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ABSTRACT

�e transition from traditional energy grids to so-called smart grids is an enabler of
the important societal goal to turn from fossil energy sources to renewable energy
sources. �e vision is to build intelligent energy grids that harness the insights of in-
formation and communication technology (ICT) to allow widespread integration of
renewable energy sources, self-healing grids, connection of smart homes and smart
electric vehicles, synchronization of demand and response, and many other use cases.
Spreading such Smart Grid technologies will be inherently di�cult without address-
ing user concerns and actively managing user acceptance by providing secure meth-
ods and demonstrating safety of user data and privacy. Privacy, security, and user con-
trol in the smart grid user domain are critical for establishing end user trust and en-
abling end user participation.
�is habilitation treatise proposes methods for the smart grid user domain to facili-

tate end-user acceptance of smart grid technology.�emain focus is onmethods that
safeguard end-user data, both in terms of preserving end-user privacy in face of poten-
tially curios or malicious insiders and providing security to fend o� outside attackers.
Apart from privacy and security, general methods for data handling, such as compres-
sion, are discussed. Furthermore, the important topic of user control is introduced,
i.e., methods that aim at a two-fold bene�t: incentivizing users to participate in smart
grid optimization schemes and allowing informed interaction with the new technol-
ogy. Both, of course, under the assumption that appropriate methods for preserving
privacy and providing security are in place.

Overall, the contribution presented in this treatise aims at enabling user acceptance
of smart grid technologies by providing methods for the important factors of privacy,
security and user control.
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1INTRODUCTION

�e term “smart grids” is used to describe the next-generation energy systems – digi-
tized systems of systems that are an important enabler for turning from fossil energy
sources to renewable energy sources. Smart grids employ state-of-the-art information
and communication technology to control generation, distribution and consumption
of energy. With smart grids the power network organization moves from a hierar-
chical to a decentralized structure and communication �ow moves from largely uni-
directional to bi-directional. �e degree of information needed on network status is
vastly more accurate compared to traditional power networks is made available to
di�erent stakeholders in �ne granularity, sometimes in near real-time.

One of the most important goals of smart grids is the accommodation of environ-
mentally sustainable energy sources. Traditional, non-renewable energy sources can
be controlled with a hierarchical network structure, with energy sources and energy
sinks at opposing levels of the hierarchy.Many types of renewable energy sources, such
as photovoltaics or wind power, generate power at the distribution level. In order to
integrate a high number of these renewable sources to produce in bulk quantities an
evolution of the network infrastructure and is necessary.

A signi�cant portion of (potential) end-users at this point in time are wary about
possible disadvantages of the new smart grid technology, like the uncertainty regard-
ing the level of privacy and possible security breaches [20, 17]. Apart from privacy and
security concerns, end-users are skeptical regarding possible bene�ts of smart grids as
a new technology, such as cost savings [17]. End-users have di�culties understanding
the level of control they can exert in a smart grid environment [53].

It is valid to diagnose a severe lack of trust towards smart grids on the end-user level.
If this lack of trust were to persist, it would prevent many important features of the
smart grid: intelligent power pricing plans, distributed energy management, adaptive
load balancing, e-mobility, private renewable energy sources and the usage of smart
grid infrastructure for other areas, such as home automation.

In order to establish the needed degree of trust in the end-user domain, providing
a visible level of both, security and privacy, are imperative. In addition, a further com-
ponent is necessary, namely: user control. In order to alleviate concerns of a lack in
bene�ts (especially on a personal level) a su�cient degree of understanding of pos-

1



2 introduction

sible interaction is required. Correspondingly, user interaction needs to be re�ected
accurately on the system side.

Users need to be informed of what choices can be made (user information), how
these choices in�uence smart grid processes (functional transparency), what data items
at what granularity need to be disclosed for this purpose (user-managed privacy) and
that processes and data transfer are operated in a secure way (traceable security). On
all items, systemic feedback to the user needs to be provided consistently in order to
raise user awareness and ultimately create a level of user trust that allows meaningful
interaction.
�e goal of the methods proposed in this treatise is enabling trust in the smart grid

end-user domain, by improving existing approaches and develop newmechanisms to
establish secure, private and informed – i.e., trusted – user interaction with smart grid
technology. �e fundamental question addressed is: How can a sustainable level of
trust be established in smart grid user domain entities (applications, processes, data
protocols, and interfaces) in order to invite and further user participation in smart
grid technologies?
�e main focus is on methods that safeguard end-user data, both in terms of pre-

serving end-user privacy in face of potentially curios or malicious insiders and pro-
viding security to fend o� outside attackers. Apart from privacy and security, general
methods for data handling, such as compression, are discussed. Furthermore, the im-
portant topic of user control is introduced, i.e., methods that aim at a two-fold bene�t:
incentivizing users to participate in smart grid optimization schemes and allowing in-
formed interaction with the new technology. Both, of course, under the assumption
that appropriate methods for preserving privacy and providing security are in place.

Overall, the contribution presented in this treatise aims at enabling user acceptance
of smart grid technologies by providing methods for the important factors of privacy,
security and user control.
�e rest of this treatise is organized as follows: �e present chapter introduces the

topic and the state of the art in Section 1.1 and puts the general contribution of this
habilitation treatise in the context of related work. Section 1.2 details the contributions
of the individual papers that cumulatively constitute this treatise. In Chapter 2 the
ful�llment of the requirements for a habilitation endeavour are discussed: Percentage
of author contribution, teaching, given talks and further aspects for review, such as
personal impact factors. Finally, in Chapter 3, the individual publication are printed
in their original form.
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1.1 background

�e move towards smart grids has spawned a large number of industry initiatives, re-
search programmes and standardization e�orts, see, e.g., [41] for an overview. Many
of the earlier contributions focused on the smart grid ecosystem at a larger scale, with-
out exploring in detail the rami�cations of the move towards smart grid technology
for the end-user.

More recent programmes increasingly accommodate the user perspective, cf., [41,
42, 102, 78, 55, 23, 53, 76]. Addressing the topic of user acceptance is pointed out as a
key issue by almost all authors.

In the following, an overview of what is de�ned as the smart grid user domain is
given, followed by an overview of current contributions in the �elds of privacy, secu-
rity, and user control.

1.1.1 Smart Grid User Domain and Smart Metering

Smart grid communication networks have to support a wide range of applications like
AdvancedMetering Infrastructure, Automated Supply andDemandResponse, Feeder
Automation, Mobile Work�ow Management, etc. [88]. In [101] a communication ori-
ented framework for smart grid is introduced, consisting of three entities, namely, Op-
eration, Business and Consumer Network. A more application-oriented approach es-
pecially for the Smart Metering Infrastructure distinguishes between Home Area Net-
work (HAN), Neighbourhood Area Network (NAN) andWide Area Network (WAN)
(e.g., [41]).

In terms of use cases, this treatise will focus on smart metering, which is a criti-
cal part of smart grids and the area, on which most of the privacy debate centered.
Smart meters are the central measuring units in the low-voltage grid and in combi-
nation with consumer energy management systems (CEMS) provide an interface to
home and building automation. �ey are involved in use cases such as Demand Re-
sponse Management, Demandside Management, Energy Feedback and Electric Vehicle
Charging. SmartMetering therefore exhibits high demandswith regard to security and
privacy requirements.

Smart meters form a core component of smart grids. Each smart meter contains a
processor, as well as storage and communication facilities and is capable of measur-
ing and transmitting detailed usage data. �e regulation of the intervals in which the
measurements are to be provided di�ers by country. In many countries, 15-minute
intervals seem to be the choice of the regulators. Almost every smart meter model
will be capable of measuring energy usage in much higher resolutions (one-second
granularity or less).
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�ecurrent focus in smartmetering is electricitymetering.�ere are also proposals
to include the metering of water, heat, and gas for multi-utility metering. In many
approaches, the electricity meter serves as the main external communication gateway,
other utility meters provide data to the power gateway that relays the information to
the utility providers. Other approaches have all meters report to a metering gateway
that in turn relays the information, see, e.g., [41].

Feedback on energy (or other utility) usage can be provided to the user through
various channels, such as in-home displays, but also through web and smart phone
applications.
�e so-called customer gateway [85] is the gateway between the custome premises

and the utility provider and other third parties. It is involved in all interactions be-
tween the smart grid and devices in customer premises and may support home au-
tomation, demand response management. �e customer gateway functionality can
be integrated into the smart meter unit.
�e communication architecture of the future smart grid is not yet �nally de�ned.

Due to the manifold needs in various parts of this heterogeneous network multiple
standards and protocols will be relevant. According to [41], the focus of research in
this area will not be on a particular technology but more on interoperability between
di�erent system components like meters, devices and protocols. Nevertheless some
typical and well-known communication and data exchange standards applicable in
di�erent segments of the smart grid communication network can be identi�ed, such
as DLMS/COSEM.

1.1.2 Privacy

Privacy can be de�ned as “the right of the individual to determine when, how, and
to what extent he or she will release personal information”1. Technological privacy
approaches can be seen as tools at the individual’s disposal to enforce this right.

It has been argued that both security and privacy need to be addressed from the ear-
liest stages in the development and standardization process for smart grid technology.
�e terms “security by design” and “privacy by design” [13] are used to describe prin-
ciples to allow security and privacy to be built into the system, rather than be treated
as add-ons.
�ere are two kinds of privacy approaches: regulatory-based and technology-based

[41]. As our focus is a technological one, regulatory-based approaches will only be
taken into account as far as they provide requirements for technological solutions. An
important source for regulatory scenarios and recommendations are the reports of the
European Commission Smart Grid Expert Group Two for regulatory recommenda-

1R. v. Duarte, Supreme Court of Canada, 1990-25-01
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tions for data safety, data handling and data protection, e.g., [40], as well as the results
of the CEN/CENELEC/ETSI workgroups addressing EU Mandate M/490 “Standard-
izationMandate to support European Smart Grid deployment”. Other sources include
Common Criteria for Information Technology Security Evaluation (ISO/EIC 15408)
and country-speci�c recommendations, such as the Federal O�ce for Information Se-
curity (BSI) inGermany [12] or the Requirements Catalog for End-to-End Security for
Smart Metering commissioned by the Association of Austrian Energy Providers and
co-authored by the European Network for Cyber Security (https://www.encs.eu).
Overviews of privacy issues and privacy enhancing are given by [11, 43, 76].�ere is

a number of contributions that dealwith technological approaches to end-user privacy
in general, for an overview see [47]. In the context of smart grid privacy, a major part
of current proposals is focused on smart metering and the load pro�les generated by
smart meters.

Extractable Information

�ere is a lot of public concern and discussions on the privacy impact of smart grid
technologies. However, the discussion is led without knowing the extent of personal
information that can be read out of the involved data. Even more so, there is nearly a
complete lack of knowledge about how the amount of personal information relates to
the measured time interval.
�e area of the smart grid, where most contributions to the privacy debate, are cen-

tered on, is Smart Metering. In many countries in Europe it is planned that smart
meters will deliver load data in 15 minute time intervals [93]. �is has raised privacy
concerns (cf., [74, 13, 81]). However, to our knowledge, no one has tried to assess the
amount of personal information that can be extracted on 15 minute time interval load
pro�les, or how, in general, data granularity relates to the amount and nature of ex-
tractable personal data.

Information is usually extracted from the load pro�les by means of so-called “non-
intrusive load monitoring analysis” (NILM).�ere is a lot of literature on NILM algo-
rithms, e.g., [46, 103, 9, 5, 100, 63, 56, 87]. �e goal of these algorithms is the disaggre-
gation of the total load into the individual appliances loads, e.g., for sake of providing
energy feedback to the end-user. From the privacy viewpoint, suchNILManalyses can
be seen as a �rst step of attacking methods, which aim at the unauthorized extraction
of personal information.

To date, there is little systematic research on this subject in the context of smart
grids. In [91] an information theoretic approach to abstract privacy and utility require-
ments is used.�e authors aim at providing a measure for the amount of information
leaked, and also for the utility that is retained in the data at di�erent levels of abstrac-
tion.

https://www.encs.eu
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�ere are a number of approaches formatching appliance signatures to load pro�les
to determine which appliances were used at what time and for how long, e.g. [46,
65, 73]. As mentioned above these types of approaches are usually refered to as “non-
intrusive load monitoring” (NILM).

Detection based on NILM is remarkably accurate: In [75] over 90% accuracy are
reported in detecting presence and sleep cycle intervals. �e results show that “per-
sonal information can be estimatedwith a high degree of accuracy, evenwith relatively
unsophisticated hardware and algorithms” [75, p. 2]. �e authors of [71] use genetic
algorithms for identi�cation and report �awless identi�cation for up to 10 types of ap-
pliances. In [52] successful identi�cation of appliances in low resolution load pro�les
is reported, e.g., 30min intervals, with the use of data-mining techniques.

Smart Meter Privacy

�e aforementioned privacy concerns that arise through the availability of detailed
load pro�les per customer is documented by a variety of studies, e.g., [90, 78, 55, 75, 74].
In [75] results of a collaboration between researchers from law and engineering are
reported.�e authors argue that there “exist strongmotivations for entities involved in
law enforcement, advertising, and criminal enterprises to collect and repurpose power
consumption data” [75, p. 1]. For example, burglars could use the data to determine
occupancy patterns of houses to time break-ins. Marketing agencies could identify
speci�c brands of used appliances, which could then be used for targeted advertising.
In summary, while there are many useful applications of smart meter data, such as
energy saving and tailor-made energy rates, the privacy of this kind of data needs to
be secured.

It has been argued, that approaches relying on policy alone, may prove inadequate
to provide a su�cient level privacy and that technological methods that enforce pri-
vacy by virtue of “strength ofmechanism” need to be employed [49]. Indeed, a number
of such technological approaches have been suggested to remedy the (perceived) loss
in privacy and still enable smart metering functionality on a broad basis.

Privacy Enhancing Technologies

�ere are a number of contributions for privacy-enhancing technologies for smart
metering. Jawurek et al. [49] argue, that approaches relying on policy alone,may prove
inadequate to provide a su�cient level of privacy and that technological methods that
enforce privacy by virtue of “strength of mechanism” need to be employed. Indeed, a
number of such technological approaches have been suggested to remedy the loss in
privacy and still enable smartmetering functionality on a broad basis. In the following,
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we give a brief overview of these contributions, based on own work published in [30].
More detailed surveys can be found in [49, 38, 43, 76, 11].
�e only approach that is widely used in the real world at this point in time, is

anonymization or pseudonymization of smart metering data. Consumption data
and the personal data are split and stored separately. Methods for de-anonymization
are a major threat for these types of approaches. It has been shown that even a�er
anonymization or pseudonymization, data items can still be attributed to the individ-
ual that originated them. Jawurek et al. [48] show that de-anonymization can also
be done in the smart grid user domain. �is structural traceability is a problem for
schemes that rely on anonymization or pseudonymization only without the use of
additional encryption.

Simple aggregation tries to hide data related to individuals by aggregating over a
number of house-holds, e.g., all households in a neighborhood are network (NAN).
For example, Bohli et al. [10] propose a privacy scheme inwhich high resolution smart
meter readings are aggregated at NAN level and only the aggregate is sent to the utility.
�ey introduce two solutions both with and with-out involvement of trusted third
parties.

Due to the inherent link between load data resolution and privacy, splitting the
load data into a variety of di�erent resolutions, each associated with di�erent au-
thorization levels, has been proposed by a number of contributions. For example, the
anonymization scheme proposed by E�hymiou and Kalogridis [24] is based on two
di�erent resolutions: a low resolution that can be used for billing purposes, and a
high resolution that allows further investigation.�is scheme employs a trusted third
party escrow service. In the papers included in this treatise, we propose wavelet-based
multi-resolution privacy (e.g., [33]).

Masking relates to approacheswhich addnumerical artifacts, e.g., randomsequences
to the original load data to obfuscate individual contributions.�e added artifacts are
constructed in such a way that they cancel each other out upon aggregation. �e ag-
gregator can therefore combine the data values of all participant to create an accurate
aggregation, but cannot gain access to individual contribution. For example, Kursawe
et al. [64] propose such an aggregation protocol, which compared to other approaches
has the advantage of relatively low computational complexity. Defend and Kursawe
[21] further improve on this idea. Danezis et al. [19] present another low-overhead
protocol for aggregation of smart meter data, which puts minimal computational de-
mands on the smart meter hardware.

Di�erential privacy, as Dwork [22, p. 1] puts it, roughly speaking, “ensures that (al-
most, and quanti�ably) no risk is incurred by joining a statistical database”. Adding or
removing an item from the database will not (or only to a very limited degree) a�ect
the result of statistical computations. �is is commonly achieved by the distributed
generation of noise which is added to the individual data contribution. Shi et al. [94]
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propose a scheme for adding random noise to time series data using a symmetric geo-
metric distribution. An advantage of this scheme is that the participants need not trust
each other, nor rely on a trusted aggregator. As another example, Ács and Castelluccia
[1] obscure individual data sets by adding Laplacian noise, which is jointly generated
by the participants. Apart from the obvious drawback that the data is no longer exact
a�er di�erential privacy is applied, data pollution bymalicious participants is another
issue with this approach [94].

Secure Signal Processing (SSP) refers to the possibility to perform certain compu-
tations, such as aggregation in the encrypted domain. A commonly employed mech-
anism in SSP is additively homomorphic encryption, which allows some speci�c ma-
nipulations of the ciphertext to be re�ected in the plaintext domain. For example, Li et
al. [72] propose an overlay network in a tree-like topology and the use of a Paillier cryp-
tosystem. Garcia and Jacobs [45] combine secret sharing with a Paillier cryptosystem
to add �exibility in the aggregation (at the expense of additional computational com-
plexity). Erkin and Tsudik [39] extend the idea of homomorphic encryption of smart
meter readings by splitting the module into random shares, which, in combination
with a modi�ed Pailler cryptosystem, allows �exible spatial and temporal aggregation
for di�erent use cases, such as billing or network monitoring. In our own work, we
propose the combination of SSP with multi-resolution methods to increase customer
privacy choices [32, 59].

1.1.3 Security

An overview of research in smart grid security in general can be found in [8]. An
overview of smart grid communication security challenges and risks can be found in
[70]. �ere is a large number of publications that discuss security issues in the smart
grid user domain speci�cally, e.g. [2, 3, 6, 23, 55, 96]. In [16] security requirements in
an advanced metering infrastructure are discussed. In [41] top-down and bottom-up
approaches to smart grid security are distinguished. �e top-down approaches focus
on user scenarios, such as smart meter reading and billing. �e bottom-up approach
focuses on security features such as integrity, authentication, authorization, key man-
agement and intrusion detection.
�ere are a number of proposals for communication security speci�c to the smart

grid end-user domain. Secure transmission of smart meter data is a key topic ad-
dressed by virtually all contributions.�e authors of [104] propose a securemulti-cast
protocol that automatically derives groupmemberships and veri�es con�guration per-
formance. A security protocol for smart meter aggregation that provides hop-by-hop
security, while still providing end-to-end security, is proposed by [7]. In [79], a compre-
hensive proposal for securing smart grid infrastructure is given, including a proposal
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for a key infrastructure. �e authors of [15] propose a scheme for authentication in
the smart grid that is privacy aware.

In [57] a secure transport protocol for smart grid data collection in general is pre-
sented. �e authors of [14] propose a model-based access control system. In [95] a
zero-con�guration identity-based signcryption scheme for the smart grid is proposed.

General-purpose schemes for securing communication and authenticating com-
municating parties are of course also valid candidates for the end-user domain of
smart grids as well. �e German Federal Institute of Information Security (BSI) de-
�nes a detailed protection pro�le for the communication gateway in a smart meter
system [12, 67]. �e Austrian Association of Energy Providers has commissioned and
co-authored a document detailing the requirements for end-to-end security in Smart
Metering [50].

Apart from communication security, the protection of the actual data content from
unauthorized access, evenwithin a secured communication environment, is an impor-
tant topic which is addressed by content security. �e authors of [41] make the case
for a system in which insiders will access “data in an authorized manner and will only
use this data in an acceptable manner” [41, p. 8]. �ey propose to use a digital rights
management system to ensure that data is only accessed in an acceptable manner. Tra-
ditionally, the topic of content security has been widely discussed in the context of
multimedia data, e.g., [44].

Intrusion detection for smart grid has been identi�ed as an important and critical
topic to be addressed, e.g., the authors of [41] point out that mechanisms should be
put into place that allow to detect attacks and misuse of data. On the regulatory side,
these mechanisms should have counterparts and allow action against malicious par-
ties. However, as rightly argued by [80], “Intrusion detection system (IDS) techniques
for this domain are still in their infancy with very little work reported in the literature”
[80, page 1]. Of the few contributions that are available, many su�er from high rate of
false positives (which, of course, is a death sentence for any IDS). See [80] for a discus-
sion of issues with previously propsed IDS for smart grids. �ere are a few promising
approaches which aim at avoiding false positives. [106, 105] propose an architecture
for a distributed IDS in smart grids, based on the arti�cial immune system approach,
which relies on intelligent analyzing modules deployed on various levels of the grid.
In [80], a behavior-rule based intrusion detection system for smart grids is proposed,
which in initial evaluations has been shown to give a high performance at relatively
low false positive rates. Of course, with the vast number of data observations encoun-
tered in the smart grid, false positive rates need to be kept at an absolute minimum.
As an example for the end-user domain, an intrusion detection system for the HAN
in smart grids is proposed by [51]. Our own work, which is included in this treatise,
focuses on anomaly detection using a combination of classi�ers [77].
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1.1.4 User Control

In pilots and studies, end users frequently report doubts on the bene�ts of smart grid
technologies on a personal level and di�culties in understanding the level of control
they can exert in a smart grid environment. For example, a survey on user preferences
in smart metering in Switzerland found among the strongest user concerns regarding
smart metering was the lack of control of data and pricing and little potential for sav-
ings [54].

