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Abstract Privacy-sensitive information can be extracted from the load data which is available in
high resolution in smart metering. A number of approaches to privacy-enhancing technologies
(PET) have been suggested to provide privacy in smart metering while maintaining (a certain level
of) functionality. To date, most of these approaches have not been subjected to real-world use
beyond test pilots in model regions. We review types of approaches for privacy-aware smart meter-
ing and discuss issues that may prove challenging for widespread adoption.

1. Introduction

With the introduction of smart grids, a more efficient utilization of electrical grid infrastructure is
envisioned. For implementing smart grids, the method of choice is the introduction of Information
and Communication Technology to monitor grid status and to balance generation and consumption.
The data available in smart grids is vastly more accurate and timely than in traditional electrical
grids. In the current conception of smart grids, smart meters are used to obtain fine-grained data in
the distribution system. Moreover, smart metering provides essential functionality for a variety of
use cases, such as demand response management. The collection of this fine-grained data has led to
privacy concerns [1, 2]. Lisovich and Wicker [2] report results of a collaboration between research-
ers from law and engineering. They argue that there “exist strong motivations for entities involved
in law enforcement, advertising, and criminal enterprises to collect and repurpose power consump-
tion data” [2, p. 1]. For example, burglars could use the data to determine occupancy patterns of
houses to time break-ins. Marketing agencies could identify specific brands of used appliances,
which could then be used for targeted advertising. In summary, while there are many useful appli-
cations of smart meter data, such as energy saving, network monitoring and tailor-made energy
rates, the privacy of this kind of data needs to be ensured.

It has been argued, that approaches relying on policy alone, may prove inadequate to provide a
sufficient level privacy and that technological methods that enforce privacy by virtue of “strength
of mechanism” need to be employed [3]. Indeed, a number of such technological approaches have
been suggested to remedy the (perceived) loss in privacy and still enable smart metering functional-
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ity on a broad basis. However, on closer examination many of the approaches suggested in litera-
ture show some characteristics, such as data expansion, high computational demands, or excessive
demands for the required number of participants, that may make their real-world application infea-
sible. In this paper, we will give an overview of types of approaches. We will then address the issue
of real-world applicability and raise the question if it is indeed possible to provide both, privacy and
functionality, in a sufficient amount. At the example of selected approaches, this conundrum will be
explored.

2. Extractable Information and Privacy

Privacy can be defined as “the right of the individual to determine when, how, and to what extent
he or she will release personal information”. Technological privacy approaches can be seen as
tools at the individual’s disposal to enforce this right.

It has been argued that both security and privacy need to be addressed from the earliest stages in the
development and standardization process for smart grid technology. The terms “security by design”
and “privacy by design”, spearheaded by Cavoukian et al. [4], are used to describe principles to
allow security and privacy to be built into the system, rather than be treated as add-ons.

There are two kinds of privacy approaches: regulatory-based and technology-based [5]. Important
sources for regulatory scenarios and recommendations include the reports of the M/490 SGCG-
SGIS Smart Grid Information Security Working Group and of the European Commission Smart
Grid Expert Groups Two for regulatory recommendations for data safety, data handling and data
protection, e.g. [6]. Other sources include Common Criteria for Information Technology Security
Evaluation (ISO/EIC 15408) and country-specific recommendations, such as the Federal Office for
Information Security (BSI) in Germany, e.g. [7].

The basis for both, regulatory-based and technology-based approaches, is detailed knowledge of
what information can be extracted with which tools from the available user data. To date, there is
little systematic research on this subject in the context of smart grids. Rajagopalan et al. present [8]
an information-theoretic approach to abstract privacy and utility requirements. The authors aim at
providing a measure for the amount of information leaked, and also for the utility that is retained in
the data at different levels of abstraction.

There are a number of approaches for matching appliance signatures to load profiles to determine
which appliances were used at what time and for how long, e.g., [9-11]. This type of method is
termed “non-intrusive load monitoring” (NILM. Detection based on NILM is remarkably accurate:
Lisovich and Wicker [2] report over 90% accuracy in detecting presence and sleep cycle intervals.
The results show that “personal information can be estimated with a high degree of accuracy, even
with relatively unsophisticated hardware and algorithms” [2, p. 2]. Leung et al. [12] use genetic
algorithms for identification and report flawless identification for up to 10 types of appliances.
Liang et al. [13] report on successful identification of appliances in relatively low resolution load
profiles, e.g. 30 minute intervals, with the use of data-mining techniques.

lRov. Duarte, Supreme Court of Canada, 1990-25-01
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In general, there is a close relation between the resolution in which the load data is available and
the extractable information. As not all extractable information is necessarily privacy-sensitive, a
comprehensive and formal account on how extractable information, such as type or brand of appli-
ance, relates to personal information, and how such data items could be combined by a potential
attacker. To date there is no formal investigation on what information can be extracted by which
method at what resolution, and what kind of threat this may represent to an individual’s privacy.

