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Abstract—The availability of individual load curves per house-
hold in the smart grid end-user domain combined with non-
intrusive load monitoring to infer personal data from these load
curves has led to privacy concerns. Two types of approaches
show high potential to resolve this issue: (i) secure aggregation
and (ii) multi-resolution representation with conditional access.
In this paper a combination of these two principle approaches
is proposed. It is shown formally that secure aggregation and
wavelet-based multi-resolution representation are compatible.
Furthermore, it is shown that that the wavelet transformation
is compatible with existing privacy-preserving protocols and can
be used to extend them with additional degrees of freedom. An
implementation of the proposed approach is used for evaluation
of feasibility in a low-cost embedded environment.

I. INTRODUCTION

Intelligent energy systems, so-called smart grids, revolution-
ize existing energy grids by combining them with information
and communication technology. Smart grids demand accurate
and fine-grained data on network status. The widespread
roll-out of smart meters is one of the consequences. Smart
meters record energy consumption in a specified granularity
(usually the time between readings is between 1 second and
15 minutes) and have the ability to transmit these load curves
in a specified interval (e.g., once a day).

It has been shown that personal information on the end-
user can be inferred from fine-grained load curves [1], [2],
and this has led to privacy concerns [3], [4]. The accuracy of
the inferred information is directly connected to the available
resolution of the load data. A number of methods have been
proposed to balance the need for privacy with the information
needed for correct operation of smart grids. Two types of
approaches show high potential to resolve this issue: (i) secure
aggregation of encrypted load curves, and (ii) representation
of load curves in multiple resolutions, each associated with
different access levels.

Approaches of the first type can again be divided into two
categories: protocols using masking [5], [6] and protocols
using homomorphic encryption. In this paper the focus is put
on the second kind of protocols. Privacy-enabling encryption
for smart meter data by the use of homomorphic encryption
is suggested by, e.g., [7]–[10], allowing the aggregation of
encrypted signals, also termed “secure signal processing”. A
recent overview of secure signal processing, covering four

proposals for privacy-preserving smart metering aggregation
is given by [11].

Approaches of the second type suggest to represent load
curve data in multiple resolutions, where each resolution can
be used for a different purpose, e.g., low resolution for billing,
and is therefore disclosed to selected parties only, e.g., [12].
Using the wavelet transform to produce an integrated bitstream
supporting multiple resolutions has been proposed by [13].
Combined with conditional access, i.e., different encryption
keys for each resolution, this wavelet-based representation
allows user-centric privacy management: access can be granted
or revoked for each resolution. Access to high resolutions,
which are privacy-sensitive, may be reserved to a small
number of trusted entities only, whereas resolutions of medium
granularity may be provided more freely, e.g., to contribute to
network stability (in exchange for lower energy prices or other
incentives).

In this paper, a privacy-preserving smart metering method
that combines the two types of approaches, namely homo-
morphic encryption and multi-resolution representation, is
proposed. This enhances the possibilities for managing privacy
requirements, as the combination of both methods significantly
increases the degrees of freedom. Access control does not
relate to the aggregated signal as a whole anymore, but
access can be granted on the aggregate on each resolution
individually. This is an important feature, as it allows to grant
access to participants in the smart grid system, based on their
roles and the functions they have to fulfill. Each role can be
assigned access to the aggregate on the minimum resolution
necessary to fulfill the functions associated with this role.

The rest of this paper is structured as follows. Section II
summarizes the principle of wavelet-based load curve rep-
resentation and homomorphic encryption. In Section III the
combination of the two approaches is introduced and their
compatibility is proven mathematically. Results are discussed
in Section IV-A. The usability of the wavelet transformation
with existing protocols is discussed in IV-B. Section V con-
cludes the paper.

