. Further-
more, and also due to this fact, the LeGall 5/3 filter always
requires zero-padding.

The LeGall 5/3 also preserves the first moment. However,
due to the necessary border handling, the sum is not perfectly
preserved. It depends on the intended application if the loss
in accuracy is acceptable. Empirical results on this issue are
discussed in Section V.

IV. CONDITIONAL ACCESS OF MULTI-RESOLUTION LOAD
PROFILES

The idea of conditional access stems from the context of
multimedia entertainment data. Entertainment content usually
exists in various resolutions (e.g. mobile content, standard
definition, high definition), which may be priced differently. A
multi-resolution representation of the multimedia data allows
the efficient representation of the resolutions in a single
bitstream. This is an advantage as only one version of the
bitstream needs to be handled and transmitted. Conditional
access allows users to pay only for the resolutions they are
interesting in. For example, the owner of a standard definition

1There may be small discrepancies due to border handling, depending on
the length of the input signal. However, this can be resolved by using zero-
padding.



Final result L0 H1 H2 H3

K0 K1 K2 K3

Fig. 1. Final Bitstream Produced by Smart Meter

television has no need to pay for the high-definition version
of the content. Through conditional access only the bitstream
portion relevant for the desired resolution is decrypted, the rest
of the bitstream is ignored.

We propose to use the conditional access paradigm for
smart-metering data in multi-resolution representation. Each
high-pass subband is encrypted with a different key. If desired,
the lowest resolution can remain unencrypted to be accessible
for each party, e.g. for billing purposes. The whole datastream
can be transmitted over Smart Grid communications infrastruc-
ture. Access to the different resolutions is thereby only granted
to parties that hold the needed keys, as illustrated by Figure
1.

The lowest resolution remains accessible to the energy
provider at all times to enable billing. In the example above
this is done by leaving R0 unencrypted (which in principle
mirrors the situation in current energy networks). Alternatively,
R0 could also be encrypted with an appropriate key that allows
access to the energy provider.

This scheme allows flexible control by the end-user how
access is granted to smart meter data. For example, a par-
ticular energy provider may be granted access to the lowest
resolution for billing purposes, but the end-user may not be
willing to provide any detailed usage statistics. A third-party
service providing energy saving advice by employing NILM
methods may be granted access to the highest resolution by
the user. Thereby, a hierarchical keying scheme (e.g., MIKEy
– Multimedia Internet KEYing [36]) needs to be employed,
allowing parties who hold Kn to access data encrypted with
Ki for i ≤ n.

The proposed scheme also enables relaying of data. For
example, the data needed by a third party analysis lab can
be forwarded in encrypted form by an aggregator, or even the
utility provider. The parties forwarding the data on route to the
destination can only access data in the resolution for which
they have been cleared by the owner of the data. This may
also mean no access at all, i.e. only forwarding is permitted.

Of course, the proposed scheme requires the smart meter
hardware to provide functionality for wavelet lifting and
encryption, and to support the manual or automatic setting of
encryption keys for the higher resolutions. Furthermore solu-
tions for key management, revocation and a key infrastructure
need to be provided.

V. EVALUATION

In the following we evaluate the discussed wavelet filters
for use in the proposed approach. We use smart meter data
from an Austrian energy provider, which was generated by
real households over a period of 18 months. In our tests, we

l = 1 l = 2 l = 3 l = 4 l = 5

Haar 0% 0% 0% 0% 0%
LeGall 5/3 0.44% 1.16% 2.24% 6.26% 11.6%

TABLE I
RELATIVE DIFFERENCE IN AGGREGATION OVER 400 LOAD PROFILES

use 400 load profiles. The load profiles originate from Siemens
smart meter hardware, model TD3510 (3 phase, 100 Amp.).
The sampling interval is 15 minutes, i.e. 96 readings a day.
This allows a maximum wavelet decomposition depth of 5.
With maximum decomposition, the lowest resolution consists
of 3 values per day.

A. Aggregation Preservation

For real-world applicability, the lower resolutions need to
be created in a way that preserves the original sum. Both
investigated wavelet filters preserve the first moment and the
original sum can be derived from wavelet decompositions
of arbitrary depth. However, due to the necessary border
handling, for the LeGall Filter a loss in accuracy is incurred.
Table V-A shows the average relative difference for the sum
of the lowpass subband compared to the sum of the original
data for the 400 load profiles in the test set for different
decomposition levels l.

B. Security

There are no methods to infer the higher resolutions by
using the information from lower resolutions. Therefore, the
higher resolutions are secure, provided that state-of-the art
cryptographic ciphers are used.

The proposed scheme does not prevent tampering of smart
meter data at the point of origin, i.e. if a tampered smart meter
produces fake data, this is not recognized. To prevent this kind
of tampering, the proposed scheme needs to be combined with
trusted computing (e.g. [23]).

Regarding successful privacy protection of the higher res-
olutions, the proposed scheme has an advantage over the
scheme proposed by [16]. As stated by [37], the privacy
afforded by the scheme proposed by [16] may be compromised
by data aggregation through an eavesdropper: The eavesdrop-
per could link the tow IDs for low and high frequency data
(LFID and HFID, respectively) by summing up high frequency
data that he observes. Such an attack is not possible in the
scheme proposed here, as all high frequency data is transmitted
in encrypted form.