Smart grid user control is not as clearly de�ned a research �eld as are smart grid
privacy and security. To date there is only a limited number of contributions that deal
speci�cally with the user integration into smart grid processes in general. For example,
in [13] a number of possible user interactions with smart grid technologies are listed:

L Understanding of how households use energy, better management of energy,
and reduction of the carbon footprint,

L Control of expenditure on electricity,

L Experience of fewer and shorter power outages, andnoti�cationwhen the power
will come back on, and

L Control energy devices in the home.

As the smart grid is envisioned to interface with home and building automation pro-
cesses, the list can be arbitrarily expanded.

It is clear that a �eld like “user control” is necessarily broad. Our own work focuses
on agent-based frameworks that uses a game-theoretic approach to improve user con-
trol in demand response scenarios [68, 69] andmodels for users’ privacy requirements
[60, 61].

1.2 contribution

�e primary goal of the methods proposed in this treatise is to improve existing ap-
proaches and develop new mechanisms to establish secure, private and informed –
i.e., trusted – user interaction with smart grid technology. �e fundamental question
addressed is: How can a sustainable level of trust be established in smart grid user
domain entities (applications, processes, data protocols, and interfaces) in order to
invite and further user participation in smart grid technologies? �e contribution of
this cumulative habilitation treatise has been published in a number of peer-reviewed
journal publications as well as a number of publications in conference proceedings.
In the following, the contribution of each of these publications is summarized brie�y
and put into context to each other.
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[Eibl14a]

L G. Eibl and D. Engel. In�uence of data granularity on nonintrusive appliance
load monitoring. In Proceedings of the Second ACM Workshop on Information
Hiding andMultimedia Security (IH&MMSec ’14), pages 147–151, Salzburg, Aus-
tria, 2014. ACM.

Smart metering has been in the focus of the discussion on privacy issues in smart
grids. �is discussion has been led without taking the resolution of the underlying
data into account, also in the academic discourse. In two papers, we have presented a
formal analysis on the impact of resolution on smart meter privacy.

In this �rst paper, we analyse the impact of resolution on a the �rst step of non-
intrusive loadmonitoring (NILM), i.e., the identi�cation of individual appliances in a
household load pro�le. We show that decreasing resolution has an impact mainly on
recall (rather than on precision) in NILM.

[Eibl15a]

L G. Eibl andD. Engel. In�uence of data granularity on smartmeter privacy. IEEE
Transactions on Smart Grid, 6(2):930–939, March 2015.

In this second paper, we extend on the previously presented NILM results and dis-
cuss the the in�uence of load pro�le resolution on the degree of extractable personal
information.�e intuitive claim that lowering the resolution will increase privacy has
been studied systematically. We show that this is indeed the case and that a dyadic se-
ries of decreasing resolutions is suitable for providing a series of privacy levels to the
end-user. Although this paper was published a�er our work on wavelet-based smart
meter privacy, it provides the formal basis for the utility of this approach.

[Engel11a]

L D. Engel. Conditional access smart meter privacy based on multi-resolution
wavelet analysis. In Proceedings of the 4th International Symposium on Applied
Sciences in Biomedical and Communication Technologies, pages 45:1–45:5, New
York, NY, USA, 2011. ACM.

In terms ofmethods for privacy enhancement in smartmetering, our contributions
focus on the idea of lowering the resolution of the available data, providing a wavelet-
based data representation, that integrates all resolutions in a single bitstream without
data expansion and providing conditional access combinedwith hierarchical keyman-
agement.

In this paper, the initial idea of wavelet-based data representation of load pro�les
is proposed. We have shown that the wavelet transform is a suitable tool to provide
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the aforementioned dyadic decreases in resolution, as each iterative application of the
wavelet transform e�ectively halves the resolution. A �rst proof-of-concept implemen-
tation is presented and evaluated on inexpensive hardware (aBeagleboard in this case).

[Engel13a]

L D. Engel. Wavelet-based load pro�le representation for smart meter privacy. In
Proceedings IEEE PES Innovative Smart Grid Technologies (ISGT’13), pages 1–6,
Washington, D.C., USA, Feb. 2013. IEEE.

In this paper, the idea of multi-resolution representation is elaborated. Two wave-
let �lters are investigated for this purpose: the simple Haar Wavelet and the LeGall
5~3Wavelet. We show that while the integer-based LeGall 5~3Wavelet is faster, due to
the necessary border handling and the ensuing errors, it is not a possible choice. �e
HaarWavelet is well suited for application, as it is also fast in application and provides
lossless transformation in practice. Furthermore, we discuss the fact that the original
sum is preserved over multiple wavelet decomposition, which is an important prop-
erty for use-cases such as billing (which also has to work at the lowest resolution).
�e performance of the approach is evaluated at the example of an extended proto-
typical implementation. It is shown that the performance these environments o�er is
su�cient for use in the �eld.

[Engel13e]

L D. Engel and G. Eibl. Multi-resolution load curve representation with privacy-
preserving aggregation. In Proceedings of IEEE Innovative Smart Grid Technolo-
gies (ISGT) 2013, pages 1–5, Copenhagen, Denmark, Oct. 2013. IEEE.

In this paper, we show that our approach can be combined with additively homo-
morphic encryption to provide additional degrees of freedom. Formal proof is given
that wavelets are fully compatible with additively homomorphic encryption in the con-
text of a Paillier cryptosystem [86]. A proof-of-concept implementation is presented
and the high computational demands are discussed.

[Peer14a]

L C. Peer, D. Engel, and S. Wicker. Hierarchical key management for multi-re-
solution load data representation. In Proceedings of 5th IEEE International Con-
ference on Smart Grid Communications (SmartGridComm 2014), pages 926–932,
Venice, Italy, Nov. 2014. IEEE.

Privacy-aware data representations need to be secured for access by authorized par-
ties. In order to facilitate secured, authorized access, di�erent keys need to be provided
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for di�erent privacy levels. For example, for multi-resolution load pro�le data, a dif-
ferent key is required for each resolution. For this setup, in this paper we propose a
hierarchical key scheme, based on previous work by Lamport [66]. In order to limit
the number of keys a user needs to handle, a hierarchical key generation scheme is
used. With this key scheme it is ensured that a user who has the key for the highest
resolution can derive all necessary sub-keys to the lower resolutions (which are, of
course, needed to reconstruct the highest resolution)

[Engel16a]

L D. Engel and G. Eibl. Wavelet-basedmultiresolution smart meter privacy. IEEE
Transactions on Smart Grid, PP(99):1–12, 2016. preprint.

In this paper, all of the components for wavelet-based multi-resolution data rep-
resentation in Smart Metering are integrated into system of a whole. �e underlying
protocols are presented and discussed in detail, as well as the di�erent communication
paths from Smart Meter to distribution system operator, energy provider or another
third party.�e degrees of freedom are addressed, e.g., the alternatives to run the pro-
tocols with or without a data concentrator. For the �rst time, a comprehensive and
detailed security and privacy analysis is conducted, including the basic security as-
sumptions, di�erent attacker models and the discussion of privacy properties from
an information-theoretic point of view.

[Knirsch17a]

L F. Knirsch, G. Eibl, and D. Engel. Multi-resolution privacy-enhancing technolo-
gies for smart metering. EURASIP Journal on Information Security, 2017(1):6,
2017.

Based on the idea of multi-resolution data representation in smart metering, this
paper explores the options to combine the previously proposed wavelet-based repre-
sentation with other privacy enhancing technologies (PETs). �e paper discusses the
applicability of multi-resolution methods to three PETs: masking protocols, di�eren-
tial privacy and secure aggregation.

[Knirsch15b]

L F. Knirsch, D. Engel, C. Neureiter, M. Frincu, and V. Prasanna. Model-driven
privacy assessment in the smart grid. In Proceedings of the 1st International
Conference on Information Systems Security and Privacy (ICISSP), pages 173–181,
Feb 2015. Best Paper Award.
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�is paper marks a turn from multi-resolution privacy methods to the �eld of “user
control”, namely the users’ need for privacy and the requirements in terms of smart
grids use cases. �ese two are o�en in a counterposition, e.g., a DSO who wants to
employ user data for network planning is interested in as high a data resolution as
possible, whereas a user may be reluctant to provide this high resolution data, as it
would allow the DSO to deduce personal information.
�is paper aims at assessing privacy implication of data transfer in the smart grid

user domain based on a model of data �ows. Based on an ontology that captures the
possible threats, the paper develops a �rst conceptual model of how privacy assess-
ment in the smart grid user domain can be done in a formal way. A toy example is
given for illustrative purposes, in which the threat of user presence at home is mod-
elled. �e paper won the Best Paper Award at the International Conference on Infor-
mation Systems Security and Privacy.

[Knirsch16a]
L F. Knirsch, D. Engel, C. Neureiter, M. Frincu, and V. Prasanna. Privacy assess-

ment of data �ow graphs for an advanced recommender system in the smart
grid. In O. Camp, E. Weippl, C. Bidan, and E. Aı̈meur, editors, Information
Systems Security and Privacy – Revised and Selected Papers of ICISSP 2015, vol-
ume 576 of Communications in Computer and Information Science, pages 89–
106. Springer International Publishing, 2016. Best Paper Award.

�is paper extends the previous paper anddetails the previously presented approach.
�e concept of data �ow graphs as the basis for privacy threat assessment is detailed,
and the ontolgy for threat assessment is extended. A real-life example of the privacy
implications of smartmetering is presented and discussed in detail. Finally, the idea of
a recommender system based on the privacy assessment approach is developed. Based
on the well-known policy decision point and policy enforcement point patterns, the
privacy assessment approach is used to automatically provide guidelines for users who
access new applications (such as an application for energy saving tipps provided by a
third party supplier that would request �ne-grained energy consumption data).

[Knirsch15a]
L F. Knirsch, D. Engel, M. Frincu, and V. Prasanna. Model-based assessment

for balancing privacy requirements and operational capabilities in the smart
grid. In Proceedings of the 6th Conference on Innovative Smart Grid Technolo-
gies (ISGT), pages 1–5, Feb 2015.

In this paper, a model for balancing users’ requirements regarding privacy with
functional requirements of operational use cases is presented. It is aimed to �nd an op-
timal balance between these two, o�en con�icting, requirements, automatically. �is
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can be achieved to a certain degree, as is demonstrated at the example of a demand-
response use case in the University of Southern California microgrid.

[Unterweger15a]

L A. Unterweger and D. Engel. Resumable load data compression in smart grids.
IEEE Transactions on Smart Grid, 6(2):919–929, March 2015.

Privacy measures try to assess the amount of information contained in data. While
the previous papers tried to assess privacy from a model-based view, there are also
some ideas to come up with an entropy-like meausre for privacy. While exploring
options in this direction, we found that the compressibility (which, of course, is related
with entropy) of load pro�les had not been studied systematically before.

In this paper, an approach for compression of load data is proposed, that is based on
ideas for compression of multimedia data. It is shown that the approach is lightweight
on the side of the smart meter and that it is resumable, which is an important property
if a smart meter loses connectivity for a period of time.

[Unterweger15b]

L A. Unterweger, D. Engel, and M. Ringwelski. �e e�ect of data granularity on
load data compression. Springer Lecture Notes in Computer Science – Energy
Informatics 2015, 9424:69–80, 2015.

In this paper, we extend the previous work on load data compression and data gran-
ularity and explore the e�ect of data granularity on compression results. For this in-
vestigation we joined forces withMartin Ringwelski themain author of the only other
algorithm speci�cally designed for load data compression. We investigate the proper-
ties of our algorithm compared to Ringwelski’s approach. It turns out that depending
on data resolution, one or the other may be preferable.

[Eibl15b]

L G. Eibl, D. Engel, and C. Neureiter. Privacy-relevant smart metering use cases.
In Proceedings of IEEE International Conference on Industrial Technology (ICIT)
2015, pages 1387–1392, Seville, Spain, 2015. IEEE.

In discussion with the company partners of the Josef Ressel Research Center, it
became evident that there is no clear view on the privacy relevance of di�erent smart
metering use cases and how this could be addressed by speci�c PETs. Such an account
is also missing in literature. In this paper, we aim at bridging the gap between privacy
requirements of smart metering use cases and the features di�erent PETs have to o�er.
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[Lueckenga16a]

L J. Lückenga, D. Engel, andR.Green. Weighted vote algorithm combination tech-
nique for anomaly based smart grid intrusion detection systems. In Proceedings
of International Joint Conference on Neural Networks (IJCNN) 2016, pages 2738–
2742, Vancouver, Canada, July 2016.

In this paper, the issue of anomaly detection in smart grids is discussed. Intrusion
Detection Systems (IDS) are a crucial and necessary aspect of the smart grid, partic-
ularly when considering the possible attack vectors and their consequences. While
there are many di�erent proposals for IDS in smart grids, the bene�ts of an anomaly
detection technique is still in discussion, due to its capability of detecting zero-day
attacks andmisuse.�is paper proposes a weighted vote classi�cation approach and a
generalweight calculation function to improve the detection performances of anomaly
IDS systems. Initial results show that a combination technique is able to improve clas-
si�er performance by several percent.

[Lausenhammer15a]

L W. Lausenhammer, D. Engel, and R. Green. A game theoretic so�ware frame-
work for optimizing demand response. In Proceedings of the 6th Conference on
Innovative Smart Grid Technologies (ISGT), pages 1–5, Feb 2015.

Particularly with respect to coordinating power consumption and generation, de-
mand response (DR) is a vital part of the future smart grid. Even though, there are
someDR simulation platforms available, nonemakes use of game theory.Whilemany
bene�ts of DR are currently under study, an issue of particular concern is optimiz-
ing end-users’ power consumption pro�les at various levels. �is study proposes the
concept for a fundamental, game theoretic, multi-agent so�ware framework for DR
simulation that is capable of investigating the e�ect of optimizing multiple electric
appliances by utilizing game theoretic algorithms. Initial results show that by shi�ing
the switch-on time of three household appliances provides a savings of up to 6%.

[Lausenhammer16a]

L W. Lausenhammer, D. Engel, and R. Green. Utilizing capabilities of plug in
electric vehicles with a newdemand response optimization so�ware framework:
Okeanos. International Journal of Electrical Power and Energy Systems, 75:1–7,
2016.

�is paper extends our previous work on DR simulation. �e previously proposed
so�ware framework for DR simulation is detailed and extended to address an eval-
uation of real-world use cases. While initial use cases were based on game theoretic
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algorithms and focus on consumption devices only, further use cases evaluate the ef-
fects of plug in electric vehicles (PEVs). Results with consumers show that the number
of involved households does not a�ect the costs per household. Further evaluation in-
volving PEVs demonstrates that with an increasing penetration of PEVs and feed-in
tari�s the costs per household per month decrease.
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2FULFILLMENT OF REQUIREMENTS

�e University of Salzburg has published requirements for habilitation treatises in its
o�cial bulletin:

L In the statues (“Satzung”) of the university, the principle process is outlined1.

L In a separate document, guidelines regarding the requirements (“Habilitation-
srichtlinie”) are given2.

On the basis of themore general documents published by the university, theDepart-
ment of Computer Sciences has detailed the requirements in a separate document for
the discpline of Informatics:

L In the document “Konkretisierung derHabilitationsrichtlinie an der PLUS vom
23.6.2015 für Habilitationen imFach Informatik” the requirements of the univer-
sity, especially in the area of “high ranking, refereed publications” are detailed.

�e ful�llment of these requirements is detailed below.

2.1 publications for cumulative treatise

In the following two subsections, the publications are listed by rating and author con-
tribution. Subsequently, we will refer to the publications by the key, which is given in
the �rst line as [Key], e.g., [Engel16a]. �e ful�llment is discussed in all detail in the
remaining subsections. In Table 2.1 on page 35, rating and author contributions are
summarized.

1Bulletin no. 23, Academic Year 2015/16, January 26, 2016
2Bulletin no. 13, Academic Year 2015/16, December 1, 2015
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2.1.1 Overview by Rating

Rating A*

L [Engel16a]

D. Engel and G. Eibl. Wavelet-basedmultiresolution smart meter privacy. IEEE
Transactions on Smart Grid, PP(99):1–12, 2016. preprint.

L [Eibl15a]

G. Eibl andD. Engel. In�uence of data granularity on smartmeter privacy. IEEE
Transactions on Smart Grid, 6(2):930–939, March 2015.

L [Unterweger15a]

A. Unterweger and D. Engel. Resumable load data compression in smart grids.
IEEE Transactions on Smart Grid, 6(2):919–929, March 2015.

Rating A

L [Lausenhammer16a]

W. Lausenhammer, D. Engel, and R. Green. Utilizing capabilities of plug in
electric vehicles with a newdemand response optimization so�ware framework:
Okeanos. International Journal of Electrical Power and Energy Systems, 75:1–7,
2016.

L [Lueckenga16a]

J. Lückenga, D. Engel, andR.Green. Weighted vote algorithm combination tech-
nique for anomaly based smart grid intrusion detection systems. In Proceedings
of International Joint Conference on Neural Networks (IJCNN) 2016, pages 2738–
2742, Vancouver, Canada, July 2016.

L [Knirsch17a]

F. Knirsch, G. Eibl, and D. Engel. Multi-resolution privacy-enhancing technolo-
gies for smart metering. EURASIP Journal on Information Security, 2017(1):6,
2017.

L [Knirsch15b]

F. Knirsch, D. Engel, C. Neureiter, M. Frincu, and V. Prasanna. Model-driven
privacy assessment in the smart grid. In Proceedings of the 1st International
Conference on Information Systems Security and Privacy (ICISSP), pages 173–181,
Feb 2015. Best Paper Award.
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Rating B

L [Engel11a]

D. Engel. Conditional access smart meter privacy based on multi-resolution
wavelet analysis. In Proceedings of the 4th International Symposium on Applied
Sciences in Biomedical and Communication Technologies, pages 45:1–45:5, New
York, NY, USA, 2011. ACM.

L [Engel13a]

D. Engel. Wavelet-based load pro�le representation for smart meter privacy. In
Proceedings IEEE PES Innovative Smart Grid Technologies (ISGT’13), pages 1–6,
Washington, D.C., USA, Feb. 2013. IEEE.

L [Engel13e]

D. Engel and G. Eibl. Multi-resolution load curve representation with privacy-
preserving aggregation. In Proceedings of IEEE Innovative Smart Grid Technolo-
gies (ISGT) 2013, pages 1–5, Copenhagen, Denmark, Oct. 2013. IEEE.

L [Peer14a]

C. Peer, D. Engel, and S. Wicker. Hierarchical key management for multi-re-
solution load data representation. In Proceedings of 5th IEEE International Con-
ference on Smart Grid Communications (SmartGridComm 2014), pages 926–932,
Venice, Italy, Nov. 2014. IEEE.

L [Lausenhammer15a]

W. Lausenhammer, D. Engel, and R. Green. A game theoretic so�ware frame-
work for optimizing demand response. In Proceedings of the 6th Conference on
Innovative Smart Grid Technologies (ISGT), pages 1–5, Feb 2015.

L [Eibl15b]

G. Eibl, D. Engel, and C. Neureiter. Privacy-relevant smart metering use cases.
In Proceedings of IEEE International Conference on Industrial Technology (ICIT)
2015, pages 1387–1392, Seville, Spain, 2015. IEEE.

L [Knirsch16a]

F. Knirsch, D. Engel, C. Neureiter, M. Frincu, and V. Prasanna. Privacy assess-
ment of data �ow graphs for an advanced recommender system in the smart
grid. In O. Camp, E. Weippl, C. Bidan, and E. Aı̈meur, editors, Information
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Systems Security and Privacy – Revised and Selected Papers of ICISSP 2015, vol-
ume 576 of Communications in Computer and Information Science, pages 89–
106. Springer International Publishing, 2016. Best Paper Award.

L [Knirsch15a]

F. Knirsch, D. Engel, M. Frincu, and V. Prasanna. Model-based assessment
for balancing privacy requirements and operational capabilities in the smart
grid. In Proceedings of the 6th Conference on Innovative Smart Grid Technolo-
gies (ISGT), pages 1–5, Feb 2015.

Rating C

L [Eibl14a]

G. Eibl and D. Engel. In�uence of data granularity on nonintrusive appliance
load monitoring. In Proceedings of the Second ACM Workshop on Information
Hiding andMultimedia Security (IH&MMSec ’14), pages 147–151, Salzburg, Aus-
tria, 2014. ACM.

L [Unterweger15b]

A. Unterweger, D. Engel, and M. Ringwelski. �e e�ect of data granularity on
load data compression. Springer Lecture Notes in Computer Science – Energy
Informatics 2015, 9424:69–80, 2015.