II. BACKGROUND

A. Wavelet-based Representation

A wavelet transform starts with the original load curve and
is recursively performed in S steps. In each step s half of the
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Fig. 1. Wavelet transformation and encryption of load curve

data (the highpass data) H̃s are remembered as the wavelet
coefficients (subband) of scale s and the next step is performed
for the lowpass data. At the end of the transformation the
final subband H̃S consists of 2−S samples. The higher the
scale s, the lower the time resolution r := S − s. Reindexing
Hr = H̃S−s, at the end of the transformation one obtains a
sequence L0, H1, . . . , HS , see Fig. 1.

The synthesis step of the inverse wavelet transform W−1

starts with the lowest resolution r = 0. To get the next
higher resolution of the signal the next higher resolution
subband is needed, so that in a series of S steps one fi-
nally obtains the original load curve (since we only consider
lossless transformations). In order to provide a signal mR

with maximum resolution R only R synthesis steps must be
performed and only the subbands with resolution r ≤ R, i.e.,
L0, H1, . . . , HR are needed. Denoting the selection of the R
highest resolutions as TR this can be written as

mR =W−1 [TR(W [m])] (1)

Making the signal available at the needed resolution instead
of the full resolution increases privacy because less (personal)
information can be deduced. For allowing differentiated access
control, each subband (i.e., each resolution) of the resulting
wavelet decomposition is encrypted with a different key, as
illustrated by Fig. 1. A combination with public key infras-
tructures to allow fine-grained access control is possible. A
hierarchical key creation scheme can be used to minimize
overhead for key exchange. The result of this process is an
encrypted bitstream that forms an integrated representation of
all resolutions. Note that no data expansion occurs, i.e., the
size of the final bitstream equals the size of the original data.

The operator TR can be generalized to be any transformation
T of the wavelet coefficients to be used for example for denois-
ing. In the simplest case, using a global threshold η it could be
defined as T (W [m]) =W [m]δ(m−η) with δ denoting Dirac’s
delta function, for more sophisticated denoising methods, see
[14]. Using denoising transformations could turn out to be
valuable for transmission of signal aggregations.

Wavelets are also used for the generation of features in
load forecasting [15], [16]. The representation suggested in
this paper may be of advantage for load forecasting methods
based on wavelets. However, the main focus of this paper is
load aggregation with access control to different resolutions.

Key generation: generate public keys g and n and private key λ
- Generate private key prime numbers p and q randomly
- Set private λ = lcm(p− 1, q − 1)
- Set public key n := pq
- Select public key g with the property

gcd(L(gλ mod n2), n) = 1 for L(u) := u−1
n

Encryption: given message m ∈ Zn
- Generate random number r ∈ Z∗

n
- Ciphertext c = E(m; g, n) = gm · rn mod n2 ∈ Z∗

n2

Decryption: given ciphertext c ∈ Z∗
n2

- m = D(c; g, n, λ) =
L(cλ mod n2)

L(gλ mod n2)
mod n ∈ Zn

TABLE I
HOMOMORPHIC ENCRYPTION

B. Homomorphic Encryption

Following previous proposals [7]–[9], a Paillier cryptosys-
tem [17] is employed. The whole encryption and decryption
process can be split into three parts: key-generation, encryption
and decryption. It is described in Table I. Note that the num-
bers g, n and λ are kept fixed and are omitted for simplicity.

Homomorphic encryption has the following important prop-
erty, which is called the additive property:

D
(
E(m1)E(m2) mod n2

)
= m1 +m2 mod n. (2)

This property means that the decryption of the product of the
ciphertexts is the sum of the original plaintext messages.

C. Privacy Preserving Protocols

In [7]–[10], protocols using homomorphic encryption are
proposed as tools for privacy conserving aggregation of load
curves. As it is done there, the smart grid network consid-
ered consists of N households each having one smart meter
installed and an aggregator (Fig. 2).