3. Methods and Applicability

A number of technological privacy-enhancing technologies (PET) have been proposed for smart
metering. Recent surveys have been conducted by Jawurek et al. [3] and Erkin et al. [14]. In the
following, we give an overview of the types of approaches, without aiming at listing or detailing all
existing approaches, and point out properties that may prevent real-world use or at least prove a
challenge should these approaches be deployed in the real world.

3.1 Anonymization/Pseudonymization

The classic approach, and the only approach that is widely used in the real world at this point in
time, is anonymization or pseudonymization of smart metering data. The consumption data and the
personal data are split and stored separately.

Methods for de-anonymization are a major threat for these types of approaches. It has been shown
that even after anonymization or pseudonymization, data items can still be attributed to the individ-
ual that originated them. For example, in the area of social networks, it has been shown by Back-
strom et al. [15] that anonymization is somewhat difficult, because individual users can be traced
based on structural cues evident in the network even after anonymization. Jawurek et al. [16] show
that de-anonymization can also be done in the smart grid user domain. This structural traceability is
a problem for schemes that rely on anonymization or pseudonymization only without the use of
additional encryption.

3.2 Simple Aggregation

Simple aggregation tries to hide data related to individuals by aggregating over a number of house-
holds, e.g., all households in a neighborhood are network (NAN). For example, Bohli et al. [17]
propose a privacy scheme in which high resolution smart meter readings are aggregated at NAN
level and only the aggregate is sent to the utility. They introduce two solutions both with and with-
out involvement of trusted third parties.

A possible issue with this kind of approaches is the number of households required. If a NAN only
has a small number of households, traces of individual data can still be identified in the aggregate.
Furthermore, these approaches often assume complete trust between the households in a NAN, as
the data is aggregated in a hop-by-hop manner. If one participant should start an attack, the
schemes can be easily compromised. Introducing a dedicated aggregator in each NAN only moves
the issue to a different part of the system, as in this case, the aggregator needs to be afforded com-
plete trust by all parties. In general, the adversary models which are used to analyze PET in smart
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grids often exclude malicious attackers. Most authors evaluate their approaches in honest-but-
curious adversary models.

3.3 Multiple Resolutions

Due to the inherent link between load data resolution and privacy, splitting the load data into a
variety of different resolutions, each associated with different authorization levels, has been pro-
posed by a number of contributions.

For example, the anonymization scheme proposed by Efthymiou and Kalogridis [18] is based on
two different resolutions: a low resolution that can be used for billing purposes, and a high resolu-
tion that allows further investigation. This scheme employs a trusted third party escrow service.
Engel [19, 20] proposes the use of the wavelet transform to generate a whole cascade of different
resolutions. The approach is combined with a conditional access scheme: each wavelet resolution is
encrypted with a different key, allowing differentiated access management. By using a suitable
wavelet filter, it is ensured that the sum of the original data is preserved over all resolutions.

For application in the real world, the requirements of use cases with respect to data resolution need
to be clarified. It could turn out that most of the more interesting use cases (except for billing), such
as distribution system monitoring, may require high resolution data, rendering a cascade of lower
and medium resolutions useless. Furthermore, many of these use cases may require the data in
(near) real-time. Using the wavelet transform to create a number of resolutions is at odds with this
requirement, as a sufficient amount of data needs to be available for transformation.

3.4 Masking

Masking relates to approaches which add numerical artifacts, e.g., random sequences to the original
load data to obfuscate individual contribution. The added artifacts are constructed in such a way
that they cancel each other out upon aggregation. The aggregator can therefore combine the data of
all participant to create an accurate aggregation, but cannot gain access to individual contribution.
For example, Kursawe et al. [26] propose such an aggregation protocol, which compared to other
approaches has the advantage of relatively low computational complexity.

For real-world use, the issue of creating the random secret shares among each group of participants
needs to be addressed. In [26] this is achieved by either selecting a leader among the participants, or
by relying on a trusted third party to create the final shares (which exhibit the property of cancelling
each other out) from the individually generated random shares. Again, this relates to the assumed
underlying adversary and trust models. Another issue, as Jawurek et al. [3] point out, is fault
tolerance: if a single participant fails (e.g., due to a hardware error), the whole aggregate is affect-
ed.

3.5 Differential Privacy

As Dwork [27] puts it, differential privacy, roughly speaking, “ensures that (almost, and quantifi-
ably) no risk is incurred by joining a statistical database”. Adding or removing an item from the
database will not (or only to a very limited degree) affect the result of statistical computations. This
is commonly achieved by the distributed generation of noise which is added to the individual data
contribution.
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Shi et al. [28] propose a scheme for adding random noise to time series data using a symmetric
geometric distribution. An advantage of this scheme is that the participants need not trust each
other, nor rely on a trusted aggregator. As another example, Acs and Castelluccia [29] obscure
individual data sets by adding Laplacian noise, which is jointly generated by the participants.