2.1.2 Overview by Author Contribution

Author Contribution A 50%

L Engel11a – 100%

L Engel13a – 100%

L Engel16a – 65%

L Engel14e – 60%

Author Contribution C 30%

L Peer14a – 35%

L Eibl14a – 35%

L Eibl15a – 35%
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L Unterweger15a – 35%

L Lausenhammer15a – 30%

L Lausenhammer16a – 30%

L Lueckenga16a – 30%

L Knirsch17a – 30%

Author Contribution @ 30%

L Eibl15b – 15%

L Knirsch16a – 12%

L Knirsch15b – 11%

L Unterweger15b – 10%

L Knirsch15a – 7%

2.1.3 Author Contribution to Publications

According to the requirements speci�ed by the department of Computer Sciences, the
cumulative treatise needs to consists of at least 8 highly ranked, peer-reviewed publi-
cations.�e author contribution needs to be at least 30% to count as a full publication.
4 publications can be substituted by publications where the author contribution is
less than 30%, where the number of substituted publications needs to be higher corre-
sponding to the author contribution.

Typischerweise enthält die Sammelhabilitationmindestens 8 hochrangige
referierte Publikationen (oder zur Publikation angenommeneManuskrip-
te), bei denen der/die HabilitandIn einen wesentlichen eigenen Anteil
beigesteuert hat. Dieser Anteil sollte bei mehreren Autoren mindestens
30%desmethodisch/informatischenBeitrags der Publikation ausmachen.
4 dieser Publikationen können durch eine der Anzahl der beitragenden
Autoren entsprechende höhere Anzahl von Publikationen ersetzt werden,
bei denen der/die HabilitandIn einen geringeren eigenen Anteil beiges-
teuert hat. Andererseits sollten mindestens 2 Publikationen vorhanden
sein, bei denen der eigeneAnteil des/derHabilitationswerberIn 50% über-
steigt.
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From: “KonkretisierungderHabilitationsrichtlinie an der PLUSvom23.6.2015
für Habilitationen im Fach Informatik”

Futhermore, only publications of rating A*/A count as full publications. Publica-
tions of rating A*/A can be substituted with a higher number of publications of rating
B or C, with a factor of 1.5 and 2, respectively. If the rating for a publication is not avail-
able in ERA – CORE, the rating needs to be determined using a comparable ranking
(such as MS Academic Research Factors, comarable SCI JIF values, or similar accep-
tance rates).

“Hochrangige referierte Beiträge” sindwie folgt de�niert: Beiträge in Zeit-
schriften und Konferenzen die im jeweiligen Fachgebiet in dem die Ha-
bilitation erworben [wird] als “Top Qualität” bzw. “Sehr Gute Qualität”
eingestu� werden. Beispielweise sind das Publikationen, die laut ERA
– CORE (Excellence in Research for Australia) Ranking als A* bzw. A
beurteilt werden. Bei Publikationen in den Kategorien B und C erhöht
sich die Anzahl der notwendigen Publikationen um den Faktor 1,5 bzw.
2. Die Sammelhabilitation muss mindestens 2 Publikationen aus der Top
Qualitätskategorie (z.B. ERA –COREA*) und 2 aus der sehr gutenQuali-
tätskategorie (z.B. ERA–COREA) enthalten.Alternativ ist derenQualität
über vergleichbare andere Rankings (z.B. MS Academic Research Fak-
toren, vergleichbare SCI JIF Werte, vergleichbare Akzeptanzraten, etc.)
nachzuweisen.
From: “KonkretisierungderHabilitationsrichtlinie an der PLUSvom23.6.2015
für Habilitationen im Fach Informatik”

In Table 2.1 the requirements for counting publications as contributions to the trea-
tise have been formalized as follows: For a publication x, the rating factor R(x) is de-
termined as follows, where E(x) is the rating for publication in the ERA–CORE Scale
(A*, A, B, C) – either the direct rating or the derived rating based on a comparable
score, as discussed in Section 2.1.4.

R�x� �

¢̈
¨̈̈
¦
¨̈̈
¤̈

1 for E�x� � A* S E�x� � A
2
3 for E�x� � B
1
2 for E�x� � C

(2.1)

�e score S�x� indicates the score for a publication x with which it can be counted
toward ful�llment of the treatise requirement. A score of S�x� � 1 indicates that x
counts as a full publication (i.e., is of rating A/A* and the author contribution is at
least 30%) and a smaller score indicates a correspondingly smaller contribution. C�x�
indicates the author contribution for publication x.
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Key

Publication 

Year Journal / Conference Category

Authorship 

Percentage Score

Engel16a 2016 IEEE Transactions on Smart Grid A* 65% 1,00

Eibl15a 2015 IEEE Transactions on Smart Grid A* 35% 1,00

Unterweger15a 2015 IEEE Transactions on Smart Grid A* 35% 1,00

Lausenhammer16a 2016 International Journal of Electrical Power and Energy Systems A 30% 1,00

Lueckenga16a 2016 International Joint Conference on Neural Networks A 30% 1,00

Knirsch17a 2017 EURASIP Journal on Information Security A 30% 1,00

Knirsch15b 2015 International Conference on Information Systems Security and Privacy A 11% 0,37

Engel11a 2011 International Symposium on Applied Sciences in Biomedical and Communication Techn. B 100% 0,67

Engel13a 2013 IEEE International Conference on Innovative Smart Grid Technology B 100% 0,67

Engel13e 2013 IEEE International Conference on Innovative Smart Grid Technology B 60% 0,67

Peer14a 2014 IEEE International Conference on Smart Grid Communications B 35% 0,67

Lausenhammer15a 2015 IEEE International Conference on Innovative Smart Grid Technology B 30% 0,67

Eibl15b 2015 IEEE International Conference on Industrial Technology B 15% 0,33

Knirsch16a 2016 Springer Communications in Computer and Information Science B 12% 0,27

Knirsch15a 2015 IEEE International Conference on Innovative Smart Grid Technology B 7% 0,16

Eibl14a 2015 ACM Information Hiding and Multimedia Security C 35% 0,50

Unterweger15b 2015 Springer Lecture Notes in Computer Science C 10% 0,17

11,13

Table 2.1.: Scores counting towards the ful�llment of the treatise requirements for the individ-
ual publications, which the cumulative treatise is comprised of (sorted by rating and
author contribution).

S�x� �
¢̈
¨
¦
¨̈
¤

1 for C�x� C 0.3
R�x�~0.3 for C�x� @ 0.3

(2.2)

Table 2.1 shows the scores which count toward ful�llment of the treatise require-
ments for the individual publications, calculated using the formula above.

2.1.4 Discussion of Ratings

In the following, the assignment of publication category (A*, A, B, C) of the publi-
cation in the submitted treatise is discussed. �e requirements state that the ERA –
CORE (Excellence in Research for Australia) can be used, or alternatively the quality
of the publications can be shown by comparable rankings (such as acceptance rate or
SCI Journal Impact Factor JIF). For the purpose of this treatise, the publications of
categories A* and A are discussed in more detail with screenshots of the measures
from the sources of the rankings included in Appendix A.1. For categories B and C
shorter justi�cation are given.

For retrieving the ERA – CORE rankings, the following source was used: http:
//mjolnir.lille.inria.fr/~roussel/rankings/era/. For the Google Scholar
h5-Index the following sourcewas used:https://scholar.google.at/citations?
view_op=top_venues&hl=de. For the Journal Impact Factor, the websites of the re-
spective journals were used.

http://mjolnir.lille.inria.fr/~roussel/rankings/era/
http://mjolnir.lille.inria.fr/~roussel/rankings/era/
https://scholar.google.at/citations?view_op=top_venues&hl=de
https://scholar.google.at/citations?view_op=top_venues&hl=de
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categories a* and a

L IEEE Transactions on Smart Grids was established a�er the ERA ranking had
been discontinued. However, its scope is comparable to the IEEE Transactions
on Power Systems, which is ranked in ERA as a journal of category A*. �e im-
pact factor of IEEE Transactions on Smart Grids at the time of publication of
the papers included in this treatise was above the impact factor for IEEE Trans-
actions on Power Systems, as shown in Figure A.1 on page 226. �erefore, the
publications published in IEEE Transactions on Power Systems are considered
as category A*.

L International Journal of Electrical Power andEnergy Systemshas an impact factor
of 3.11, see Figure A.2 on page 227, which is a bit below IEEE Transactions on
Power Systems, and therefore has been included in category A.

L International Joint Conference on Neural Networks is ranked by ERA with cate-
gory A, see Figure A.3 on page 227.

L EURASIP Journal on Information Security does not yet have an impact factor
and is not listed in ERA ranking. However, as the journal had an acceptance
rate as low as 14% in 2015 (source: personal communication with editor-in-chief
Prof. Katzenbeisser) the publications in this journal are assigned category A.

L International Conference on Information Systems Security and Privacy had an
acceptance rate of 18% in 2015. Furthermore the one paper in this treatise that
was published in the proceedings of this conference was awarded the Best Paper
Award. �erefore, this paper (Knirsch15b) has been classi�ed as category A.

categories b and c

L IEEE International Conference Multimedia and Expo is rated as category B in
ERA.

L International Symposium onApplied Sciences in Biomedical and Communication
Technologies has the same Google H5-Index (11, retrieved May 2017) as the In-
ternational Conference on Information Systems Security, which is ranked as cat-
egory B in ERA.

L IEEE International Conference on Innovative SmartGridTechnologieshas aGoogle
h5-Index of 30 (retrievedMay 2017), which is above the h5-Index of conferences
ranked as B in ERA (e.g., International Conference on Information Systems Secu-
rity). Respective publications have been assigned category B.
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L IEEE International Conference on Innovative SmartGridTechnologies Europehas
a Google h5-Index of 21 (retrieved May 2017), which is also above the h5-Index
of conferences ranked as B in ERA (e.g., International Conference on Informa-
tion Systems Security). Respective publications have been assigned category B.

L IEEE International Conference on Smart Grid Communications has a Google h5-
Index of 31. Respective publications have been assigned category B.

L IEEE International Conference on Industrial Technology has a Google Scholar h5-
Index of 14, which is comparable to the International Conference on Information
Systems Security, which is ranked as category B in ERA.

L Springer Collections, e.g., LectureNotes inComputer Science (LNCS) are not rated
in ERA and do not have an IF. �e requirements of the Department for Com-
puter Sciences mention LNCS explicitly as a renowned publication series, but
do not assign a rating. �erefore, we determine the ranking for each of the two
publications individually. Knirsch16a is an extended version of a conference pa-
per that has won a best paper award at ICISSP 2015, which had an acceptance
rate of 18% – we conservatively assign category B. Unterweger15b is a publica-
tion at a conference (“Energieinformatik” – “Energy Informatics”), for which
the proceedings have been published in LNCS. In 2015, this conference had an
acceptance rate of 50%, which is below “IEEE International Conference on In-
telligent Computer Communication and Processing” (acceptance rate of 63%),
which is ranked as category C in ERA.�erefore, Unterweger15b is assigned to
category C.

L ACM Information Hiding and Multimedia Security is the merger of two confer-
ences, one of which (ACM Information Hiding) is rated as category C in ERA.
�erefore publications have been assigned to category C.

2.2 further publications

In addition to the “core” publications counting towards the cumulative habilitation
treatise, the candidate needs to deliver “further publications” from the general �eld
of the treatise, but not directly related to the “core”. �e publications selected for this
category are listed below. In Table 2.2 the corresponding scores are given, with the
same de�nition of scores counting towards ful�llment (Equation 2.2) as used for the
“core” publications.

Note that an exhaustive list of publications authored and co-authored by the candi-
date is contained in the CV in Section A.2.
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Im Sinn der in §1 vorgenommenen Spezi�kation sollen 3 weitere “hoch-
rangige referierte Beiträge” vorliegen, die überwiegend ausserhalb des
�emas der Habilitationsschri�, aber im Fach, für das die venia docendi
beantragt wird, liegen.
From: “KonkretisierungderHabilitationsrichtlinie an der PLUSvom23.6.2015
für Habilitationen im Fach Informatik”

�e following publications form the part of “further publications” for this habilita-
tion endeavour:

L [Knirsch16b]

F. Knirsch, G. Eibl, and D. Engel. Error-resilient Masking Approaches for Pri-
vacy Preserving Data Aggregation. IEEE Transactions on Smart Grid, PP(99):1–
12, 2016. Preprint.

L [Engel12a]

D. Engel, T. Stütz, and A. Uhl. Assessing JPEG2000 encryption with key-depen-
dent wavelet packets. EURASIP Journal on Information Security, 2012(1):1–16,
2012.

L [Unterweger16a]

A.Unterweger, F. Knirsch, G. Eibl, andD. Engel. Privacy-preserving load pro�le
matching for tari� decisions in smart grids. EURASIP Journal on Information
Security, 2016(1):1–17, 2016.

L [Engel09a]

D. Engel, T. Stütz, and A. Uhl. A survey on JPEG2000 encryption. Multimedia
Systems, 15(4):243–270, 2009. Springer.

L [Engel09b]

D. Engel, T. Stütz, and A. Uhl. Evaluation of JPEG2000 hashing for e�cient
authentication. In Proceedings of International Conference on Multimedia &
Expo, ICME ’09, pages 1728–1731, New York, NY, USA, June 2009.

L [Neureiter14a]

C. Neureiter, D. Engel, J. Tre:e, R. Santodomingo, S. Rohjans, and M. Uslar.
Towards consistent smart grid architecture tool support: From use cases to vi-
sualization. In Proceedings of IEEE Innovative Smart Grid Technologies (ISGT)
2014, Istanbul, Turkey, Oct. 2014. IEEE.
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L [Neureiter14b]

C. Neureiter, G. Eibl, D. Engel, S. Schlegel, and M. Uslar. A concept for engi-
neering smart grid security requirements based on SGAM models. Computer
Science - Research and Development, pages 1–7, 2014.

L [Daenekas14a]

C. Dänekas, C. Neureiter, S. Rohjans, M. Uslar, and D. Engel. Towards a model-
driven-architecture process for smart grid projects. In P. Benghozi, D. Krob,
A. Lonjon, andH. Panetto, editors,Digital EnterpriseDesign&Management, vol-
ume 261 ofAdvances in Intelligent Systems andComputing, pages 47–58. Springer
International Publishing, 2014.

L [Eibl17b]

G. Eibl and D. Engel. Di�erential privacy for real smart metering data. Com-
puter Science – Research and Development, 32(1):173–182, 2017.

L [Schinwald12a]

S. Schinwald, D. Engel, and M. Seidler. E�cient automated liquid detection in
microplates. In Proceedings of 25th IEEE International Computer-BasedMedical
Systems (CBMS) Symposium, pages 1–4, Rome, Italy, June 2012.

L [Auer13a]

S. Auer, A. Bliem, D. Engel, A. Uhl, and A. Unterweger. Bitstream-based JPEG
encryption in real-time. International Journal of Digital Crime and Forensics,
5(3):1–14, 2013.

L [Engel13d]

D. Engel, A. Uhl, andA. Unterweger. Region of interest signalling for encrypted
JPEG images. In Proceedings of the �rst ACM workshop on Information hiding
and multimedia security (IHMMSEC ’13), pages 165–174, Montpellier, France,
2013. ACM.

L [Neureiter13a]

C. Neureiter, G. Eibl, A. Veichtlbauer, and D. Engel. Towards a framework for
engineering smart-grid-speci�c privacy requirements. In Proc. IEEE IECON
2013, Special Session on Energy Informatics, pages 4803 – 4808, Vienna, Austria,
Nov. 2013. IEEE.
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Key

Publication 

Year Journal / Conference Category

Authorship 

Percentage Score

Knirsch16b 2016 IEEE Transactions on Smart Grid A* 10% 0,33

Engel12a 2012 EURASIP Journal on Information Security A 30% 1,00

Unterweger16a 2016 EURASIP Journal on Information Security A 10% 0,33

Engel09a 2009 Multimedia Systems B 50% 0,67

Engel09b 2009 IEEE International Conference Multimedia and Expo B 40% 0,67

Neureiter14a 2014 IEEE International Conference on Innovative Smart Grid Technology B 20% 0,44

Neureiter14b 2014 Springer Computer Science - Research and Development B 20% 0,44

Daenekas14a 2014 Springer Advances in Intelligent Systems and Computing B 15% 0,33

Eibl17b 2016 Springer Computer Science - Research and Development B 10% 0,22

Schinwald12a 2012 IEEE International Computer-Based Medical Systems Symposium C 30% 0,50

Auer13a 2013 International Journal of Digital Crime and Forensics C 10% 0,17

Engel13d 2013 ACM Information Hiding and Multimedia Security C 10% 0,17

Neureiter13a 2013 IEEE Industrial Electronics Society Conference C 10% 0,17

5,44

Table 2.2.: Scores counting towards the ful�llment of the treatise requirements for the individ-
ual publications comprising the set of “further publications” (sorted by rating and
author contribution).

2.3 teaching

2.3.1 Past Courses

�e applicant has taught courses at the Universities of Bremen and Salzburg, as well
as the Salzburg University of Applied Sciences. In the following, a list of these courses
is given, where “UPW” stands for “units per week” (in German: “Semesterwochen-
stunde”) and refers to the number of units (45 minutes) taught per week per semester
for a single course (1 UPW corresponds to a total of 14 units in a semester).

L “MobileNetworks and Security” (Lecture Part on IT-Security, 1UPW), Salzburg
University of Applied Sciences (since 2015)

L “Energy Informatics Fundamentals: Network and Communication Technolo-
gies” (Lecture, 1 UPW), Salzburg University of Applied Sciences (since 2015)

L “Network Reliability and Virtualization” (Lecture and Lab, 3 UPW), Salzburg
University of Applied Sciences (since 2013)

L “Internet Infrastructure and Security” (Lecture and Lab, 3 UPW), Salzburg Uni-
versity of Applied Sciences (since 2013)

L “Cryptology” (Lecture, 1 UPW), Salzburg University of Applied Sciences (since
2006)

L “Master Seminar” (Lecture 1 UPW), Salzburg University of Applied Sciences
(2011)
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L “Network Reliability and Security” (Lecture and Lab, 3 UPW), Salzburg Univer-
sity of Applied Sciences (2011–2012)

L “Mobile & Distribution Networks” (Lecture and Lab, 3 UPW), Salzburg Univer-
sity of Applied Sciences (2010-2012)

L “Multimedia Technologies” (Lecture, 3 UPW and Lab, 2 UPW), Salzburg Uni-
versity of Applied Sciences (2010–2013)

L “Media Informatics” (Lecture, 3 UPW and Lab, 2 UPW), Salzburg University of
Applied Sciences

L “Distributed and Autonomous Systems” (Lecture and Lab, 2 UPW), Salzburg
University of Applied Sciences (2009)

L “Advanced Topics in Databases” (Lab, 1 UPW), University of Salzburg (2008)

L “Database Systems” (Lab, 2 UPW), University of Salzburg (2007–2008)

L “Introduction to Unix Systems” (Lab 1 UPW), University of Salzburg (2006–
2008)

L “So�ware Project” (1 UPW), University of Bremen (2003–2004)

L “So�ware Development” (Lab, 1 UPW), University of Bremen (2003)

Student evaluation results for more than 50 courses taught at the Salzburg Univer-
sity of Applied Sciences in the degree program Information Technologies and Systems
Management (ITS) are attached to this document. �e attached detailed evaluation
results not only include numerical results, but also students’ comments on the course.
A summary of the results is included in this document in Table 2.3, which contains the
mean of the numerical results over all evaluations for three evaluation categories.�e
three categories are the ones that directly relate to the course instructor, and include
a total of 12 items, namely:

L Category “Organisation and structure of the course”
L Overview of the goal and contents of the course
L Communication of exam modalities

L Category “Instructor”
L Expert knowledge
L Quality of presentation
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L Clarity of explanation
L Responsiveness to questions and suggestions
L Fairness

L Category “Course Results”
L Achievement of goals
L Knowledge gain
L Overall impression of the course

�e students can grade each item on a scale from 1 to 5, where 1 stands for “Excellent”
and 5 stands for ”Very Poor”. Table 2.3 for each course states themean over all items in
each category. Overall this covers responses by 263 students (out of 797 students, i.e.,
a response rate of a third). It can be clearly seen, that the candidate has consistently
been evaluated very positively by the students.