Fig. 2. Aggregation of encrypted signals

The network is assumed to have tree-like connections. Each
smart meter i sends its measured load mi in encrypted form
to its parent smart meter. The parent smart meter multiplies
the obtained encrypted signals with its own encrypted signal
and in turn sends this product to its parent node. Finally, the
aggregator multiplies the obtained signals and decrypts the
product. Due to the homomorphic property, the result is the



sum of the measured loads. With E and D denoting Pailler
encryption and decryption this can be stated as

D

(∏
i

E(mi) mod n2

)
=
∑
i

mi mod n. (3)

Privacy is preserved because of the distributed way of process-
ing. Smart meters only have the plaintext information of their
own messages, because they cannot decrypt the messages they
get. The aggregator can decrypt messages, but, as it receives
the product of the individual ciphertexts, can only decrypt the
sum of the load curves.

III. AGGREGATION OF ENCRYPTED
WAVELET-TRANSFORMED SIGNALS

The goal of this paper is an extension of the distributed
homomorphic encryption process in a way that is compatible
with the wavelet transformation. In particular it is shown
that when homomorphic encryption is applied to a signal
represented in the wavelet domain, homomorphic additivity
is not only preserved, but can be separately exploited for each
resolution.

In [13], a variety of wavelet filters regarding their utility
for the multi-resolution representation of load curves was
evaluated. Only lossless transformations are useful in the con-
text of smart metering. The Haar wavelet filter preserves the
average over all resolutions, which is an important property for
many use cases. Using the lifting implementation of the Haar
wavelet, the transformation can be realized efficiently. The
lifting steps for the forward transform with the Haar wavelet
have been formulated by [18]. As the original Haar wavelet
uses real coefficients, it is ill-suited for use with homomorphic
encryption. Therefore, for the combination with homomorphic
encryption a modified version of the Haar wavelet is used
that only produces integer values for the transformed load
curve (where L̃0 = X[i] is the input signal, H̃s[i] and L̃s[i]
are the resulting high-pass and low-pass subband at scale s,
respectively, with i denoting the position within the signal):

L̃
(0)
s+1[i] = L̃s[2i] (4)

H̃
(0)
s+1[i] = L̃s[2i+ 1] (5)

H̃s+1[i] = H̃
(0)
s+1[i]− L̃

(0)
s+1[i] (6)

L̃s+1[i] = 2L̃
(0)
s+1[i] + H̃s+1[i]). (7)

The inverse transform can be written as:

L̃(0)
s [i] =

1

2
L̃s+1[i]−

1

2
H̃s+1[i] (8)

H̃(0)
s [i] = H̃s+1[i] + L̃(0)

s [i] (9)
L̃s[2i+ 1] = H̃(0)

s [i] (10)
L̃s[2i] = L̃(0)

s [i]. (11)

Note that the average of the original series is still preserved
over all resolutions for the modified Haar filter:

∀s :
∑
i

X[i] = 2−s
∑
k

L̃s[k].

Fig. 3 shows the aggregation of a number of multi-resolution
load curves at a collector node. Homomorphic encryption
is applied to each resolution r separately with a different
key Kr = (gr, nr). The resulting signal m is the sum of
all signals mi (each of which has a maximum resolution
of R) at resolution r ≤ R, whereby W denotes a wavelet
transformation. The collector node can perform aggregation
(i.e., multiply) in the encrypted domain, i.e., it does not
have any keys. This ensures that the aggregator cannot get
information about the loads of its children, e.g., by divisions.

Fig. 3. Aggregation of encrypted multi-resolution load curves

Writing the procedure mathematically yields the following
calculation of the ciphertext c

c =
∏
i

E(TR(W [mi])) mod n2.

The ciphertext c is decrypted by the aggregator in the follow-
ing way

m =W−1[D(c) mod n]

Using this procedure the wavelet transformation is compatible
with homomorphic encryption, i.e., the homomorphic property
that the message m equals the sum of the messages is
preserved (choosing R = S). Even more, choosing R < S,
the decrypted message m equals the sum of the messages of
resolution R:

m =W−1[
∏
i

E(TR(W [mi])) mod n] =
∑
i

mR,i mod n.