C. Complexity

As discussed above, implementing the wavelet transform
as lifting steps is computationally inexpensive. Generally, the
discrete wavelet transform has a complexity of O(n). Due to
the simple operations used in the lifting implementation, the
transformation part can be realized by inexpensive smart meter
hardware.

The computational demands for encryption depends on the
used encryption scheme. For standard encryption schemes,



WAV AES RSA HYB

Average Execution Time (ms) 0.3092 2.36 89.27 92.12
Standard Deviation 0.0356 0.42 4.92 6.59

TABLE II
EXECUTION TIMES FOR HAAR WAVELET ON A BEAGLEBOARD: AVERAGE

FOR 400 LOAD PROFILES WITH 1000 EXECUTIONS EACH

WAV AES RSA HYB

Average Execution Time (ms) 0.2684 2.34 89.15 91.69
Standard Deviation 0.0495 0.42 3.26 1.53

TABLE III
EXECUTION TIMES FOR LEGALL 5/3 WAVELET ON A BEAGLEBOARD:

AVERAGE FOR 400 LOAD PROFILES WITH 1000 EXECUTIONS EACH

efficient implementations exist that can even be integrated into
smart meter hardware. Depending on the desired scenario,
symmetric encryption alone can be used, or in combination
with asymmetric encryption. The latter case is computationally
more demanding but benefits from the support for public
key infrastructures, such as proposed by [23]. Some overhead
is introduced for key management, and potentially for the
creation of session keys.

Three scenarios are investigated for each wavelet filter: (i)
Symmetric encryption: AES with 128 bit keys, (ii) Asym-
metric encryption only: RSA with 2048 bit keys, (iii) Hybrid
encryption: 128 bit AES session keys encrypted with 2048 bit
RSA keys. In each scenario the following steps are executed:
(i) Level 5 wavelet transform of the load profile, (ii) Gener-
ation of different keys to encrypt resolutions R1 through R5

(R0 is left unencrypted), (iii) Encryption of R1 through R5,
each with a different key.

The implementation was done in Java (OpenJDK 1.6). The
Java standard implementation of the cryptographic routines
were used. Lifting implementations were used for both, the
Haar wavelet and the LeGall 5/3 wavelet transforms. No
special optimization was performed. The tests were run on
an low cost embedded environment (Beagleboard BB-XM-00
with a TI DM3730 ARM processor and 512MB of RAM)
running Ubuntu Linux 12.04. An ARM-based environment can
be envisioned to be used as the central unit for processing and
communication in a AMI Home Area Network or even as part
of the smart meter.

Tables II and III show the results for the Haar Wavelet and
the LeGall Wavelet, respectively. The timing results are given
in milliseconds comparing wavelet transform only (WAV) with
AES, pure RSA and hybrid encryption (HYB) using an AES
session key encrypted with RSA. In each category, 400 load
profiles were investigated, each of which was transformed and
encrypted 1000 times. The results present the average time
needed for processing one load profile.

It can be seen that compared to the computational demands
of the encryption stage, the computational demands for the
wavelet transform are almost negligible. On average, the

transformation of a load profile takes 0.31 ms for the Haar
wavelet and 0.27 ms for the LeGall wavelet. The fact that the
LeGall uses integer lifting operations accounts for the slightly
faster performance.

As expected, symmetric encryption outperforms asymmetric
and hybrid encryption by a factor of nearly 40. In application
scenarios, that do not require public key management, this
advantage will make symmetric encryption a prime candidate.

Due to the limited size of the subbands, public key cryp-
tography can be used directly on the load data. For our test
setup, all subbands can be encrypted using 2048 bit RSA keys.
It can be observed that the hybrid approach in our scenario
is slower than the pure asymmetric approach. This is due to
the fact that the load profile subbands are limited in size. Of
course, for larger data sets using pure asymmetric encryption
is not feasible and the hybrid approach would have to be used.
However, it can be rated an advantage that the multi-resolution
representation of the load profiles allows the direct application
of public key cryptography.

VI. CONCLUSION

Multi-resolution wavelet representation of smart-meter data
is a way to balance the need for privacy with the additional
functionality introduced by the smart meter load profiles. By
using multiple keys to encrypt each resolution separately,
the proposed scheme provides end-user control of access to
different granularities of the data. Apart from providing user-
centric privacy, due to encrypting the higher resolutions the
proposed scheme also implements secure transmission of the
load profiles and prevents unauthorized access by eavesdrop-
pers.

In terms of choice of wavelet filter, the Haar filter offers
the advantage of preserving the aggregate exactly over the
different resolutions, which makes functions like billing pos-
sible. The fact that the LeGall 5/3 wavelet offers slightly faster
computation cannot counterbalance this advantage.

The scheme fits neatly into the larger frameworks proposed
to date, such as [23], as it is compatible with other approaches
for securing smart grid communication, including authentica-
tion, integrity checking, and the integration into smart grid
public key infrastructure.

Regarding computational complexity, some overhead is in-
troduced. However, both employed wavelet transforms have
very low demands, when implemented as lifting steps. The
computational demands for encryption of the higher resolution
subbands are higher, especially if an asymmetric or hybrid
approach is chosen.

In terms of economic feasibility, it has been shown that the
proposed privacy-aware encryption scheme can be employed
on inexpensive ARM-based hardware, even running a non-
optimized Java implementation on Linux. In dedicated chipsets
that offer hardware acceleration for the cryptographic routines
the scheme can easily be integrated into smart meters or the
corresponding communication gateways.
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