2.3.2 Future Courses

University of Salzburg

For the University of Salzburg University, the following two advanced courses are en-
visioned.

privacy enhancing technologies: Privacy issues are gaining attention, es-
pecially in Europe. �e new European General Data Protection Regulation (GDPR),
which will be in e�ect fromMay 2018 in all EUmember states, regulates privacy issues
and prescribes state-of-the-art measures to be taken to protect personal and sensitive
data. �e GDPR also requires “privacy by default” and “privacy by design” in all (so�-
ware) products dealing with such data. In this light, technical measures to safeguard
privacy have come to the focus of many research groups. So-called privacy enhancing
technologies allow to balance the individual need for privacy and the functional re-
quirements of data processing tasks. In this course, we �rst review the requirements
put forward by the GDPR and other regulation and we go through fundamental pri-
vacy principles. Moving to the technical side, we will �rst investigate anonymization
and pseudonymization and discuss why both techniques fall short of providing proper
privacy. We then investigate advanced technical methods to increase privacy in data
processing systems. Speci�cally, we will discuss masking protocols, the principles of
homomorphic encryption, various additively homomorphic encryption systems, se-
cure aggregation by homomorphic encryption, di�erential privacy and the impact of
data resolution on privacy. Finally, we will discuss the possibility of privacy measures
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Term Year Course Title Type Degree Program

Student Evaluation 

Response Rate

Organisation and 

Structure of the 

Course

Instructor 

(Knowledge, 

Rhetorics, Transfer, 

Q&A, Fairness)

Result (Goal, 

Knowledge Gain, 

Overall Impression)

WT 2010 Media Informatics Lecture ITS-Bachelor (FT) 21,1% 1,13 1,00 1,00

WT 2010 Media Informatics Lab ITS-Bachelor (FT) 15,8% 1,00 1,00 1,00

WT 2010 Mobile and Distribution Networks Lecture and Lab ITS-Master (FT) 77,8% 1,21 1,08 1,24

WT 2010 Media Informatics Lecture ITS-Bachelor (JC) 47,4% 1,00 1,00 1,15

WT 2010 Media Informatics Lab ITS-Bachelor (JC) 36,8% 1,00 1,00 1,00

WT 2010 Mobile and Distribution Networks Lecture and Lab ITS-Master (JC) 100,0% 1,14 1,08 1,34

ST 2011 Multimedia Technologies Lecture ITS-Bachelor (FT) 25,0% 1,00 1,00 1,00

ST 2011 Multimedia Technologies Lab ITS-Bachelor (FT) 6,3% 1,00 1,00 1,00

ST 2011 Network Reliability and Security Lecture and Lab ITS-Master (FT) 15,4% 1,00 1,00 1,00

ST 2011 Multimedia Technologies Lecture ITS-Bachelor (JC) 27,3% 1,00 1,00 1,00

ST 2011 Multimedia Technologies Lab ITS-Bachelor (JC) 27,3% 1,00 1,00 1,00

ST 2011 Cryptology Lecture ITS-Bachelor (JC) 26,5% 1,03 1,00 1,04

WT 2011 Media Informatics Lecture ITS-Bachelor (FT) 58,8% 1,13 1,04 1,13

WT 2011 Media Informatics Lab ITS-Bachelor (FT) 47,1% 1,20 1,08 1,19

WT 2011 Media Informatics Lecture ITS-Bachelor (JC) 54,5% 1,13 1,10 1,44

WT 2011 Media Informatics Lab ITS-Bachelor (JC) 45,5% 1,20 1,28 1,60

WT 2011 Master Seminar Seminar ITS-Master (JC) 48,3% 1,25 1,07 1,41

ST 2012 Multimedia Technologies Lecture ITS-Bachelor (FT) 11,1% 1,25 1,20 1,00

ST 2012 Network Reliability and Security Lecture and Lab ITS-Master (FT) 25,0% 1,08 1,07 1,00

ST 2012 Multimedia Technologies Lecture ITS-Bachelor (JC) 30,0% 1,00 1,07 1,00

ST 2012 Multimedia Technologies Lab ITS-Bachelor (JC) 20,0% 1,00 1,20 1,00

ST 2012 Cryptology Lecture ITS-Bachelor (JC) 20,8% 1,10 1,00 1,07

ST 2012 Network Reliability and Security Lecture and Lab ITS-Master (JC) 58,3% 1,04 1,03 1,24

WT 2012 Multimedia Technologies Lecture ITS-Bachelor (JC) 40,0% 1,44 1,10 1,42

WT 2012 Multimedia Technologies Lab ITS-Bachelor (JC) 30,0% 1,30 1,33 1,56

WT 2012 Internet Infrastructure and Security Lecture and Lab ITS-Master (JC) 28,6% 1,00 1,00 1,00

ST 2013 Multimedia Technologies Lecture ITS-Bachelor (FT) 21,4% 1,00 1,00 1,00

ST 2013 Network Reliability and Security Lecture and Lab ITS-Master (FT) 60,0% 1,10 1,00 1,00

ST 2013 Cryptology Lecture ITS-Bachelor (JC) 34,8% 1,18 1,00 1,20

ST 2013 Network Reliability and Security Lecture and Lab ITS-Master (JC) 66,7% 1,00 1,00 1,00

WT 2013 Media Informatics Lecture ITS-Bachelor (FT) 14,3% 1,00 1,00 1,00

WT 2013 Multimedia Technologies Lab ITS-Bachelor (FT) 14,3% 1,00 1,00 1,00

WT 2013 Internet Infrastructure and Security Lecture and Lab ITS-Master (FT) 16,7% 1,00 1,00 1,00

WT 2013 Multimedia Technologies Lecture ITS-Bachelor (JC) 36,4% 1,30 1,00 1,20

WT 2013 Multimedia Technologies Lab ITS-Bachelor (JC) 36,4% 1,20 1,10 1,10

WT 2013 Internet Infrastructure and Security Lecture and Lab ITS-Master (JC) 21,4% 1,00 1,00 1,10

ST 2014 Network Reliability and Security Lecture and Lab ITS-Master (FT) 20,0% 1,00 1,00 1,00

ST 2014 Cryptology (4th Semester) Lecture ITS-Bachelor (JC) 65,4% 1,10 1,10 1,20

ST 2014 Cryptology (6th Semester) Lecture ITS-Bachelor (JC) 25,8% 1,00 1,00 1,00

ST 2014 Network Reliability and Security Lecture and Lab ITS-Master (JC) 27,3% 1,00 1,00 1,20

WT 2014 Internet Infrastructure and Security Lecture and Lab ITS-Master (FT) 60,0% 1,20 1,00 1,00

ST 2015 Network Reliability and Security Lecture and Lab ITS-Master (FT) 60,0% 1,00 1,00 1,00

ST 2015 Cryptology Lecture ITS-Bachelor (JC) 35,3% 1,10 1,10 1,10

WT 2015 Network Reliability and Security Lecture and Lab ITS-Master (FT) 37,5% 1,30 1,10 1,30

WT 2015 Mobile Networks and Security Lecture and Lab ITS-Bachelor (JC) 45,5% 1,10 1,00 1,00

WT 2015 Foundations of Energy Informatics Lecture ITS-Master (JC) 50,0% 1,00 1,00 1,00

ST 2016 Cryptology Lecture ITS-Bachelor (FT) 19,7% 1,10 1,00 1,10

ST 2016 Network Reliability and Security Lecture and Lab ITS-Master (FT) 9,1% 1,30 1,00 1,00

ST 2016 Cryptology Lecture ITS-Bachelor (JC) 29,0% 1,10 1,00 1,00

ST 2016 Network Reliability and Security Lecture and Lab ITS-Master (JC) 27,3% 1,00 1,00 1,10

WT 2016 Internet Infrastructure and Security Lecture and Lab ITS-Master (FT) 35,7% 1,20 1,20 1,20

WT 2016 Mobile Networks and Security Lecture ITS-Master (JC) 50,0% 1,00 1,00 1,00

WT 2016 Internet Infrastructure and Security Lecture and Lab ITS-Master (JC) 16,7% 1,00 1,00 1,10

1,09 1,04 1,11

WT … Winter Term FT … Fulltime degree program

ST … Summer Term JC … Job-compliant degree program

Evaluation Results (1 -- Excellent to 5 -- Very Poor)

Average

Table 2.3.: Overview of Student Course Evaluation
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and how users can best be communicated the consequences of disclosing personal
data. �is course could be taught as a lecture, but would also be well suited for the
format of a seminar.

smart grid it-security and privacy: In this course, we look at the move
of traditional energy grids towards intelligent systems, so-called “smart grids”, from
the perspective of IT-security and privacy. �e advancement in energy systems is an
important enable for achieving the transformation of energy systems from fossil re-
sources to renewable energy sources. However, the introduction of advanced infor-
mation and communication technology to the energy grids also implicates new pos-
sible attack vectors, and also a�ects the privacy of end users’ in many respects. We
will �rst investigate the main use cases envisioned for smart grids in the distribution
system: demand response management, direct load control, energy feedback, smart
metering, home automation and electric vehical charging. We will then discuss the
security implications for each of them, going through a detailed risk analysis. We will
then discuss countermeasures that have been proposed by di�erent organization in
Europe (e.g., ENISA or CEN/CENELEC/ETSI) and see, how these countermeasures
can be integrated into the larger picture of the systems architecture of a smart grid.
We will thenmove the focus to privacy and discuss the data requirements of the afore-
mentioned use cases: what kind of data in which (temporal and spatial) aggregation
level and in what time interval is needed to ful�ll the use cases? �is insights will
be counterposed to possible privacy implications: Given the data needed for the use
cases, what other information could be deduced? Especially, can we deduce personal
data such as lifestyle, personal preferences or even religion? Finally, we will look at
privacy enhancing technologies that have speci�cally been suggested for smart grids
to safeguard this personal information (at least to some degree) while still allowing
the use cases to function.

Salzburg University of Applied Sciences

�e courses at Salzburg University of Applied Sciences, centered on cryptology and
securitywill be continued. In “Cryptology”, an introduction to the foundations of cryp-
tology is given. “MobileNetworks and Security” applies these foundation in actual pro-
tocols and security measures, such as TLS, IPSec and SSH. Both of these courses are
Bachelor level courses. “Internet Infrastructure and Security” is a Master level course,
which extends the basics to more comprehensive security approaches and architec-
tures and deals with advanced security measures, such as anomaly detection for IDS
systems, biometric authentication and blockchain technology.
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2.4 selected talks

�e candidate has held a number of talks, including keynotes and invited talks. A
selection is presented in the following.

L �e Interplay of Data Resolution and Privacy in Smart Metering, Invited Talk,
Department of Electrical Engineering, Cornell University, Ithaca, USA, 2017

L �e Interplay of Data Resolution and Privacy in Smart Metering, Dagstuhl Semi-
nar 16032 “Privacy and Security in Smart Energy Grids”, http://dx.doi.org/
10.4230/DagRep.6.1.99, Dagstuhl, Germany, 2016

L Privacy-preserving Smart Metering: Methods and Applicability, Keynote – Com-
munications for Energy Workshop, Vienna, Austria, 2013

L Privacy and Security Challenges in the Privacy and Security Challenges in the
Smart GridUserDomain, Keynote – 1st ACMWorkshop on InformationHiding
and Multimedia Security, Montpellier, France, 2013

L Privacy Challenges in Smart Grids, Panel Session on Smart Grid Security, IEEE
ISGT EU 2014, Istanbul, Turkey

L Panelist Round Table Sichere IKT Architektur im Smart Grid (in German), Ses-
sion “Sicherheit, Systemkontrolle undVersorgungssicherheit”, SmartGridsWeek,
Salzburg, Austria, 2013

L Datenschutz imSmartMetering:Herausforderungen undLösungsansätze (inGer-
man), VDE Smart Grid Forum,
Hannover Messe (Industry trade show on industrial automation, energy, indus-
trial supply and more), Germany, 2014

L Panelist Round Table Smart Metering – hemmen Privacy Bedenken den tech-
nischen Fortschritt? (in German), Session “Kunden und Märkte”, Smart Grids
Week, Graz, Austria, 2014

L Status der europäischen Standardisierung für IT-Security und Privacy im Smart
Grid (in German), Österreichs Energie, Vienna, Austria, 2014

L Sichere IKT-Architektur im Smart Grid (in German), Österreichs Energie, Vi-
enna, Austria, 2013

L Datenschutz und -sicherheit im intelligenten Stromnetz (in German), Lecture se-
ries “Anwendungen inWirtscha� und Technik”, University of Salzburg, Austria,
2013

http://dx.doi.org/10.4230/DagRep.6.1.99
http://dx.doi.org/10.4230/DagRep.6.1.99
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L Video Processing Activities and Applied Research at Sony DADC, with M. Aster,
Invited Talk – 6th International Symposium on Image and Signal Processing
and Analysis (ISPA ’09), Salzburg, Austria, 2009

2.5 further aspects for review

According to the requirements, there are other aspects that positively in�uence the
contribution of the candidate. �e following of these aspects are ful�lled for the sub-
mitted application.

2.5.1 H-Index

A personal H-Index of the candidate C 7, according to Google Scholar (without own
references), is seen as positive for the review of the application. �e H-Index of the
candidate is 9 (according to Google Scholar Pro�le https://scholar.google.at/
citations?user=vbczhIkAAAAJ, without own references).

2.5.2 Development of Systems or So�ware which are Used in Practice

A major part of this habilitation treatise has been developed in the context of the
Josef-Ressel-Center Program. �e central idea of this program is to bring together
industry and academia to solve problems.�e results of this thesis have been included
in industry standardization (EU CEN/CENELEC/ETSI Mandate M/490) and have
provided a basis for the tender for smart metering in Western Austria.

2.5.3 Financial Support of Academic Activities

As already mentioned, the research presented in this habilitation treatise is based on
a 5-year research programme: Josef Ressel Center for User-Centric Smart Grid Privacy,
Security and Control. �e total funded budget for the research center is 800.000e.
Furthermore, based on the work and results presented in this thesis, publicly funded
follow-up projects have been acquired with the Austrian Research Promotion Agency
FFG (Project No.s 838793 – INTEGRA, 848811 – RASSA, 849914 – PROMISE).

2.5.4 Support for Doctoral �eses

In the context of this habilitation, the bases for three doctoral theses has been founded,
for each of which the habilitation candidate is acting as co-supervisor.

https://scholar.google.at/citations?user=vbczhIkAAAAJ
https://scholar.google.at/citations?user=vbczhIkAAAAJ


2.5 further aspects for review 47

L Fabian Knirsch: Privacy Enhancing Technologies in the Smart Grid User Domain
(University of Salzburg, Austria)

L ChristianNeureiter:ADomain-Speci�c,Model Driven Engineering Approach for
Systems Engineering in the Smart Grid (University of Oldenburg, Germany)

L Judith Schwarzer: Modellierung von Benutzerakzeptanz und -interaktion in De-
mand Response Szenarien (University of Oldenburg, Germany)





3PUBLICATIONS

In the following, the papers that cumulatively consitute this treatise are printed in the
form of their original publication.

49
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3.1 engel16a
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Wavelet-Based Multiresolution Smart Meter Privacy
Dominik Engel, Member, IEEE, and Günther Eibl, Member, IEEE

Abstract—The availability of individual load curves per house-
hold in the smart grid end-user domain combined with non-
intrusive load monitoring (NILM) to infer personal data from
these load curves has led to privacy concerns. Based on insights
of the interrelation of load profile resolution and accuracy of
NILM techniques, we propose the use of the wavelet transform
to represent load data in multiple resolutions. Each resolution is
encrypted with a different key using an appropriate cipher and
a hierarchical keying scheme. End-to-end security ensures access
control. To meet requirements of low computational complex-
ity in low-cost smart meters, the lifting implementation of the
wavelet transform is used to generate multiple resolutions. It is
shown that the multiresolution approach is compatible with other
privacy-enhancing technologies, such as secure signal processing.
This allows adding new degrees of freedom to these methods by
introducing the dimension of multiple resolutions. The proposed
approach is evaluated based on the provided level of privacy and
security, computational demands, and feasibility in an economic
sense.

Index Terms—Privacy, smart metering, wavelet transform,
multiresolution, conditional access.

I. INTRODUCTION

SMART METERS form a central component of the smart
grid and in combination with consumer energy manage-

ment systems (CEMS) provide an interface to smart home
technology. Each smart meter is capable of measuring, storing
and transmitting detailed load profiles. Typically, the data is
transmitted on a daily basis. The exact granularity of the trans-
mitted load profiles is not finally specified, and may differ by
country. The intervals between single measurements will lie
between a few seconds and several minutes.

The deployment of smart meter technology and the ensu-
ing availability of fine-grained consumption data has led to
severe privacy concerns. Already in the 1990s, Hart [1] showed
that personally sensitive information can be extracted from
load profiles through so-called “non-intrusive load monitor-
ing” (NILM). More recent studies improved on the methods,
e.g., Lisovich et al. [2] showed that the appliance information
could be used to infer personal information, such as sleep-
wake-cycles and presence, but in theory also lifestyle and
religion.
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The fact that accuracy of detection heavily depends on the
resolution of the investigated load profile is often neglected.
Consider the results by Greveler et al. [3], who found that
for some TV sets the multimedia content could be deter-
mined by smart meter data at a resolution of 2 seconds. These
results were incorrectly generalized by mainstream media and
scientific contributions alike without regard for resolution.

In [4], Eibl and Engel report results of a first systematic
investigation of the influence of resolution on smart meter pri-
vacy. It is shown that the intuitive expectation that the accuracy
of NILM methods decreases with resolution can also be moti-
vated systematically. It is shown that decreasing the resolution
of load profiles transmitted by a smart meter increases privacy.
It is clear that the requirements of smart grid use cases with
respect to resolution differ greatly (e.g., billing only requires a
very low resolution, network monitoring requires a higher res-
olution and using NILM methods for energy disaggregation to
provide energy saving advice will require an even higher reso-
lution). Furthermore, it is clear that putting control over which
data resolution to send to which stakeholder into the hands of
the end user will dramatically increase user acceptance.

In this paper, we propose a system for privacy-preserving
smart metering. It gives end-users control over access to
their load profiles in different resolutions. Thereby, a user-
centric privacy approach is realized. Furthermore, limitation
of resolution can be done in the encrypted domain. The sys-
tem integrated previously presented methods [5]–[7] for smart
meter privacy based on the wavelet transform into a com-
prehensive framework, which takes the recent results on the
impact of resolution on privacy into account [4]. We discuss
how the pieces can be put together, and what privacy use cases
can be realized with the integrated approach. The following
requirements are met by this system:

• Multi-resolution representation without data expansion,
• Low computational overhead,
• Conditional access to each resolution,
• Preservation of sum over all resolutions (to support, e.g.,

billing),
• Compatibility with other Privacy-Enhancing-

Technologies (PETs), such as secure homomorphic
aggregation, per resolution to add additional privacy
choices, and

• Compatibility with hierarchical key generation.
A main contribution is the transfer and adaptation of meth-

ods from other problem domains to the area of smart metering
to create a comprehensive smart metering approach that can
balance both, requirements for functionality and privacy. The
choice and combination of methods is one aspect of this contri-
bution, the adaptation and tailoring of the individual methods
use in smart metering is another aspect. Finally, to evaluate

1949-3053 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the effectiveness of the approach, a privacy measure for smart
metering is introduced.

The remainder of this paper is organized as follows:
Section II gives an overview of related work and discusses
suggestions for other privacy-enhancing technologies. The
impact of resolution on privacy is reviewed in Section III-A.
Section III contains all details on the proposed wavelet-based
approach for smart meter privacy. This section also shows that
the used wavelet transform preserves the sum over all res-
olutions, which is an important property for use cases like
billing. The proposed approach is evaluated in Section IV.
In Section V the compatibility with other PETs is discussed.
Section VI concludes and gives an outlook on future work.

II. RELATED WORK

There are a number of contributions for privacy-enhancing
technologies for smart metering. Jawurek et al. [8] argue, that
approaches relying on policy alone, may prove inadequate
to provide a sufficient level of privacy and that technolog-
ical methods that enforce privacy by virtue of “strength of
mechanism” need to be employed. Indeed, a number of such
technological approaches have been suggested to remedy the
loss in privacy and still enable smart metering functionality on
a broad basis. In the following, we give a brief overview of
these contributions, based on [9]. More detailed surveys can
be found in [8], [10], and [11].

The only approach that is widely used in the real world at
this point in time, is anonymization or pseudonymization of
smart metering data. Consumption data and the personal data
are split and stored separately. Methods for de-anonymization
are a major threat for these types of approaches. It has been
shown that even after anonymization or pseudonymization,
data items can still be attributed to the individual that origi-
nated them. Jawurek et al. [12] show that de-anonymization
can also be done in the smart grid user domain. This structural
traceability is a problem for schemes that rely on anonymiza-
tion or pseudonymization only without the use of additional
encryption.

Simple aggregation tries to hide data related to individuals
by aggregating over a number of house-holds, e.g., all house-
holds in a neighborhood are network (NAN). For example,
Bohli et al. [13] propose a privacy scheme in which high res-
olution smart meter readings are aggregated at NAN level and
only the aggregate is sent to the utility. They introduce two
solutions both with and with-out involvement of trusted third
parties.

Due to the inherent link between load data resolu-
tion and privacy, splitting the load data into a vari-
ety of different resolutions, each associated with different
authorization levels, has been proposed by a number of
contributions. For example, the anonymization scheme pro-
posed by Efthymiou and Kalogridis [14] is based on two dif-
ferent resolutions: a low resolution that can be used for billing
purposes, and a high resolution that allows further investiga-
tion. This scheme employs a trusted third party escrow service.
In the manuscript presented here, we build on previous work
on wavelet-based multi-resolution privacy [6], [7].

Masking relates to approaches which add numerical arti-
facts, e.g., random sequences to the original load data to
obfuscate individual contributions. The added artifacts are
constructed in such a way that they cancel each other out
upon aggregation. The aggregator can therefore combine the
data values of all participant to create an accurate aggre-
gation, but cannot gain access to individual contribution.
For example, Kursawe et al. [15] propose such an aggre-
gation protocol, which compared to other approaches has
the advantage of relatively low computational complexity.
Defend and Kursawe [16] further improve on this idea.
Danezis et al. [17] present another low-overhead protocol
for aggregation of smart meter data, which puts minimal
computational demands on the smart meter hardware.