(12)
The aggregator gets the product of the encrypted messages

and can therefore not extract any information about the
individual messages. However, it can calculate the sum of
the messages which is the information needed, e.g., for load
forecasting. Note again that the product of the ciphertexts is
calculated in a distributed way by the smart meters and not
by the aggregator. The number n must be chosen big enough
so that

∏
iE(TR(W [mi])) < n2 and

∏
iE(TR(W [mi])) < n

hold. For sake of readability the modulo parts of the calcula-
tions are therefore omitted in the proof.

Proof: Without loss of generality two messages are
considered. To simplify the analysis the notation yi :=
TR(W [mi]) is used, so E(TR(W [mi])) = E(yi). The ag-
gregator calculates the signal W−1[D(c)]. Using the fact that
the ciphertext c is the product of the individual ciphertexts and



the homomorphic encryption property leads to

W−1[D(c)] = W−1[D(c1c2)]

= W−1[D(E(y1)E(y1))]

= W−1[y1 + y2]

Substituting for the yi, using the linearity of the wavelet
transform and the definition of mR yields

W−1[D(c)] = W−1[TR(W [m1]) + TR(W [m2])]

= W−1[TR(W [m1])] +W−1[TR(W [m2])]

= mR,1 +mR,2

So in general for I different messages and ciphertext c =
∏

i ci
the desired property (12)

W−1[D(c)] =

I∑
i=1

mR,i (13)

is obtained.
An example use-case scenario is the use of aggregated load

information for energy monitoring by the network operator,
as, e.g., suggested by [11]. The approach proposed here adds
an additional layer of flexibility by making the aggregates
available at different resolutions with access being granted
to parties on the resolutions with the necessary granularity
to fulfill a specific task. In combination with suitable key
management, this approach implements the “need-to-know”
principle of access for aggregated signals.

IV. RESULTS

A. Cost and complexity

The proposed method has been implemented as a proof
of concept in Java (Oracle Java v8 preview with ARM-
extensions) and evaluated in a low-cost ARM-based environ-
ment (Beagleboard BB-XM-00, Rev C, with a TI DM3730
1Ghz ARM processor and 512MB of RAM) running Ubuntu
Linux 12.04.

Results are shown in Table II: Each value represents the
execution time for a single load curve consisting of 96 values
for the wavelet transform combined with different encryption
settings, averaged over 400 load curves with 100 encryptions
each (acquisition of the load curve and key generated are not
considered in the timing results). WAV denotes the wavelet
transform only, without any encryption applied. AES denotes
the wavelet transform followed by encryption with the sym-
metric AES cipher with a 128 bit key for each subband. HYB
denotes hybrid encryption, which adds RSA 2048 bit public
key encryption of the AES keys with a different public key for
each subband. Finally, PAI-n denotes Pailler encryption with
a module of n bits and a different key for each subband.

It can be seen that by using a lifting implementation the
transformation is very fast and the computational overhead
is negligible compared to the encryption step. Homomorphic
encryption comes at the cost of a significant increase in
computational overhead compared to conventional encryption.

WAV AES HYB PAI-256 PAI-512 PAI-1024

Exec. time 0.15 1.91 72.4 1,649 11,452 85,355
Std. dev. 0.01 0.03 0.1 16 22 133

TABLE II
EXECUTION TIME IN MILLISECONDS FOR TRANSFORMING/ENCRYPTING A

SINGLE LOAD CURVE (AVERAGE OVER 400 LOAD CURVES WITH 100
ENCRYPTIONS EACH)

The results show that the computational demands grow expo-
nentially with the module size. Considering that 256 and 512
bit modules will in most use-cases not be sufficient in terms of
security, the increased execution time for module sizes that are
more secure provides a challenge. While AES encryption only
takes 1.9 ms, for the used (non-optimized) implementation,
Paillier encryption of a load curve with 96 values takes nearly
90 seconds for a module of 1024 bit. It needs to be pointed
out that this drawback also affects all previously proposed
methods for homomorphic load curve encryption that rely on
a Paillier cryptosystems. Optimization of the implementation
is one option to be considered. Another option is to investigate
the utility of alternative homomorphic encryption schemes.