As Shi et al. [28] point out themselves, the issue of data pollution, i.e., a malicious participant or a
group of malicious participants injecting false data. Furthermore, although keeping the contribution
of each participant private, the protocols exhibit little to no fault tolerance of participants [3].
Finally, in order to achieve a high level of (differential) privacy, the number of participants needs
to be large.

3.6 Secure Signal Processing

Secure Signal Processing (SSP) refers to the possibility to perform certain computations, such as
aggregation in the encrypted domain. A commonly employed mechanism in SSP is homomorphic
encryption, which allows some specific manipulations of the ciphertext to be reflected in the
plaintext domain.

For example, Li et al. [21] propose an overlay network in a tree-like topology and the use of a
Paillier cryptosystem [22]. Garcia and Jacobs [23] combine secret sharing with a Paillier cryptosys-
tem to add flexibility in the aggregation (at the expense of additional computational complexity).
Erkin and Tsudik [24] extend the idea of homomorphic encryption of smart meter readings by
splitting the module into random shares, which, in combination with a modified Pailler cryptosys-
tem, allows flexible spatial and temporal aggregation for different use cases, such as billing or
network monitoring. The complexity of this approach is lower than that presented in [23]. Engel
and Eibl [25] show that SSP can be combined with multi-resolution signal processing, increasing
the degrees of freedom.

For real-world applicability, a number of factors need to be taken into account. For most schemes,
homomorphic additivity comes at the cost of data expansion. For example, when a Paillier cryp-
tosystem is used, a plaintext of size n is encrypted to a ciphertext modulo n? thus doubling the
number of bits needed for data representation in the encrypted domain. The ensuing data expansion,
which grows with the number of participating nodes, may prove a challenge, especially if commu-
nication is done over low-bandwidth power line carrier. Computational complexity is another issue
to be considered. Compared to other ciphers, homomorphic encryption systems are often more
demanding. Furthermore, unlike standardized cryptographic ciphers, such as AES and RSA, ho-
momorphic encryption schemes are not commonly supported by standard crypto hardware (this of
course may change if a standard for homomorphic encryption is brought forward). For a smart
meter roll-out to be successful, the required computational complexity may prove to be too high to
allow manufacturing devices that satisfy economic feasibility. Furthermore, high computational
demands may lead to energy demands that are significantly higher than traditional meters, and low
energy efficiency for smart meters may negatively impact consumer acceptance.

Another issue, as with previously discussed approaches, lies with the number of required partici-
pants and the underlying trust model, i.e., what level of mutual trust needs to be afforded among
the participants. For real-world use both need to be carefully investigated. In many homomorphic
encryption scheme, participants are required to use the same key, which implies that they need to
trust each other with their meter readings.
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3.7 Rechargeable Batteries

There are a number approaches that propose to install rechargeable batteries at the end-user home
to mask the real profile. In the approach presented by Kalogridis et al. [30], a flat load curve is
produced by constant charging of a battery as far as possible, matching the household consumption
over time. Varodayan and Khisti [31] argue that with this best-effort approach, privacy may still
leak through lower frequencies. They propose the use of a “stochastic battery” which instead of
constant charging employs a randomized model to decrease information leakage.

While in theory this is an effective approach, the practical applicability remains questionable due to
the high costs of installing batteries. Furthermore, the energy loss introduced by using a battery
buffer leads to low energy efficiency of this approach, which, as mentioned above, is not desirable
in general, but specifically detrimental in the context of smart grids.

4, Conclusion

In summary, there are a number of issues that need to be considered when PET for smart metering
are to be deployed in the real world:

e  De-anonymization

e  Data expansion

e  Usability of (aggregated, reduced) data for smart grid use-cases

e  Computational complexity

e  Scalability

e Number of required participants

e  Fault tolerance

e  Realistic adversary model

e  Energy efficiency

e  Economic feasibility
Addressing these issues will prove a challenge. To date there is not a single approach that will
readily solve all of these issues completely, but there are a number of promising suggestions. The
answer to the question, whether the requirements regarding privacy and functionality can be bal-
anced, can be formulated as a cautious “Yes, but...”. Yes, there are good and promising sugges-
tions, but we need to make sure to address all issues that may occur in the real world carefully. A
more definite answer will only be provided over time, when researchers and experts from both
domains, privacy and energy, put their heads together and work out the details in terms of a stand-
ardized method for privacy-aware smart metering, possibly under European mandate M/490. An
even more definite answer will be given, if and when such standardized methods are actually ap-
plied and rolled out all over Europe.
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