Differential privacy, as Dwork [18, p. 1] puts it, roughly
speaking, “ensures that (almost, and quantifiably) no risk is
incurred by joining a statistical database”. Adding or remov-
ing an item from the database will not (or only to a very
limited degree) affect the result of statistical computations.
This is commonly achieved by the distributed generation of
noise which is added to the individual data contribution.
Shi et al. [19] propose a scheme for adding random noise
to time series data using a symmetric geometric distribution.
An advantage of this scheme is that the participants need not
trust each other, nor rely on a trusted aggregator. As another
example, Ács and Castelluccia [20] obscure individual data
sets by adding Laplacian noise, which is jointly generated by
the participants. Apart from the obvious drawback that the
data is no longer exact after differential privacy is applied,
data pollution by malicious participants is another issue with
this approach [19].

Secure Signal Processing (SSP) refers to the possibility
to perform certain computations, such as aggregation in the
encrypted domain. A commonly employed mechanism in
SSP is homomorphic encryption, which allows some spe-
cific manipulations of the ciphertext to be reflected in the
plaintext domain. For example, Li et al. [21] propose an over-
lay network in a tree-like topology and the use of a Paillier
cryptosystem. Garcia and Jacobs [22] combine secret sharing
with a Paillier cryptosystem to add flexibility in the aggrega-
tion (at the expense of additional computational complexity).
Erkin and Tsudik [23] extend the idea of homomorphic
encryption of smart meter readings by splitting the module
into random shares, which, in combination with a modi-
fied Pailler cryptosystem, allows flexible spatial and temporal
aggregation for different use cases, such as billing or network
monitoring.

III. WAVELET-BASED SMART METER PRIVACY

A. Motivation for Multi-Resolution Privacy

The basis for both, regulatory-based and technology-based
approaches, is detailed knowledge of what information can
be extracted from the available user data. To date, there is
little systematic research on this subject in the context of
smart grids.

In [24], Molina-Markham et al. investigate the informa-
tion revealed from load profiles at different granularities.
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They show that with off-the shelf statistical methods detailed
information on the behavior of users can be inferred from load
profiles without prior knowledge or precomputed appliance
signatures. They argue that “the information leaks directly
correlate with the time granularity that a meter measures
power consumption” [24, p. 61] and list a number of privacy-
relevant questions that can be answered using load profiles at
granularities ranging from hours to seconds.

In [4], Eibl and Engel study the impact of resolution on
NILM methods systematically. The authors use the so-called
F-Score, a combination for accuracy and precision to evaluate
appliance detection in a number of different resolution. The
approach is empirically evaluated using the publicly available
REDD energy disaggregation data set [25]. The results clearly
and systematically show that appliance detection accuracy
decreases with resolution.

Based on these insights, it is only logical to aim at dif-
ferentiating access control to load profile by resolution. The
classical wavelet transformation in the lifting implementation
is the ideal tool to create integrated, multi-resolution represen-
tations of load profiles. In contrast to the Fourier transform,
which only provides localization in the frequency domain, the
wavelet transform allows to strike a balance between localiza-
tion in the time domain and the frequency domain. This allows
to create a cascade of lower resolution representations of the
original sequence, each of which exactly correspond to a sub-
sampled version of the previous resolution with half its size.
Each resolution contained in the multi-resolution load profile
can be tailored to correspond to a class of detection accu-
racy (as will be discussed in Section IV-B). Granting access to
third party based on this multi-resolution representation allows
informed, privacy-aware data exchange to the user.

Multi-resolution privacy, as proposed here can be seen as
orthogonal to many of the approaches mentioned in Section II,
i.e., approaches such as secure signal processing or masking
can be combined with and enhanced by multi-resolution anal-
ysis. This leads to more possibilities that can be presented
to the user, e.g., a higher resolution could be restricted to be
communicated over secure aggregation only, while a lower
resolution could be communicated as an individual load pro-
file to a defined external party through end-to-end security.
Note that the approach proposed here supports both, billing
and aggregation use-cases (which are often distinguished in
literature). The combination of multi-resolution privacy with
selected other PETs is discussed in more detail in Section V.

B. Multi-Resolution Load Profile Representation

Let L[i] be a tuple of length n, with i = 1, . . . , n, containing
the data values of the original load profile (without loss of gen-
erality, we assume these data values to be of type float). For the
sake of readability, we omit the index and write L whenever
we do not need to refer to individual elements of L[i].

A wavelet transform of maximum depth d, denoted
as Wd(L), is applied to the original load profile L by iteratively
applying the transformation in d steps to the resulting low pass
subbands: In each step k, for k = 1, . . . , d, the wavelet trans-
form operates on data of resolution r := d − k and produces

Fig. 1. Wavelet transformation of a smart meter load profile.

the next lower resolution, which is half the size of the data at
resolution r. As illustrated in Fig. 1, in each step k, a low-pass
subband Lr−1 and a high-pass subband Hr are produced in this
way, each half of the size of the input data, i.e., the number of
samples after step k is n·2−k. The coefficients contained in Hr

are stored as the wavelet coefficients of resolution r. Then the
wavelet transform is applied to Lr−1 to produce the next lower
resolution, until the lowest resolution r = 0 is reached. At the
end of the transformation the sequence L0, H1, . . . , Hd is
obtained, see Fig. 1. In the following, we use wi as a short hand
to refer to each of the individual subbands L0, H1, . . . , Hr},
i.e., w0 := L0, w1 := H1, . . . , wd := Hd. Furthermore, we
denote the all wavelet coefficients necessary for a resolution r
by Wr, i.e., Wr := {L0, H1, . . . , Hr}. For a wavelet transform
of depth d, the maximum (i.e., original) resolution is d.

The synthesis step of the inverse wavelet transform W−1
d

starts with the lowest resolution r = 0. To get the next
higher resolution of the signal the next higher resolution sub-
band is needed, so that in a series of d steps one finally
obtains the original load curve (since we only consider lossless
transformations).

In order to provide a load profile Lt with a target resolution r
from coefficients Wd (where r ≤ d) only r synthesis steps
need to be performed and only the subbands with resolution
t ≤ r, i.e., Wr are needed. Denoting the selection of the lower
r resolutions from Wd as Tr(·) this can be written as

Lr = W−1
r (Tr(Wd)) (1)

The operator Tr can be generalized to be any linear transfor-
mation T of the wavelet coefficients to be used for example for
denoising, which could be valuable for transmission of signal
aggregations. Representing load profiles in the wavelet domain
can also be a basis for signal processing [26] and data com-
pression [27], [28]. As these aspects are out of the scope of this
paper, the combination of signal processing and compression
with the privacy approach proposed here will be addressed by
future work. Another item to be considered for future work is
the use of non-uniform sampling: for areas where the signal
is smooth the sampling interval could be increased adaptively,
whereas for areas where the signal is less smooth, the sam-
pling interval could be increased – in this way privacy could be
increased while still retaining the same average sampling rate.

The discrete wavelet transform does not lead to data
expansion, and by using a lifting implementation the trans-
formation can even be done in-place: “The lifting scheme
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also leads to a fast in-place calculation of the wavelet trans-
form, i.e., an implementation that does not require auxiliary
memory.” [29, p. 4]. Therefore, the number of bits needed
to represent the coefficient data of a level d wavelet trans-
form, Wd, is the same number of bits needed to represent the
original load data L.

The wavelet coefficients of the different subbands can be
represented in a single, embedded bitstream, which corre-
spondingly contains all resolutions. Note that if the appropriate
filter is used, the wavelet transform is lossless, i.e., no data loss
occurs and the original load curve can be recovered perfectly
from the coefficients contained in the embedded bitstream.

To implement multi-resolution analysis in a manner that is
suitable for smart metering devices, wavelet lifting [30] pro-
vides a helpful perspective: This view on the wavelet transform
factors wavelet filters into lifting steps, which for many filters
rely on simple operations only.

C. Applying the Haar Wavelet to Load Profiles

In this paper, we use the simple Haar wavelet filter to create
multi-resolution load profiles. Other filters have been stud-
ied by Engel in [6], where the author came to the conclusion
that the Haar wavelet is sufficient for all currently envisioned
use cases and at the same time has the important property of
very low computational complexity: The Haar wavelet filter
realizes low-pass filtering as averaging of the sample values.
The high-pass step is realized by calculating the corresponding
differences to allow for lossless reconstruction.

Let Lr be the input signal at resolution r, and Lr−1 and
Hr be the low-pass and high-pass output signals, respectively.
Further let n be the length of Lr, and for the sake of simplicity,
let n mod 2 = 0. The lifting steps for the forward transform
(going from resolution r to the next lower resolution r−1) with
the Haar wavelet can be written as follows (adapted from [30]):

L̂r−1[i] = Lr[2i] (2)

Ĥr[i] = Lr[2i + 1] (3)

Hr[i] = Ĥr[i] − L̂r−1[i] (4)

Lr−1[i] = L̂r−1[i] + 1

2
(Hr[i]), (5)

with i = 1, . . . , n
2 . The inverse transform (going from resolu-

tion r − 1 to r − 1) correspondingly is given as

L̂r−1[i] = Lr−1[i] − 1

2
(Hr[i]) (6)

Ĥr[i] = Hr[i] + L̂r−1[i] (7)

Lr[2i + 1] = Ĥr[i] (8)

Lr[2i] = L̂r−1[i] (9)

again with i = 1, . . . , n
2 .

This transformation is lossless, and the applied operations
in each step are equivalent to subsampling. In effect, each
iteration of applying the Haar wavelet is equivalent to halving
the sampling rate.

The Haar wavelet filter perfectly preserves the first moment
in each step of the transform. The sum of the original
load profile (i.e., the total consumption) can be accessed at

Fig. 2. Final encrypted bitstream produced by the smart meter: The wavelet
coefficients of each subband are encrypted with an individual key.

any resolution, because, as can be easily shown, the sum for
the load profile at any resolution r can be obtained from the
next lower resolution r − 1 as follows:

n∑

i=1

Lr[i] = 2 ·
n/2∑

j=1

Lr−1[ j]. (10)

This is an important property, as it allows the use of any lower
resolution for functions like accurate billing, as the sum of
the original sequence can be derived from any of the lower
resolutions.

D. User-Centric Privacy Through Conditional Access

The idea of conditional access stems from the context of
multimedia entertainment data. Entertainment content usually
exists in various resolutions (e.g., mobile content, standard
definition, high definition), which may be priced differently.
A multi-resolution representation of the multimedia data
allows the efficient representation of the resolutions in a sin-
gle bitstream. This is an advantage as only one version of the
bitstream needs to be handled and transmitted. Conditional
access allows users to pay only for the resolutions they are
interesting in. For example, the owner of a standard definition
television has no need to pay for the high-definition version
of the content. Through conditional access only the bitstream
portion relevant for the desired resolution is decrypted, the rest
of the bitstream is ignored.

We propose to use the conditional access paradigm for smart
metering data in multi-resolution representation. Each subband
L0, H1, . . . , Hd is encrypted with a different key (key gener-
ation and handling are discussed in Section III-E). The whole
datastream is transmitted over a Smart Grid communication
infrastructure. Access to the different resolutions is thereby
only granted to parties that hold the needed keys, as illustrated
by Figure 2.

This scheme allows flexible control by the end-user how
access is granted to smart meter data. For example, a par-
ticular energy provider may be granted access only to the
lowest resolution for billing purposes. A third-party service
providing energy saving advice by employing NILM methods
may be granted access to the highest resolution by the user.
The end-user may further be willing to provide data for net-
work monitoring, but only at a medium resolution. Note that
the approach presented here provides all the necessary means
and ingredients for multi-resolution privacy, but it does not
make the decision on which resolution to choose on the users’
behalf. This part could be provided, e.g., by a recommender
system, which advises the user on the privacy implications of
a certain resolution. First steps into such automated privacy
recommendations have been made in [31].
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Fig. 3. Illustration of Wavelet-based Multi-Resolution Privacy: Three communication paths from user domain to recipient.

Tt (where 0 ≤ t ≤ R), i.e., decreasing the resolution, can
be applied before or after encryption. Note that no keys are
required to decrease the resolution of the encrypted bitstream,
as the operation is a simple truncation: For reducing the res-
olution from r to r − 1, discarding the bits of the encrypted
coefficients of Hr is sufficient. As each resolution is encrypted
separately, the boundaries are known and the truncation can
be done in the encrypted domain (if a cipher is used that pre-
serves the number of bits, the truncation points are known
implicitly, otherwise explicit markers can be introduced).

This allows rate adaptation not only by the users them-
selves, but also at a later point, e.g., through a third party
(no keys need to be provided for this third party). In this
way, the proposed scheme also enables relaying of data in
various resolution. An illustrative example is discussed in
Section III-F.

E. Hierarchical Key Generation

In [32], a scheme for generating keys for multi-resolution
privacy is proposed, based on previous suggestions stemming
from multimedia security (e.g., [33]). The original idea is due
to Lamport [34], who already proposed the underlying method
in 1981.

For each resolution r, the key kr−1 for the next lower res-
olution r − 1 is obtained by using a cryptographic one-way
hash function h on kr:

kr−1 = h(kr). (11)

In this way, for each resolution r, all lower resolution
keys kr−1, kr−2, . . . , k0 can always be obtained. Using this
hierarchical key generation scheme saves overhead in key
management, as only a single key needs to be stored and
transmitted.

By using a secure cryptographic one-way hash function,
the one-way property ensures that inferring keys for higher
resolutions from a lower resolution key is extremely difficult.

Note that the hierarchical keys are generated for a symmet-
ric scheme, such as AES. Access to the different resolution
to different stakeholders is granted by using the public keys
of these stakeholders. For examples, if a user wants to grant

access to an external party to resolution r = 2, the user
encrypts k2 with the public key pk of this external party,
producing a “wrapped” key wk = Epk(k2). The external
party can use its private key sk to obtain the symmetric key:
Dsk(wk) = k2. Subsequently, keys k1 and k0 can be derived by
using Equation 11. With these keys, all wavelet coefficients of
L0, H1 and H2 can be decrypted. Finally, the inverse wavelet
transform is applied to obtain the load profile in the target
resolution.

F. Illustration

Figure 3 illustrates the proposed method. In the user domain,
a wavelet transform of depth d is applied to the original load
profile L, resulting in the wavelet coefficients Wd. The coef-
ficients for each resolution r = 0, . . . , d are encrypted with
a unique key kr (using the hierarchical key scheme, as dis-
cussed above). Access to different resolutions is granted to
recipients based on these keys. In the illustration, there are
three recipients, each of which is granted access to a different
resolution, r, r′, and r′′, respectively. Access to resolution r, the
highest resolution, is granted to Recipient 1, which could be
a third party service provider for energy optimization through
NILM. Resolutions r′ and r′′ are relayed over a data concen-
trator (typically operated by the DSO). Recipient 2 could be
the DSO itself, which is granted access to resolution r′ to use
the data at this resolution for demand prognosis. Recipient 3
could be the energy provider, which receives a very low res-
olution r′′ through the DSO’s data concentrator for billing
purposes. (Note that the use of a data concentrator is possible
with the proposed scheme, but not required. The regulation in
some countries prescribes the role of a data concentrator, in
other countries no data concentrators are used.)

Before the data leaves the user domain, by applying T the
user can decrease the data to be transmitted. In the illustration,
there are two communication channels which leave the user
domain: the upper communication channel is a direct channel
to Recipient 1 (e.g., via the user’s Internet connection). For
this recipient, the user grants access to resolution r by pro-
viding key kr. Furthermore, only the coefficient data up to
resolution r needs to be transmitted. This can be achieved
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Fig. 4. Example for Wavelet Decomposition of Smart Meter Data.

by creating Cr through applying Tr to Cd. Recipient 1 can
decrypt Wr from Cr and by applying the inverse wavelet
transform can reconstruct Lr.

The lower communication channel leaving the user domain
transmits encrypted wavelet coefficient data to Recipient 2 and
Recipient 3, via a data concentrator (DC). As the maximum
resolution for all recipients behind the DC is r′, the transmitted
data can be reduced to Cr′ before it is passed on to the DC.

The DC does not have any keys. Nevertheless, the DC
can apply T to Cr′ to reduce the amount of data transmit-
ted to Recipient 3 to the lower resolution r′′. The option of
nodes in the network being able to perform rate adaption is
advantageous in networks with low bandwidth links, such as
narrow-band powerline communication (PLC). Note that the
reduction of resolution by the data concentrator DC by apply-
ing Tr′′ is not relevant for security. Even if DC had passed
on Cr′ to Recipient 1 instead of Cr′′ , Recipient 1 would still
lack the key to decrypt Wr′ .

Both, Recipient 2 and Recipient 3 can obtain the load pro-
files Lr′ and Lr′′ , respectively, in the resolutions intended by
the user.

To also illustrate the data perspective, Figure 4 shows an
example of the wavelet decomposition of actual data. The
original sampling interval in this example is 15 minutes,
i.e., 96 values per day, as shown in Fig. 4(a). The coeffi-
cients of a level-1 decomposition with the Haar wavelet is
shown in Fig. 4(b). The left half of these coefficients represent
an lower resolution of the original sequence with a sampling
interval of 30 minutes. Fig. 4(c) shows a level-5 wavelet
decomposition. From this representation, 6 different resolu-
tion (including the original resolution) can be obtained, with
the lowest resolution being composed of the three left-most
values and representing a sampling interval of 8 hours.

IV. EVALUATION

In this section, the proposed scheme is evaluated with
respect to computational demands, security and privacy and
real-world feasibility.

A. Complexity

As discussed above, implementing the wavelet transform
as lifting steps is computationally inexpensive. Generally, the
discrete wavelet transform has a complexity of O(n). Due to

the simple operations used in the lifting implementation, the
transformation part can be realized by inexpensive smart meter
hardware.

The computational demands for encryption depends on the
used encryption scheme. For standard encryption schemes,
efficient implementations exist that can be integrated into
smart meter hardware. Some overhead is introduced for key
management, and potentially for the creation of session keys.

The proposed method has been implemented as a proof of
concept in Java (Oracle Java v8 with ARM-extensions, ver-
sion 1.8.0 with hard float). The method was evaluated in a
low-cost ARM-based environment (Raspberry Pi 2, featuring
a 900MHz quad-core ARM Cortex-A7 CPU and 1 GB RAM at
a cost of $35) running Raspbian Linux (in the version released
on February 15, 2015, based on Debian Wheezy). The choice
of this hardware platform is sensible, as it reflects the com-
puting capabilities smart metering hardware will most likely
provide. Rather than choosing the current solution of a sin-
gle smart meter manufacturer, we use the open Raspberry Pi
platform in combination with Linux to provide a test environ-
ment that is representative of future smart meters in a more
general way.

To evaluate the method, we use the publicly available REDD
data set [25]. This data set contains load data for a number of
houses over the period of several weeks at a measuring inter-
val of 3 seconds. For our test, we use 14 days of load profiles
from house 1. We use the first 28,672 samples of the data
set for each day, which corresponds to a measuring interval
of 3.01 seconds. This sampling interval allows us a maximum
wavelet decomposition depth of 12 without the need for bor-
der handling (because the number of samples equals 7 · 212),
with the lowest resolution having a size of 7 samples (i.e., one
aggregated value for every 3.4 hours). The sizes of the resolu-
tions are given in Table I. Note that in real world setups, the
number of measurements per day can be chosen by the smart
meter, but will be affected by local legislation.

The following encryption scenarios were used: (1) wavelet
transform only without any encryption, (2) Symmetric encryp-
tion: AES with 128-bit and 256-bit keys, and (3) Hybrid
encryption: 128-bit and 256-bit AES resolution keys encrypted
with 2048-bit RSA keys.

The following steps are executed in the scenarios: (i) Apply
a Haar wavelet transform of depth 12 to the load profile
(all scenarios), (ii) Generate 13 hierarchical AES resolution
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TABLE I
RESOLUTION SIZES AND TEST RESULTS; X: ACTIVITY CAN

BE INFERRED FROM DATA, C: COOKING, B: BATHROOM

ACTIVITIES, H: HOUSEWORK, P: PRESENCE/ABSENCE

TABLE II
EXECUTION TIME FOR MULTI-RESOLUTION ENCRYPTION ON RASPBERRY

PI 2, AVERAGE FOR 14 LOAD PROFILES WITH 500 EXECUTIONS EACH

keys (Scenarios 2 and 3 only), (iii) Encrypt L0, H1, . . . , H12,
each with a different key (Scenario 2 and 3 only), and
(iv) Encrypt the 13 resolution keys with a 2048-bit RSA public
key (Scenario 3 only).

The results are shown in Table II. The timing results
are given in milliseconds comparing wavelet transform
only (WAV) with AES and hybrid encryption (HYB) using
an AES session key encrypted with an RSA public key. In
each category, the 14 daily load profiles from the REDD
data set were investigated, each of which was transformed
and encrypted 500 times. The results present the average time
needed for processing one load profile (i.e., one day).

It can be seen that compared to the computational demands
of the encryption stage, the computational demands for the
wavelet transform are almost negligible. On average, the trans-
formation of a load profile takes 9 ms. This fact is a strong
argument in favor of the proposed approach. Considering other
tasks smart meters will need to be able to handle (such as key
management), multi-resolution support comes at practically no
additional cost.

Some overhead is incurred by the need to create the res-
olution keys. For creating 13 session keys with the Java
standard pseudo-random number generator (SHA1PRNG), on
a Raspberry Pi 2 and averaged over 500 executions our
implementation took approx. 1390ms.