The approach proposed here adds the possibilities offered by
wavelets to distributed homomorphic encryption and decryp-
tion schemes. It is therefore compatible with any homomorphic
encryption scheme. The wavelet transformation can be seen as
an add-on which is compatible with homomorphic encryption.
Since the computational cost of the wavelet transformation is
small, the computational cost of the main privacy preserving
protocol dominates the overall cost. Thus, the complexity eval-
uation given in [11] can be used as a complexity assessment
for different kinds of privacy preserving protocols.

B. Usability with existing protocols

The extension of the privacy preserving protocol was de-
signed for the protocol used in [7]. Thus it can readily be
used within privacy preserving protocols, which directly rely
on the homomorphic encryption property such as [7], [9]. Here
we study, if wavelets can also be used together with other
protocols found in the literature.

The method in [8] combines Paillier’s homomorphic encryp-
tion with additive secret sharing. Generally, additive masking
terms need no adjustment since they cancel out in the decryp-
tion step before the inverse transformation takes place. Thus,
the method is compatible with the wavelet transformation.

The method in [10] extends [7] by preserving data integrity.
The wavelet transformation is compatible with this method
since it is mostly based on the ciphertext. There, it is irrelevant
if the encrypted message is in its original or in a transformed
form. Decryption is only done in the incremental verification
process where the compatibility can be verified for each
individual step.

Other existing protocols need a homomorphic property but
do not use Paillier’s homomorphic encryption [6], or they use
other principles as for example masking [6], [5]. Next, it will
be checked, if the wavelet transformation is also compatible
with these methods.



In [6], the modulo operation is used for homomorphic en-
cryption instead of Paillier’s homomorphic encryption scheme.
Privacy is achieved by masking. The second main feature
is the addition of Laplacian noise for differential privacy.
This encryption scheme can be made compatible with the
wavelet transformation by the following modifications: the
multiplication in the aggregation step must be substituted by
an addition. The signal TR(W (mi)) corresponds to the signal
Xi in [6]. As already stated above, the additive masking terms
need no adjustment. The same argument holds for the keys
added for ensuring confidentiality with the aggregator. How-
ever, the terms for differential privacy need to be modified.
The added noise must be adapted in two ways due to the
inverse transformation W−1 arising in the decryption step:
first, the parameter λ must be chosen suitable for the signals
W−1(TR(W (mi))) = mR,i. Second, the noise added to each
signal TR(W (mi)) which consists of the subtraction of two
gamma distributions (with the adapted parameter λ) must
be transformed by W which later cancels the W−1 in the
decryption step. With these changes wavelets are compatible
with the method of [6].

In [5], four different protocols which rely on masking are
described. These protocols can be categorized into so-called
aggregation and comparison protocols. The aggregation proto-
cols are compatible with wavelets. However, in the comparison
protocols, the transformed sum of the values is in the exponent
of the generating element of the Diffie-Hellman group. As the
reverse transformation cannot be calculated, wavelets are not
compatible with these comparison protocols.

Summarizing, the wavelet method is compatible with exist-
ing privacy preserving protocols except comparison protocols.
Adaptations are needed for differential privacy.

V. CONCLUSION AND OUTLOOK

The proposed approach enables access models on a “need-
to-know” basis for secure signal processing. This adds flex-
ibility to existing approaches and enhances privacy. Access
control to encrypted aggregates is not binary for the whole
signal anymore, but instead can be granted to parties for
individual resolutions, based on their roles and the associated
specific needs in terms of data resolution. A proof has been
given that shows that the wavelet transform is compatible
with any homomorphic encryption method. Furthermore, the
proposed approach can be included in most existing privacy-
preserving protocols to enhance the degrees of freedom. Com-
putational demands of homomorphic encryption schemes in
general remain a challenge. The overhead for multi-resolution
processing is negligible compared to the complexity of en-
cryption.

Like most papers this paper focuses on methodological
aspects. In the future we will extend existing work [19]
and investigate how these methods can be applied to the
relevant use cases like energy feedback, billing or grid stability
including practical aspects such as robustness against losing
the connection to individual smart meters.
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