B. Privacy and Security Analysis

In the following, we first review the proposed protocol
in more formal detail, to make clear which party generates
which keys and which party performs the encryption. We then
outline the basic assumptions regarding adversary behavior.

The important aspect of information reduction through sub-
sampling is discussed. Finally, based on this discussion, the
used notion of privacy is defined in more detail.

1) Protocol Review: The proposed protocol is given in
Figure 5. For the discussion, one exemplary use case of the
proposed method was selected: A smart meter collects energy
consumption data, performs multi-resolution analysis followed
by encryption and sends the ciphertext to a DSO. We also
include the possibility of an optional concentrator, which can
adapt the resolution by applying T(·) to the ciphertext.

The DSO’s public key pkDSO is made available to the smart
meter via a public key infrastructure (assuming that the smart
meter is initially provisioned with the public keys of the used
certifying authorities). Note that, for the sake of simplicity,
basic security measures (such as authentication and integrity
checking) are not discussed here, but of course should be
added in a real-world application.

A wavelet transformation is performed by the smart meter
resulting in d resolutions (line 1). The individual resolution
keys ki are created by the smart meter with the hierarchical
keying scheme discussed in Section III-E (line 2). The coeffi-
cients of each resolution are encrypted with the corresponding
resolution key (line 3), using a symmetric cipher (in our tests
we use AES).

The smart meter is configured to grant the DSO access
to the consumption data up to resolution r (with r ≤ d).
The corresponding resolution key kr is therefore encrypted
with the DSO’s public key (line 5), producing the “wrapped”
key wkDSO. Note that due to using a hierarchical keying
scheme only this single key kr needs to be transmitted to
the DSO (the necessary keys for the lower resolution coeffi-
cients can be derived from kr). The encrypted coefficients Cd,
together with the wrapped resolution key wkDSO, are trans-
mitted by the smart meter. Note that, additionally, the smart
meter could add more wrapped resolution keys, encrypted for
other recipients with the corresponding public keys.

In the topology, an optional data concentrator can be used:
The data concentrator receives ciphertexts by various smart
meters and passes them on to the DSO. The data concentra-
tor can be configured to perform resolution adaption. In the
protocol in Figure 5, the data concentrator can truncate the res-
olutions higher than r by simply discarding the corresponding
encrypted coefficients (as discussed above, no decryption is
necessary here).

The DSO decrypts the resolution key kr from wkDSO with
its private key skDSO (line 6) and derives the resolution keys
for the lower resolutions (line 7). It can then decrypt the
encrypted coefficients for the resolutions up to r (lines 8-9).
Finally, by applying the inverse wavelet transform, the load
data Lr of resolution r is obtained (line 10).

2) Adversary Model Assumptions: The smart meter is
assumed to be trusted: It will reliably realize wavelet trans-
form, key generation and encryption. It is assumed that
no active or passive adversary has access to the internal
processing of the smart meter.

The DSO and potential other legitimate recipients of the
load data (in a specific resolution) are assigned an honest-but-
curios (semi-honest) role: They will reliably perform wavelet
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Fig. 5. Protocol for Multi-resolution Privacy for transferring a load profile L from the smart meter to the DSO at reduced resolution r as Lr , with optional
additional rate adaption applied by a data concentrator. pkDSO denotes the DSO’s public key, skDSO denotes the DSO’s private key. ki denotes the resolution
keys used for symmetric encryption of the wavelet coefficients in subband wi. wkDSO denotes the “wrapped key,” i.e., the resolution key of the highest
resolution intended for the DSO encrypted by pkDSO.

transform and decryption, and will generally adhere to the
protocol. However, if a recipient sees an opportunity to get
data at a higher resolution than intended by the smart meter
for this recipient, it will access this information.

The data concentrator needs not be a trusted entity. It only
needs to be trusted to receive data and pass on this data, option-
ally with rate adaption. The data concentrator is not trusted
with key material.

The communication links are assumed to be insecure and at
least subject to eavesdropping, possibly also subject to active
attacks, such as man-in-the-middle attacks.

3) Analysis of Potential Attacks: A semi-honest recipient
(e.g., a DSO) could try to gain access to higher resolu-
tions than the sender intended. There are different options
to try: (i) derive a resolution key for a higher resolution
than the wrapped key, (ii) derive higher resolutions from the

lower resolutions, (iii) break the symmetric encryption of the
coefficients for the higher resolutions, (iv) break the asym-
metric encryption of other wrapped keys transmitted with
the ciphertext (intended for other recipients). Option (i) is
infeasible if a proper one-way hash function (e.g., SHA-3)
is used to create the hierarchical keys. Option (ii) is infeasible
given certain assumptions, which will be discussed in detail
in Section Privacy Analysis below. Option (iii) and (iv) are
infeasible if state-of-the-art cryptographic methods are used
with suitable keys. In our tests we use AES and RSA. It can
be concluded that even for a semi-honest recipient, the proto-
col achieves the intended effect of only granting access to a
certain resolution.

A collusion of multiple semi-honest recipients will yield
the plaintext data of the highest resolution granted to this group
of recipients (by sharing the plaintext). However, the collusion
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will not yield the plaintext consumption data of higher
resolutions.

A semi-honest data concentrator trying to gain access
to the data has less options than the semi-hones recipient,
as it does not have any access to the keys and there-
fore, other than the recipient, cannot decrypt even parts of
the data. Options (i) and (ii) are therefore not applicable.
Options (iii) and (iv) are infeasible, if proper ciphers are used.
The only information that the data concentrator has, is the
number of recipients (through the number of wrapped keys),
the addresses of recipients for which the data concentrator acts
as a direct relay, and the number of resolutions contained in
the message.

A malicious data concentrator can refuse to pass on the
message and can thus realize a denial of service attack. It can
also send bogus messages: the data concentrator can make
up consumption data, acquire the public key of the DSO
(or any other recipient) and then run the protocol steps for
encryption (lines 1-5 in Figure 5). This can be counteracted
by integrity checks. A malicious data concentrator could also
perform a man-in-the-middle attack. This can be counter-
acted by putting authentication into place. One attack by a
malicious concentrator remains that cannot be counteracted:
a malicious concentrator can always decrease the resolution
of the ciphertext it passes on. Recipients behind the mali-
cious concentrator would then receive lower resolutions than
intended. This circumstance would be noted by the recipi-
ent (because the available resolutions would not match the
resolution implied by the included wrapped key).

Eavesdropping attacks on the communication links are
not feasible as only attack options (iii) and (iv) are available,
which are both infeasible. An active malicious attack on the
communication links (such as a man in the middle attack)
can realize the same attacks as a malicious data concentrator.

4) Privacy Analysis: The effectiveness of reducing personal
information through the reduction in resolution is one of the
central questions in evaluating the usefulness of the proposed
scheme. Furthermore, as discussed in the previous section,
legitimate, but semi-honest, recipients could try to obtain
higher resolution information from the lower resolutions.

a) Information reduction through subsampling: For a
user-centric privacy approach, it is essential to answer the
question, how much privacy is introduced by repeatedly halv-
ing the sampling rate – i.e., how does a decrease in resolution
actually impact the degree of personal information contained
in the underlying data? And, on a related note, how much
useful information is contained in a certain resolution for real-
izing a use case desired by the consumer (such as energy usage
optimization).

It is evident that the low-passing filtering achieved by
the Wavelet transform will reduce information leakage for
privacy-sensitive series of load measurements. As the approach
proposed here supports a high number of different resolu-
tion, it is safe to state that it will effectively increase privacy.
The question remains, what target resolution the end-consumer
should aim for in a given use-case.

As an example, the study of Eibl and Engel [4] explic-
itly aimed at tackling the relation between NILM accuracy

and data resolution (Table I). Empirical material to assess the
utility of a reduction of resolution for increasing privacy is
provided. The four columns on the right-hand side of Table I
shows the effect of decreasing resolution with the wavelet-
based approach on the detection accuracy for the activities
“cooking”, “bathroom activities”, ”housework”, and “pres-
ence/absence”. It can be seen that decreasing the resolution
is a measure to prevent detection of these activities (given the
detection accuracy of current NILM methods). It should be
noted that the transition from detectable to undetectable is not
hard and slightly smoother than suggested by Table I.

In [4], an explicit algorithm is used for a privacy attack.
Although it can be argued that typical NILM algorithms based
on differences of power values should suffer from a decreased
resolution this does not necessarily have to be true in gen-
eral if other kinds of attacks are considered. For example
the argument does not hold for approaches like the ones
in [35] and [36] where the occupancy information is retrieved
based on absolute values that can even be averaged over
several hours.

As a candidate for a general privacy measure,
Sankar, Rajagopalan et al. propose an information-theoretic
approach that uses mutual information (MI) to evaluate
privacy in [37] and [38]. From the theoretical side, there is
also a relation between differential privacy and MI [39]. As a
big drawback, MI has not been applied to real world data in
these publications. One of the reasons for that lack may be the
fact that MI is hard to estimate. There are approaches in the
(Non-Intrusive Load Leveling) NILL community that use MI
estimated by binning as a method to assess the similarity of
the original and the changed signal [40]. The current method
of choice for the estimation of MI is based on k nearest
neighbors [41], [42] which has shown to be superior to the
binning method which heavily depends on the bin size. In an
attempt to evaluate privacy using MI, we programmed the
algorithm in Matlab and successfully tested the correctness
of our implementation for the correlated Gaussian example.
However, the application to the real world data showed a big
dependence on the number of nearest neighbors k making the
results doubtful. In [41] it is mentioned that the estimation
algorithm fails, if distributions are strongly peaked which is
also the case here. Using ranks instead of the absolute values
did not improve the estimation, so why this algorithm did not
work stays an area for future research.

Instead, the regression approach of [43] and [44] is adopted.
Instead of using Pearson’s coefficient of correlation the more
robust Spearman correlation coefficient rSpearman is used here.
The correlation coefficient was computed between the orig-
inal sample and a wavelet approximation for each scale.
In [43] and [44] this is done for finite differences of the load
profile corresponding to the privacy attacks on turn-on and
turn-off events. In order to account for other attacks that are
based on absolute values [35], [36] this is also done for abso-
lute values. In order to get the sign right, i.e., a measure for
privacy and not for correlation 1−rSpearman is used as a privacy
measure.

In Figure 6 the result is illustrated for the mains signal of
house 1 of the REDD dataset [25]. As expected the privacy
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Fig. 6. Dependence of privacy, measured by 1 minus the Spearman cor-
relation coefficient between the signal with highest resolution and lower
resolutions.

Fig. 7. Dependence of privacy, measured by 1 minus the Spearman
correlation, on resolution based on absolute values for different appliances.

measure clearly increases when the resolution (here, given as
a time scale) is decreased. This holds especially for the dif-
ference of subsequent values suggesting that methods based
on absolute values like in [35] and [36] might be more robust
with respect to a decrease of resolution.

To get further insights, the privacy measure is also com-
puted for signals of individual appliances (Figure 7). Although
absolute values are used here in contrast to [4], the results
are qualitatively consistent with the results of [4]. At the
same resolution, privacy of lights is estimated lower than pri-
vacy of other appliances. This is plausible due to the higher
on-times of the lights [4]. Due to the more regular time-
behavior of its load curve the refrigerator (typically considered
as privacy-irrelevant) has a rather steep privacy increase in the
middle.

b) Inferring higher resolutions from lower resolutions:
Assume Eve has been granted access to resolution r of a bit-
stream containing a maximum resolution of d. Eve could try to
use the coefficients from the lower resolutions, for which she

has access, to extrapolate the higher resolution. The feasibil-
ity of this attack depends on the characteristics of the original
load profile. The question is directly related to the question,
how much privacy is introduced by halving the sampling rate.
If the original has a high number of high frequency compo-
nents (which are also crucial in NILM accuracy), significant
data loss occurs going from d to r and Eve will be unable to
make any assumptions on resolution d from r.

V. COMBINATION WITH OTHER PRIVACY-ENHANCING

TECHNOLOGIES

The multi-resolution approach to privacy presented above
is compatible with many other privacy-enhancing technolo-
gies (PETs). By combining these PETs with multi-resolution
analysis, additional degrees of freedom and a broader range
of choices for the end-user can be realized. In the following,
we review the compatibility of the multi-resolution approach
proposed here with privacy-preserving protocols found in the
literature.

A. Secure Aggregation With Homomorphic Encryption

In [7], Engel and Eibl have shown that multi-resolution anal-
ysis can be used within privacy preserving protocols which
directly rely on the homomorphic encryption property for
secure aggregation, such as proposed by Li et al. [21] or
Erkin and Tsudik [23]. In particular, it has been shown that
when homomorphic encryption is applied to a signal rep-
resented in the wavelet domain, homomorphic additivity is
not only preserved, but can be separately exploited for each
resolution.

B. Additive Secret Sharing

The method proposed by Garcia and Jacobs [22] com-
bines Paillier’s homomorphic encryption with additive secret
sharing. Generally, additive masking terms need no adjust-
ment since they cancel out in the decryption step before the
inverse transformation takes place. Thus, the method is com-
patible with the wavelet transformation. In [15], Kursawe et al.
describe four different protocols which rely on masking. These
protocols can be categorized into so-called aggregation and
comparison protocols. All of the protocols are designed as
simple as possible to be feasible for use in the field. All
of the aggregation protocols are compatible with wavelets,
and masking can be applied to each resolution separately.
However, in the comparison protocols, the transformed sum
of the values is in the exponent of the generating element of
the Diffie-Hellman group. As the reverse transformation can-
not be calculated for terms in the exponent, wavelets are not
compatible with these comparison protocols.

C. Differential Privacy

In [20], Ács and Castelluccia use the modulo operation
for homomorphic encryption instead of Paillier’s homomor-
phic encryption scheme. Privacy and also confidentiality with
the aggregator is achieved by masking. As stated above, the
additive masking terms need no adjustment. The second main
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feature is the addition of Laplacian noise for differential pri-
vacy. This step needs some modification to be used with the
wavelet transform: Basically, the noise needs to be wavelet
transformed before being added to the wavelet subbands in
order to limit its impact upon reverse transformation at the
recipient. The detailed mechanics of this process are out of
scope of this paper and remain a subject for future work.

D. Data Integrity

The method in [45] extends [21] by preserving data
integrity. The wavelet transformation is compatible with this
method since it is mostly based on the ciphertext. There, it is
irrelevant if the encrypted message is in its original or in a
transformed form. Decryption is only done in the incremental
verification process where the compatibility can be verified for
each individual step.

Summarizing, the wavelet method is compatible with exist-
ing privacy preserving protocols except comparison protocols.
Adaptations are needed for differential privacy.

VI. CONCLUSION

We have proposed a method for user-centric smart meter
privacy, which uses the wavelet transform to generate a cas-
cade of different resolutions from the load data created by a
smart meter. Through the use of hierarchical keying schemes,
the user can efficiently grant or deny access to external parties.
Adaptation of resolution, i.e., reduction of data, can be done
after encryption, also by parties lacking the keys, such as data
concentrators.

The computational demands for the proposed scheme are
low and make the approach feasible in an economic sense. The
discussed proof of concept implementation was tested on rel-
atively inexpensive hardware, for real-world use, significantly
cheaper hardware could be used.

Wavelet-based multi-resolution privacy is compatible with
many of the other PETs, which have previously been pro-
posed in literature. We have discussed the compatibility of
the proposed approach with different types of methods on a
theoretical level.

In future work, the question should be addressed, how to
communicate the trade-off between privacy and utility to the
user. Applying the information-theoretic framework introduced
by Sankar et al. [37] to assess privacy and utility at each
resolution could be an interesting direction.
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Influence of Data Granularity on
Smart Meter Privacy

Günther Eibl, Member, IEEE, and Dominik Engel, Member, IEEE

Abstract—Through smart metering in the smart grid end-user
domain, load profiles are measured per household. Personal data
can be inferred from these load profiles by using nonintrusive
appliance load monitoring methods, which has led to privacy
concerns. Privacy is expected to increase with longer intervals
between measurements of load curves. This paper studies the
impact of data granularity on edge detection methods, which are
the common first step in nonintrusive load monitoring algorithms.
It is shown that when the time interval exceeds half the on-time of
an appliance, the appliance use detection rate declines. Through
a one-versus-rest classification modeling, the ability to detect an
appliance’s use is evaluated through F-scores. Representing these
F-scores visually through a heatmap yields an easily understand-
able way of presenting potential privacy implications in smart
metering to the end-user or other decision makers.

Index Terms—Data granularity, privacy, smart metering.

I. INTRODUCTION

THERE IS a lot of public concern and discussions on
the privacy impact of smart metering. However, most

discussions take place without knowing the extent of per-
sonal information that can be read out of smart meter load
profiles. Even more so, there is nearly a complete lack of
knowledge on how the amount of personal information relates
to the measured time interval, i.e., the time granularity. For
example, in many countries in Europe it is planned that smart
meters will deliver load data in 15 min time intervals [1].
This has sparked a (sometimes emotional) debate on privacy
(see [2]–[4]). However, to our knowledge, no one has tried to
assess the amount of personal information that can be extracted
on 15 min time interval load profiles, or how, in general, data
granularity relates to the amount and nature of extractable
personal data.

Although the decrease of the time granularity can be viewed
as the most straightforward and simplest privacy enhancing
technology—and this method has been suggested by a number
of contributions in the past (see [5]–[7])—its impact on privacy
has not yet been studied systematically, apart from an initial
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study we published in [8]. The goal of this paper is making
the first step toward a systematic evaluation by studying the
impact of time granularity on determination of appliance use.
The main reasoning behind this approach is that activities of
persons in the house trigger appliances, which in turn sum
up to the total load. The activities themselves are influenced
by various aspects of personal information such as presence,
sleep-wake-cycles, and personal habits

Personal Info ⇒ Activities ⇒ Appl. Use ⇒ Load Curve. (1)

This causal chain is the reason why the knowledge of activi-
ties leads to knowledge of personal information. As a first step
toward a privacy assessment this paper focuses on the detec-
tion of appliance use with a short discussion on how activities
could be assessed.

Information on appliances is usually extracted from the
load data by means of so-called “nonintrusive appliance load
monitoring analyzes” (NIALM). There is a lot of literature
on NIALM algorithms ([9]–[16], to name a few). The pri-
mary goal of these algorithms is the disaggregation of the
total load into the individual appliances loads for sake of
providing an energy feedback to the end-user. Seen in a dif-
ferent perspective, such NIALM analyzes could also be used
as the first step of methods attacking personal privacy by
using NIALM as the basis for the extraction of personal
information. Instead of using a whole NIALM algorithm as
a method for gathering private information, in this paper,
a simpler method is used which only uses the first part
of typical low-frequency NIALM algorithms, namely edge
detection ([2], [9], [11], [12], [14], [16]).

Compared to the large amount of literature aiming at
providing energy feedback to the end-user, privacy implica-
tions are only rarely treated. In [2], load data were recorded
with parallel video data which were processed into activ-
ity logs. A NIALM analysis was done yielding the input
for subsequent behavior-extraction routines. Extracted behav-
iors include, e.g., presence, sleep cycles, or meal times. The
amount of information disclosure is measured by an overall
number called “degree of disclosure.” In [4], the load profile is
divided into so-called power segments using a density-based
clustering technique. These power segments are described by
features such as start time, average power, and duration. It is
illustrated how such power events could be used for answer-
ing several privacy-sensitive questions. In [17], it is shown
that under ideal conditions and using small measurement time
intervals, even the consumed TV-program can be inferred from
load curves.

1949-3053 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
TIME GRANULARITIES OF LOW-FREQUENCY NIALM-STUDIES

This paper is organized as follows. In Section II, NIALM
and edge detection methods are reviewed. After the descrip-
tion of the experimental setup in Section III, event detection is
applied on the load profiles in Section IV as a method for the
extraction of personal information. After this attacking method
has been developed, the decrease of time resolution is applied
as a countermeasure in Section VI, where the influence of time
granularity on the event detection performance is studied. By
applying a classification setting, results are described by preci-
sion and recall rates which are used as inputs for a systematic
privacy analysis in Section VII.

II. BACKGROUND

A. NIALM Analyzes

NIALM analyzes can be broadly divided into two kinds of
methods: 1) high frequency; and 2) low frequency methods.
High frequency methods look at the waveform of appliances
or study transients or higher order harmonics [10]. While
the high-frequency methods need a sampling in the range of
kHz, the low frequency methods typically analyze load pro-
files which are sampled using time intervals in the order of
seconds to minutes (see Table I).

This paper focuses on low-frequency methods. Particularly,
the methods developed here follow the class of supervised
NIALM methods [9]. Supervised methods usually consist of
several blocks: edge detection, cluster analysis, and finding
pairs of on-and-off clusters for the determination of the dura-
tion of an appliance. Edges are sharp increases or decreases
of the load signal due to turning on or off an appliance. More
generally, edges arise due to the change from one state to
another state of an appliance when modeled as a finite state
machines (FSM). NIALM algorithms commonly use edges
instead of the absolute values for two reasons.

1) First, if absolute values were used in the presence of
unknown appliances, these appliances would have to be
described as a combination of other known appliances.

2) Second, there are adverse cases, where a small change
in the measured power would result in a big change
in the configuration of used appliances which is not
plausible [9].

Although the use of edges is most common other features
can be used as well such as the shape features of [4]. A typ-
ical assumption in the disaggregation processes is the switch
continuity principle which states that in a small time inter-
val only a small number of appliances is expected to change
the state [9]. Often, this assumption is tightened by requiring
that in a time interval at most one appliance changes its state
(one-at-a-time condition).

The usual performance measures of NIALM methods are
the error in the total energy assigned to a given appliance or
the error in the estimated on-time. Event-based methods state

the performance in terms of precision p and recall r [2], [14]
or the F-score [15]. Precision p is the proportion of events
classified as stemming from appliance A which is really stem-
ming from appliance A. Recall is the proportion of all events
stemming from appliance A that is also classified as stem-
ming from appliance A. Performance is either given by the
pair (p, r), or if a single performance number is needed by
the F-score F

F = 2
p · r

p + r
. (2)

B. Event Detection Methods

In this section, event detection methods are reviewed. The
main assumption is the validity of modeling appliances as
FSM having different power values for different states. An
edge or event e = (te,�Pe) is a transition between two such
states. It is represented by the onset time te and a transi-
tion value �Pe, which is the difference in power levels of
the two states. Events with increasing signal (�P > 0) are
called on-events because they typically arise from turning on
an on–off-appliance. Analogously, events with �P < 0 are
called off-events.

The most straightforward edge detection method, called
difference method, detects an edge, if the difference
�Pi = Pi+1 − Pi between consecutive power values exceeds
a threshold. Each detected edge is considered to be an event
e = (ti,�Pi). If the transition between two levels needs sev-
eral time intervals, the method divides the transition between
two levels in several edges having smaller values than the
transition.

Due to this drawback, the edge merging method merges
subsequently occurring edges into a single event [12]. The
value of the event is the sum of the individual edge values,
which can be both positive and negative. The time where the
event occurs is defined as the onset time, i.e., the time of the
first edge contributing to the event.

While the previous two methods focus on the transition
between two levels of a signal, the next method focuses on
the power levels of the two transition states. The method was
proposed in [9], where it is called transient passing method
for edge detection. A transition is inversely defined as being
not a steady subsequence. In the first step the method finds
the steady subsequences of the signal. This is done using a
sliding window approach where a subsequence consisting of
n points is considered as steady, if the range of its values
does not exceed a given threshold. As a result, the whole sig-
nal is divided into consecutive steady parts st and unsteady
transitions tr. For the description of the event e arising from
transition tri the three subsequences (sti−1, tri, sti) are con-
sidered. The onset-time te for the description of the event is
the last time point of the first steady part sti−1. The transition
value �Pe is the difference between the median of the values
of the second steady part sti+1 and the median of the values
of the first steady part sti−1. Taking the median value over
the whole steady subsequences increases the robustness of the
event value �Pe.

In order to account for noise, for all methods, events e with
a value �P smaller than a specified threshold are discarded.
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III. EXPERIMENTAL SETUP

In this section, the method that extracts personal information
is described, decreasing granularity as a method for preserving
privacy is briefly discussed and the used dataset is introduced.

A. Assessment of Appliance Use by Edge Detection

The goal of NIALM algorithms is energy disaggregation,
which means that the interest lies in partitioning the consumed
power into the portions used by individual appliances. In order
to accurately measure the energy used by an appliance, the
on-duration Ton of an appliance needs to be assessed precisely.

However, from a privacy viewpoint it is not necessarily
important to assess the energy used by an appliance. In a pri-
vacy attack setting, the ultimate goal is the determination of
private information like habits, personal properties or special
circumstances. Since this information is typically not known
in common data sets (including the REDD data set used here)
this paper focuses on the determination of appliances together
with a simple determination of activities within a household
according to the causal chain (6). Regularly occurring activ-
ities could in turn provide information about e.g., habits, but
such a study is out of scope of this paper. Here, the kind
of an activity is inferred from the appliances that are used.
For example, the activity cooking is inferred from the use of
any one of the appliances stove, oven1, oven2, and microwave
(compare also Table II).

The other important information about an activity is the
usage time. For the description of an activity and possi-
ble inference of habits it is important when it takes place.
Here, edge detection can provide the onset of an activity by
providing the starting time of the corresponding appliance.

The second information is the duration of an activity or
an appliance. The information about the duration could pro-
vide further information like e.g., the kind of meal that is
cooked. Since no ground truth about activities is available
and especially no details are known, it was decided not to
assess the exact duration of an appliance. Moreover, initial tri-
als showed that the matching of on- and off-events is far from
being straightforward and would possibly limit the validity of
results. Note that the matching applied by NIALM-algorithms
for obtaining the on-durations needed for the assessment of
the total energy used by an appliance is typically quite com-
plicated. In order to keep the assessment clear and simple,
it was decided to avoid the matching procedure. Instead, the
on-duration of an appliance is simply measured as the time
until the next off-event of this appliance occurs. Thus, typical
on-durations of appliances are provided for the explanation of
results in Section VI-B. However, the on-durations are never
used for any other use including the determination of activ-
ities. Note that for FSMs the term “duration of stay in the
present state” would be a more adequate name.

Since the signals of the available REDD-dataset [19] not
only contain the mains but also the signals of the individual
appliances, it is not necessary to compute the whole dis-
aggregation. Instead, the following analysis focuses on the
determination of events, which can directly be done using the
edge detection methods of Section II-B.

B. Decreasing Time Granularity for Privacy Enhancement

Several possibilities for decreasing the time granularity
exist. Considering a single time interval, different statistics
could be computed. The most straightforward statistic is the
average load value which should suffice for most practical
solutions such as standard billing or time-of-use billing. For
pricing based on the maximum load or for control reasons, the
maximum load needed during the time interval could be useful.
Additionally, (uniform) sampling could be done, i.e., taking
the load value at (evenly) spaced points in time.

In the experiments presented in this paper, three variants are
used: taking the average and maximum load in a time interval,
respectively, and uniform sampling.

C. Dataset

All experiments were done using the so-called low-
frequency dataset of the publicly available REDD-dataset [19].
The dataset contains measurements of the apparent power
for six different houses. Measurements are available for
mains1 and mains2, for some circuits, e.g., kitchen outlets
and for individual appliances.

Although the analyzes were performed for all six houses, the
evaluation is shown for house 1 only. House 1 has a relatively
high number of measured appliances or circuits and includes
labeled measurements both for high and low power appliances.
The overlap of the power values of individual appliances is
rather low, so that a possible increase in the overlap due to
lower time resolutions could be detected.

One of the kitchen outlets, one of the washer dryers and
the electric heat appliances showed less than three events at
the highest time resolution and were excluded for further ana-
lyzes. Due to its automatic working mode, in the privacy attack
setting the refrigerator is more a disturbing noise appliance
than a privacy relevant appliance. A mains appliance was cre-
ated as the sum of mains1 and mains2 by interpolating the
values of mains2 to the values mains1 at the highest time
granularity.

IV. DESCRIPTIVE EVENT DETECTION RESULTS

In this section, event detection is applied to the load
curves of individual appliances. First, the quality of differ-
ent event detection methods is assessed (Section IV-A), then
it is shown how the overlap of events of different appliances
affects the precision of subsequent classification algorithms
(Section IV-B).

A. Comparison of Event Detection Methods

Since the results below are based on the events found, the
performance of the event detection methods is assessed first.
The evaluation is mainly done visually.

Generally, transient passing and edge merging yield good
and very similar results (upper panel of Fig. 1). Note that
the load curve is quite complex, especially power levels are
not necessarily constant. As expected, the simple difference
method yields more, but disturbing events and can therefore
not be recommended as is (upper panel of Fig. 1).
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Fig. 1. Dishwasher events, marked as “+,” detected using the transient
passing method (upper panel) and the difference method (lower panel).

High-power devices such as heating are usually purely
ohmic and consume high power values with a greater deviation
of values. For low-power devices such as lighting the devia-
tion of values is smaller. This leads to a tradeoff between noise
removal and detection of events. If the noise threshold is set
too low, the noise of high-power devices exceeds the thresh-
old resulting in additional, unwanted edges. A noise threshold
that is set too high in turn leads to a loss of events for low
power devices. For all subsequent evaluations we used 20 W
as noise threshold.

While for high time resolutions the edge merging and tran-
sient passing methods give very similar results, for lower
time resolutions the transient passing method is more robust
in determining the edge values. The results of the transient
passing and edge merging methods turned out to be quite
insensitive to the kind of statistic. For lower time resolutions
the performance of the difference method is better with taking
the max statistic or with sampling than with taking the average
statistic. If not stated otherwise, the remaining analyzes will
use the transient passing method and the average statistic.

B. Description of Events

This subsection contains a visual description of the events
that occurred. Since the mains signal—which was generated
by summing up the mains1 and mains2 signals—is supposed
to contain the events of all appliances, the time between
subsequent events is smaller than for the events of a single
appliance. As a check that this property does not negatively
influence the event detection of mains, the events of mains
and the events of the individual appliances are compared in

Fig. 2. Events of mains (left) compared with single appliances’ events (right).

Fig. 3. Overlap of events for house 1.

Fig. 2. In fact, there is clear connection between events of the
mains signal and the events of the individual appliances.

However, there are events that only occur for mains but not
in any of the single appliances signals (Fig. 2). Additionally,
there are events from appliances that do not occur in the mains
signal (Fig. 2). This happens for all houses. To rule out that
this could be an effect of bad event detection, both the absence
of the appliance events and the presence of additional mains
events was verified by visual inspection of the load curves.
Due to this inconsistency of the mains signals and the signals
of single appliances it was decided that all further analysis
steps should be done with the load curves of the individual
appliances only ignoring the mains signal.

Analyzing the quality of edge detection, for some high-
power appliances unwanted noise events below 50 W are
detected. Events below 50 W (left to the red, dashed line in
Fig. 3) are considered as being hard to assign to appliances due
to the high overlap of several appliances within this region.
Therefore these events are discarded for further evaluation.

Even without performing a NIALM-analysis, the overlap of
events stemming from different appliances can give valuable
insights into the possibilities of disaggregation of the mains
signal (Fig. 3). Appliances whose events have low overlap with
other appliances’ events, like e.g., washer_dryer3 will be eas-
ier to distinguish from them than appliances with high overlap
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Fig. 4. Precision at highest resolution (3 s).

such as e.g., kitchen_outlets4 (compare also with Fig. 4).
It should be noted that the negative events of an appliance
typically have the same absolute values as the positive events,
thus only the positive events are shown here.

V. EVALUATION OF APPLIANCE

DETERMINATION ABILITY

According to the causal chain (1), the first step in the deter-
mination of private information is considered, i.e., the ability
to determine appliance use is evaluated

Load Curve ⇒ Appliance Use. (3)

Note that the subsequent analysis models the detection of a
given appliance. Due to the reasoning stated in Section III-A
the assessment of the on-duration of appliances is not
evaluated.

A. Classification Method

The chosen methodology can be identified more clearly,
when the problem is stated in another form. Considering a
detected event, one wishes to know, which appliance this
event is stemming from. This is exactly a multiclass classifi-
cation problem where the number of classes is the number of
appliances. This multiclass classification problem is split into
several one versus all two-class classification problems, one
classification problem for each appliance. The input is the 1-D
value of the event to be classified, the output is the informa-
tion, if the event is stemming from this appliance or from one
of the other appliances. Due to this setting, natural measures
for appliance detection performance are precision and recall
of classification. If a single performance value is required, the
F-score (2) can be used. In contrast to a normal classification
scenario where a good performance is requested, here small
values are desirable with respect to privacy preservation.

It is expected that the overlap affects the precision of the
classification task. Appliances with negligible overlap of their
event values with event values of other appliances, such as
washer_dryer3 and oven2, are expected to lead to simple clas-
sification problems with high precision. The precision of the

corresponding classification problem is expected to decrease
with increasing overlap.

Of course, more sophisticated analyzes could be done
exploiting, e.g., the periodicity of the refrigerator or the typical
duration between events of the appliance [15]. The informa-
tion about the time of the day when the appliance was used
could be taken into account [15], too. A dishwasher run con-
sists of a series of events with different event values. The
fact that different runs all look very similar to the time pat-
tern of events shown in Fig. 1 could be exploited as follows.
Event values of kitchen_outlets3 have similar values as one
particular level of the dishwasher values (Fig. 3). Looking at
the statistics of events over some past time window, if some
other event values of the dishwasher do not occur, the dish-
washer could be ruled out and thus kitchen_outlets3 could be
distinguished from dishwasher. The same argument could be
applied to washer_dryer1 and the dishwasher. However, such
a detailed analysis is not the scope of this paper.

For the sake of simplicity, as classification algorithm the
nearest neighbor method using three nearest neighbors is used.
The resulting precision of the several two-class classifica-
tion tasks for the highest time resolution is shown in Fig. 4.
Precision is typically in the range between 60% and 80% with
a maximum precision for washer_dryer3 of nearly 100%. By
comparing Figs. 3 and 4, the negative influence of the overlap
with events from other appliances on the precision is evident.

Note that here no direct NIALM analysis was done. Instead,
only the event-values of the individual appliances (or circuits)
are directly taken in order to analyze possible NIALM perfor-
mance. The result can be used for an optimistic (in the sense
of precision) estimate for the precision of a NIALM analy-
sis, if several assumptions hold. The first assumption requires
that the mains signal is the sum of the individual appliances
loads plus a possible constant offset value which has no influ-
ence on events. Secondly, the noise must be of equal size both
for all individual appliances and for the mains signal. Thirdly,
and most importantly, the one-at-a-time condition which is a
special form of the switch continuity principle [9] is assumed
to be fulfilled. This condition states, that during each time
interval at most one of the appliances changes its state.

B. Method Evaluating the One-at-a-Time Condition

The one-at-a-time condition is already known as a com-
mon necessary condition for some NIALM algorithms [9].
When more than one appliance change their state the edges
of the aggregated signal are the sum of the individual edges.
This leads to a much bigger search space of possible solu-
tions which must be handled by the NIALM algorithm.
Additionally, when more than one combination of appliances
have the same aggregate edge value, ambiguities arise.

The classification method above looks at the signals of sin-
gle appliances. Consequently, the one-at-a-time condition is
ignored. The information about each appliance is obtained by
separately applying the edge detection algorithm on the signal
of each single appliance. However, in a usual setting, only the
aggregate signal is given, thus hardening the disaggregation
problem. The one-at-a-time condition suggests that a change
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of an appliances’ state can only be detected, if only this single
appliance changes its state during the measurement interval.
For the assessment of the one-at-a-time condition, for each
event found, it is checked, if this is the case or not.

First, the edges are computed from the individual signals of
all appliances at the highest time resolution available and all
event times are evaluated. An event is the only event within
a measurement interval, if the duration to both the previous
and the next event time exceeds the measurement interval. If
the smaller duration is less than the measurement interval an
event can be classified as single event, otherwise an event is
classified as a coincidental event. As a performance measure
now the proportion of single events for each appliance and
measurement interval is calculated. Also here, small values
are desirable with respect to privacy preservation.

VI. INFLUENCE OF TIME GRANULARITY ON

APPLIANCE CLASSIFICATION

In this section, the influence of time granularity �t on pre-
cision and recall of the classification method shown above is
studied.

A. Influence of Time Granularity on Recall

In a normal NIALM classification setting, the recall of a
given appliance is defined as the proportion of events stem-
ming from this appliance that can be found in the aggregate
signal. However, due to the unknown differences between the
mains signals and the signals of the individual appliances sig-
nals (Fig. 2), it was decided not to use the aggregate signal.
As a consequence, the recall cannot be evaluated directly. In
order to assess a quantity similar to the recall rate, the numbers
of detected events of an appliance are compared for different
time resolutions. Considering the events found at the high-
est resolution as ground truth, the number of events found at
different time granularities can be normalized by this ground
truth. Since the goal of this paper is studying the changes that
arise due to changes in time resolution, this normalized num-
ber of events sufficiently serves as a measure of the recall
rate. This measure for the recall is too optimistic because it
is assumed that the recall at the highest resolution is 100%
and the events of the appliances are found from the appli-
ances signals instead of the mains signal. This overestimated
recall measure goes down to near zero with decreasing gran-
ularity (Fig. 5) which is sufficient for a decrease of the exact
recall rate.

In the privacy setting, the decrease of the recall to near
zero means that with the time interval exceeding an appliance-
specific threshold, a device will not be detected any more.
Undetectability of devices in turn increases privacy.

B. Influence of On-Duration on the Recall

Fig. 5 shows that the recall of the appliances decreases
with increasing measurement interval �t. The measurement
interval �tdrop where this decrease takes place differs among
appliances. This appliance-dependent quantity is denoted as
drop-time. This subsection shows that the property of the

Fig. 5. Recall dependent on time granularity.

Fig. 6. Drop time �tdrop and median on-durations of different appliances.

appliances by which this critical duration is influenced is the
on-duration Ton.

For an experimental assessment of this influence, for each
appliance the drop-time �tdrop of the recall is assessed as the
time granularity where the recall in Fig. 5 is below 30% at
first time. The value 30% was chosen for making �tdrop robust
against false positive events. A comparison of the obtained
recall drop-time �tdrop and the on-duration of the appliances
in Fig. 6 shows a clear increase in drop time with increasing
on-duration.

The connection between the on-duration and the drop of the
recall can be explained by the mechanism of the transient pass-
ing method applied to a simple on–off-appliance with fixed
on-duration Ton. For ease of explanation sampling of values is
assumed. The transient passing method detects an on-state as
a steady sequence of at least n values with higher energy con-
sumption. As in [9], in this paper, n is set to 3 which is one of
the smallest possible choices for n having thus a good detec-
tion property with reasonable robustness. If the on-duration
Ton is too small, Ton < (n − 1)�t = 2�t, at most two subse-
quent values can have higher loads which is just not enough
to detect the on-state. Consequently, no change from or to the
on-state can be detected. Rewriting this condition, the recall
rate should drop to zero, if the time interval �t exceeds a
threshold which depends on the on-duration

�t > �tdrop,ideal(Ton) = Ton

2
. (4)
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Fig. 7. Recall of 3 different appliances, estimated by the rule of thumb (5).

Using this connection, the knowledge about the on-duration
of an appliance—which is often available as an initial guess
without any NIALM-like analyzes—can be used for estimating
the time interval �t needed to significantly decrease the recall
rate. If the time interval exceeds half of the typical on-duration
of an appliance, a considerable proportion of events stemming
from this appliance cannot be detected any more. Using the
cumulative distribution of on-durations F(Ton), this rule can
be formalized: dependent on the measurement interval �t, an
approximation for the recall rate R(�t) can be calculated as

R(�t) = 1 − F(�t/2). (5)

This estimated recall rate of events is illustrated in Fig. 7
for lighting3, oven1 and the dishwasher. Despite the different
choice of x-axes a strong similarity to Fig. 6 can be noticed.
Due to the long on-durations, lighting3 exhibits high recall
rates. The different on-durations of the dishwasher-states result
in a staircase-like recall-curve.

C. Influence of Time Granularity on Precision

After studying the influence of the time resolution on the
recall rate in Section VI-A, now the precision for the remaining
events of the remaining appliances is investigated.

Interestingly, for increasing time interval �t the precision
for the classification of the remaining events keeps being
high. This behavior is illustrated for house 1 and a time
interval of 15 min. Due to the low recall, only four out
of 15 appliances/circuits are still detectable. The precision
of classification for these four remaining appliances is even
higher than for the highest time resolution. One reason for
this behavior is that a four-class classification problem is much
simpler than a 15-class classification problem.

Another prerequisite for this behavior is the surprisingly
robust estimation of the event values which is exemplarily
shown for the dishwasher in Fig. 8. This stability property
only holds for the transient passing method. For the edge
merging method event values are relatively stable but show a
slight decrease of event values (Fig. 9) while for the difference
method event values get smeared for decreased time resolution

Fig. 8. Robustness of dishwasher event values when determined with transient
passing edge detection.

Fig. 9. Dishwasher event values determined with the edge merging method.

(not shown). The amount of smearing for the difference
method is most pronounced for the averaging-statistic.

VII. UNDERSTANDABLE PRIVACY ANALYSIS

This section aims at presenting the results about the influ-
ence of time granularity. As an important requirement, these
results should be easily understandable and thus be suitable for
unexperienced people like end-users or other decision makers.
The influence of the time resolution is discussed in two parts:
1) the first part shows the influence on appliance use detec-
tion and 2) the second part shows the influence on higher-level
personal information.

A. Detection of Appliance Use

An appliance can provide insights into personal information
only if it can be detected and if the precision of detection is
high. An appliance with these two properties will be called
measurable. Measurability of an appliance itself does not nec-
essarily imply danger for privacy, because appliances that are
automatically controlled such as the refrigerator do not provide
personal information even if their operational states are known.
In contrast, nonmeasurability does imply privacy-safety which
is the property that should be assessed here. Measurability
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Fig. 10. F-score matrix. Small values are desirable for privacy.

can be assessed using the commonly used F-score which is
computed from recall r and precision p by (2). Arranging
the F-scores for all appliances and all time resolutions the
resulting matrix can be visualized by a heatmap as shown in
Fig. 10. There, the privacy-harmless appliances having low
F-scores are colored green, while measurable and thus poten-
tially privacy-decreasing appliances having high F-scores are
colored red or orange.

The visualized F-score matrix (Fig. 10) clearly shows that
measurability decreases and consequently privacy increases
with increasing time interval.

Interestingly, measurability not necessarily decreases with
increasing time interval. For example the F-score of appli-
ance bathroom_gfi is maximal at a time interval of 30 s. This
behavior can be explained by the high overlap of its event
values with the events values of the appliances microwave,
oven1, oven2, and kitchen-outlets4 (Fig. 3). This overlap leads
to a rather small precision and consequently small F-scores
of bathroom_gfi at high time resolution. However, the other
appliances have shorter on-durations than bathroom_gfi. The
short on-duration leads to a sharp drop of their recall at a time
interval of 30 s. For bathroom_gfi the drop at the 30 s interval
is relatively small, the sharp drop occurs later at a time inter-
val of 1 min (Fig. 5). Thus, since the masking events of the
other appliances are not present at a 30 s interval the precision
of bathroom_gfi increases from 47% at 10 s intervals to 81%
at 30 s intervals. This increase in precision overcompensates
the drop in recall from 90% to 71% leading to an increased
F-score (from 0.62 to 0.76) and thus explaining why bathroom
activities are only measurable at 30 s time intervals.

Assessing appliance use with the one-at-a-time condition
method shows that the proportion of single events decreases
with increasing time interval (Fig. 11) which again implies an
increase of privacy.

Comparing the results of the two evaluation methods shows
a similar behavior. The only big differences can be seen for
lighting1 and lighting2 which look much more privacy-safe
when evaluated by the one-at-a-time condition method. This
increase in privacy compared to the F-score assessment can be

Fig. 11. Proportion of single events. Small values are desirable for privacy.

explained by the fact, that this method considers all appliances
at once instead of just a single appliance. For the chosen house
lighting1 and lighting2 are strongly co-occurring, therefore the
proportion of single lighting events is small already at a very
fine time resolution. This dependence of appliances can not
be modeled with the classification method which looks only
at the event values and not at the event time.

B. Detection of Activities

Now, according to the causal chain (1), higher level privacy
implications of the resulting matrices are illustrated

Appliance Use ⇒ Activities, Presence/Absence. (6)

For ease of explanation, a privacy-threshold of 0.7 is intro-
duced. Entries with higher values are classified as measurable,
entries with lower values as unmeasurable. Thus, red or
orange entries are regarded as privacy-relevant while green
or yellow entries are regarded as privacy-safe.

Looking at the F-score matrix, for 1 h time intervals all
appliances are privacy-safe. For a 1 min time interval only
the lights are privacy-relevant (because of its automatic opera-
tion mode the refrigerator is regarded as safe in this analysis).
Interestingly, increasing the time interval from 1 to 5 or 15 min
only negligibly increases privacy here. Bathroom activities
(bathroom_gfi) are only measurable at exactly 30 s time
intervals. Cooking (stove, oven1, oven2, and microwave) and
housework (washer-dryer and dishwasher) are privacy-safe for
time intervals of 30 s or more. It should be noted that the
kitchen outlets were not considered for this analysis due to
the unclear nature of the corresponding appliances. The result
of this short discussion is shown in Table II.

Considering the one-at-a-time condition evaluation method,
already at a measurement interval of 2 min, all appliances are
privacy-safe. As before, the increase in privacy compared to
the F-score assessment can be explained by the co-occurrence
of lighting1 and lighting2.

The results of Tables II and III should be seen as a first eval-
uation of privacy that is likely to be too optimistic. On one
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TABLE II
TIME INTERVAL �t NEEDED TO INFER DIFFERENT KINDS OF

PERSONAL INFORMATION FOR HOUSE 1 USING THE

F-SCORE, THRESHOLD 0.7

TABLE III
TIME INTERVAL �t NEEDED TO INFER DIFFERENT KINDS OF

PERSONAL INFORMATION FOR HOUSE 1 USING THE

ONE-AT-A-TIME CONDITION, THRESHOLD 0.7

hand, this privacy analysis is based on the effect of an
increased measurement interval on event detection. While fine-
grained personal information is likely to be based on appliance
events, it seems plausible that coarse information such as pres-
ence or absence could easily be found using other methods.
Such methods could for example examine the difference in
average power consumption for times where the inhabitants
are present or absent. For the detection of certain activities it
could be sufficient to distinguish different groups of appliances
such as appliances used for cooking.

On the other hand, the choice of the value 0.7 as the
privacy-threshold is quite arbitrary and mainly intended for
demonstrating the privacy evaluation. Choosing this value
as a threshold for the F-score, an appliance is considered
measurable, if nearly each single event can be detected and
distinguished from other appliances events. However, for the
detection of regular personal habits it is not necessary to
detect each single event, it is rather necessary to detect enough
events during the recording time. Having data for long dura-
tions such as years, a lower recall rate could be considered
privacy-relevant leading in turn to a lower acceptable F-score
privacy-threshold. Looking at a thought experiment of an
appliance used twice a day and a measurement duration of
three years leads to approximately 300 events. Even one-third
of these events would be enough to estimate typical usage
times.

The privacy-threshold should also be chosen separately for
each appliance. For example, one run of a dishwasher leads
to many events. Although for a time interval of 30 s the
F-score goes down to 0.32 (Fig. 10), the main big events are
still detectable at this time granularity (Fig. 12, upper panel)
suggesting that a lower threshold is needed for the dish-
washer. Averaging over a 5 min interval, only one edge is
left (Fig. 12, lower panel), using a 15 min interval, also this
last event can not be detected any more suggesting for the
dishwasher an F-score threshold of 0.04 or less. Despite these
open issues, the usefulness of the performed evaluations for a

Fig. 12. Edges for dishwasher for �t = 30 s (upper panel) and 300 s
(lower panel).

first assessment of the impact of time granularity on personal
information could be shown.

VIII. CONCLUSION

Although being the simplest possible privacy enhancing
technique, the impact of decreasing the time resolution on pri-
vacy analyzes of load signals obtained from smart metering to
date has not been studied systematically. Since the first step
in a privacy attack can consist of the assessment of appliance
use which is in turn often based on edge detection methods,
the influence of the time interval on edge detection methods
applied on load signals is studied.

Using edge detection alone already leads to valuable insights
about the disaggregation possibilities for different appliances,
a full NIALM-analysis is not necessary. Appliances whose
events have a small overlap with the events of the other
appliances can more easily be disaggregated.

With increasing time interval, the recall, i.e., the propor-
tion of detected edges stemming from a device decreases.
This decrease is more pronounced for appliances with shorter
on-durations. As a coarse rule of thumb, when the time inter-
val exceeds half the typical on-duration of an appliance, the
appliances event values cannot be reliably detected any more.
For the house analyzed in detail, increasing the measure-
ment interval to 15 min has the effect that only four out of
15 appliances/circuits remain detectable (three lighting circuits
and the refrigerator). For these remaining appliances the dis-
aggregation precision stays high, because even for high time
intervals the transient passing edge detection method robustly
determines edge values.

Privacy implications can be evaluated by F-score values or
the proportion of single events of an appliance. Evaluating
these values for different appliances and time granularities,
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the resulting matrices can be visualized. This visualization
represents the impact of time granularity on privacy in an eas-
ily understandable way suited for nonexperts like the users
themselves or other decision makers.

For the next natural steps toward privacy evaluation datasets
that include personal information or activity logs are needed
enabling a more direct assessment of personal information.
Such data would be the basis for finding a well-founded
way of choosing privacy-thresholds, an evaluation method that
combine the two methods proposed here or other methods
especially designed for low measurement intervals.
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Resumable Load Data Compression in Smart Grids
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Abstract—We propose a compression approach for load profile
data, which addresses practical requirements of smart metering.
By providing linear time complexity with respect to the input data
size, our compression approach is suitable for low-complexity
encoding and decoding for storage and transmission of load pro-
file data in smart grids. Furthermore, it allows for resumability
with very low overhead on error-prone transmission lines, which
is an important feature not available for standard time series
compression schemes. In terms of compression efficiency, our
approach outperforms transmission encodings that are currently
used for electricity metering by an order of magnitude.

Index Terms—Compression, evaluation, load data,
resumability.

I. INTRODUCTION

SMART GRIDS rely on information and communication
technology to measure, transfer, and manage detailed data

on grid status. Smart metering is an important component of
this system, providing detailed data in the distribution network.
This data forms one of the key components for use-cases in
the smart grid, such as energy feedback [1], grid monitoring,
and load forecasting [2].

The most important arguments for compressing smart meter
data are discussed in detail below: 1) data volume; 2) com-
munication bandwidth; and 3) energy efficiency. Each of these
arguments is valid for almost all use-cases of smart metering.
However, the degree to which compression is advantageous,
depends on the specific requirements of the use-case, such
as the volume of data produced in smart metering, the need
for (near) real-time transmission, or the predominant direc-
tion of communication (while some use-cases, e.g., real-time
pricing, push data to the meter, most use-cases involve the
meter transmitting data to a data concentrator). Compression
is needed most for use-cases which generate a high volume
of data, such as monitoring of grid stability, which requires
fine-grained data with low delay.

A. Data Volume

While in the traditional billing use-case, the data vol-
ume is very small and, therefore traditionally there was no
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need for data compression whatsoever (even for automated
meter reading), it is evident that for the use-cases in the
smart grid, data volume increases dramatically: for instance,
the data volume of load profile data at a granularity of
1 s and double-precision floating point for the 40 million
households in Germany amounts to 25 TB of raw data per
day. With the method presented in this paper, this volume
can be reduced by nearly 90% to approximately 2.6 TB
(assuming data properties similar to the test data). This
reduction is not only beneficial in terms of reducing the
volume of transmitted data, but also positively impacts storage
requirements at the Distribution System Operator.

B. Low Bandwidth

Many smart meters will be connected to low-bandwidth
communication links, such as powerline communication (PLC)
links. Compression is an important tool to make the best use
of the available bandwidth. For example, PLC is more reli-
able for lower data rates. Through compression, reliability
can therefore be increased. Another example for a benefit
of compression is the number of communicating parties. In
some scenarios a number of smart meters need to communi-
cate within the same network segment, often using collision
detection or avoidance. The probability of collision increases
with the volume of data each smart meter tries to transmit
in the same time interval, up to a point where communica-
tion becomes impossible. With compression, the data rate can
be reduced and with it the probability of collision. Therefore,
compression enables more smart meter to communicate in the
same multiple-access segment.

C. Energy Efficiency

The case for data compression of load profiles is also sup-
ported from the perspective of energy consumption. The idea
of smart grids is closely linked to increasing energy efficiency.
Care should be taken for the components of the smart grid to
also reflect this endeavor through economical use of energy.
The power required for the transmission of bits significantly
exceeds the power required for the computational complexity
of compression algorithms (e.g., on the Mica2dot platform,
for the power needed to transmit 1 bit, more than 2000 clock
cycles can be executed [3]). Thus, the employment of compres-
sion methods saves energy and the effect is multiplied by the
vast number of smart meters in the field. The computational
capabilities of smart meters will definitely support compres-
sion methods such as suggested in this papers (smart meters
will need to support at least basic cryptographic primitives [4],
which are more demanding than the operations needed for
compression as presented here).

1949-3053 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Apart from good compression, a method for compressing
load data should fulfill a number of other requirements.

1) Low to moderate computational complexity to keep
power and processor requirements for smart meters low.

2) Low memory requirements (e.g., the use of large dictio-
naries makes the smart meter unnecessarily expensive).

3) Low overhead for initialization.
4) Ability to Resume After Interruption: If the communi-

cation link to a smart metering device is temporarily
down, synchronizing the compression algorithm needs
to be fast and efficient.

We propose an approach to compression of load profile data
that fulfills all of the above criteria.

The rest of this paper is structured as follows. Section II
gives an account of related work in the areas of load data rep-
resentation and time-series compression. Section III describes
the characteristics of load data, motivating the design of
our proposed compression approach, which is presented in
Section IV and analyzed in detail in Section V. In Section VI,
our approach is evaluated and compared to existing repre-
sentations with respect to transmission size and computation
time. Finally, we provide an outlook in Section VII before we
conclude our paper in Section VIII.

II. RELATED WORK

In [5], standard general-purpose compression algorithms are
applied to publicly available load data set. The evaluation
shows that load data is well suited for compression. We use the
same data set in this paper and conduct a more detailed analy-
sis on compressibility of load data. Using the same data set, we
can also show that the approach proposed here is comparable
to standardized methods in terms of compression performance,
while offering additional features such as resumability, which
are important for real-world use.

Compression has been proposed in other areas of the smart
grid. The compression of phasor measurement units (PMUs)
data is the field most closely related to smart meter readings
compression. In [6], different data compression techniques for
PMU readings are discussed and evaluated. Ning et al. [7]
proposed a wavelet-based compression technique for the read-
ings of PMUs. In a similar vein, Khan et al. [8] proposed the
use of the embedded zerotree method for PMU measurements.
While approaches for compressing PMU data are relevant to
the subject area considered here, the compression of load data
from smart meters differs significantly from PMU readings,
by: 1) the origin of the data and consequently the properties
of the data; 2) the number of sensors in the field, which is
vastly higher in smart metering; and 3) the requirements for
practical operation, such as real-time transmission of values.

In the general area of time-series compression, there are
a number of contributions, the most notable and active field
being audio compression [9]. Another active research area
in compression is, of course, centered on video (see [10]).
Methods from both fields can be considered for adaptation for
load data compression. In fact, some approaches from the area
of motion data compression show potential to prove useful
when adapted to load data, as will be discussed below.

In practical operation in energy grids, currently no com-
pression is applied by any of the standardized data formats in
smart metering. The “open smart grid protocol” [11], which is
a protocol suite spearheaded by European Telecommunications
Standards Institute (ETSI), defines a format for transferring
metering data, using up to 16 channels in the same interval.
“All channels are stored as total values (no differential values)
[11, p. 34],” and no compression is applied.

The smart metering coordination group, working under
EU standardization mandate M441, has defined a functional
reference architecture for communications in smart meter-
ing systems in a CEN/CENELEC/ETSI technical report [12].
Data model standards and communications profile standards
are considered in the report, but data compression is not
addressed.

The “device language message specification” and the
“companion specification for energy metering” provide data
formats and communication standards for automatic meter
reading. The relevant standards for the data format are
IEC 62056-21 [13] and IEC 62056-53 [14]. A lower layer
encoding for metering values, the A-XDR encoding rule, is
specified by IEC 61334-6 [15].

III. LOAD PROFILE DATA CHARACTERISTICS

Load profiles are time series of electrical power consump-
tion. While the measurement precision is configurable and
use-case dependent to a large extent, all load profile data with
similar sampling intervals exhibit certain characteristics, some
of which will be described in this section.

Note that there may be several other data characteristics
which depend on the use-case or are limited to a number
of data sets. As we intend to describe general characteristics
which apply to a large percentage or even all load profile data
in a smart-meter scenario with second- to minute-granularity
of sampling, we omit use-case- and data-set-specific
characteristics.

On detailed examination of load profiles of consumer house-
holds, it can be noticed that, while most consecutive values
within a load profile tend to exhibit small value differences
between one another, few values exhibit large differences.
Depending on the time difference between two consecutive
values, this effect is more (e.g., when the sampling inter-
val is in the range of seconds) or less dominant (e.g., when
the sampling interval is in the range of minutes or even
coarser).

In order to show that this is true for a large number of load
profiles, we analyze the properties of consecutive values in a
number of load profiles from different data sets. We use the
low frequency Massachusetts Institute of Technology (MIT)
Reference Energy Disaggregation Data Set (REDD) data
set [16] (abbreviated as MIT data set henceforth) as well as
the TU Darmstadt tracebase data set [17] (abbreviated as TUD
data set henceforth).

The MIT data set consists of a total of 116 load profiles.
Each load profile contains average power readings of one indi-
vidual circuit from one of six houses. The data is sampled
in intervals of 1 s with a precision of 0.01 watts, i.e., the
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Fig. 1. Frequency of small consecutive value differences in the MIT (black)
and TUD (gray) data sets. Filled circles denote the average relative frequency
over all load profiles, while empty circles accentuate the load profile with the
smallest relative frequency.

smallest nonzero difference between two consecutive values
is 0.01 watts.

The TUD data set consists of a total of 1836 load profiles.
Each load profile contains average power readings of one of
44 electric appliances. Like the MIT data, the data is sampled
in intervals of 1 s with a precision of 1 watt, i.e., the smallest
nonzero difference between two consecutive values is 1 watt.

Fig. 1 shows the relative frequency of the 20 smallest possi-
ble absolute value differences between consecutive values for
both the MIT and the TUD data set. For example, 93% of
all value differences in the load profiles of the MIT data set
(illustrated by filled black circles) are between −0.05 and 0.05
watts (both inclusive), corresponding to the five smallest pos-
sible value differences. However, there is at least one data set
(illustrated by empty black circles) in which only 40% of all
value differences are within these limits.

The plots clearly show that the biggest part, i.e., more
than 95%, of the consecutive value differences are between
−0.1 and 0.1, corresponding to only ten of the smallest possi-
ble value steps. This is somewhat surprising considering that
the maximum absolute value difference in the load profiles
from MIT data set is as large as 6680.55 watts, corresponding
to 6 68 055 value steps.

The distribution of the value differences in the TUD data
set (gray filled circles) is even more surprising. Quasi all,
i.e., more than 99.99%, of the consecutive value differences
are −1, 0, or 1, although the absolute value differences are as
large as 4879 watts maximum.

In both, the TUD and the MIT data set, less than the smallest
0.02% possible value differences (with respect to the maxi-
mum occurring value difference in all load profiles) make up
more than 99% of all differences. Although, this is an average
value summarizing all load profiles of the respective data set,
it clearly shows that the load profile data tends to exhibit very
small changes between two measurement points with respect
to the corresponding data values.

As there is a high amount of load profiles per data set,
the empty circles in Fig. 1 depict the characteristics of the
load profiles with the lowest relative frequency of small value
differences per data set for both, the MIT (black) and the TUD
data set (gray).

Fig. 2. Proposed compression approach: a list of values from a load pro-
file (1) is transformed to a compressed bit string (6) through five successive
encoding steps (A–E).

In the TUD data set, the worst case scenario in terms of
the relative frequency of value differences of no more than
6 watts is one data set with 95% relative frequency. In other
words, only 5% of all value differences in the worst case data
set are larger than six. Similarly, in the worst case load profile
in the MIT data set, there are only a little more than 20% of
all value differences whose absolute value is greater than 20.

While both data sets contain load profiles where the num-
ber of small value differences is significantly smaller than on
average, i.e., smaller than for all load profiles of the respec-
tive data set, the percentage of small value differences is very
high and increases significantly with every additional value
difference step.

Considering that the displayed value difference steps in
Fig. 1 only cover about 0.003% (20 out of 6 68 055) and
about 0.41% (20 out of 4879) of the actual value differ-
ence range of the MIT and TUD data set, respectively, this
allows for the following conclusions on load profile data
with second-granularity, thereby summarizing some of their
compression-relevant characteristics.

1) Quasi all value differences of two consecutively sampled
load profile data values are very small with respect to
the possible range of value differences.

2) Large value differences are very rare, even in worst-case
load profiles (in the analyzed data sets).

IV. PROPOSED COMPRESSION APPROACH

We propose a compression approach consisting of five steps
(denoted as A–E) illustrated in Fig. 2, which exploits the load
profile data characteristics described in Section III. Our algo-
rithm takes a list of values from a load profile (1) as input and
outputs a compressed binary representation of it (6). In the
following, the five processing steps (A–E) are described.

A. Normalization

Floating point operations typically accumulate rounding
errors due to their finite precision, which may lead to unde-
sirable side effects. Furthermore, floating point operations are
often more expensive in terms of computation time than their
integer counterparts due to the lack of floating point units in
most embedded systems [18]. Therefore, the first step of our
approach (denoted as A in Fig. 2) is the conversion of floating
point values to integer values, referred to as normalization.

As the precision of each value is bounded for both, tech-
nical and physical, reasons, so is the precision of a list of

80



922 IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 2, MARCH 2015

values. Let pi denote the precision of the ith value vi, expressed
in the number of decimal places after the decimal point.
Consequently, the precision of each value contained in the
list of values is bounded by

pmax = max
i

pi. (1)

Moving the decimal point of each value by pmax decimal
places to the left, all values can be expressed as normalized
integer values ni with the same precision

ni = vi · 10 pmax . (2)

This calculation is illustrated for pmax = 2 as step A in
Fig. 2. We observed that pmax is typically identical for all
input values vi for quasi all real-world load profile data since
the measurement precision hardly ever changes.

Note that the normalization step may be omitted if the input
values have no decimal places after the decimal point.

B. Differential Coding

As described in detail in Section III, the differences between
consecutive values are mostly very small. This property can
be exploited by differential coding, i.e., by storing only the
differences between two consecutive values instead of the
actual values. Note that this is closely related to differential
pulse-code modulation [19].

The differential coding in our approach is illustrated as
step B in Fig. 2. The differential values di are calculated from
the normalized input values ni from the previous step by a
simple subtraction for all values but the very first

di>0 = ni − ni−1. (3)

The first value remains unchanged, since there is no refer-
ence value for it to be subtracted from

d0 = n0. (4)

C. Variable Length Coding

In order to actually exploit the fact that a large number of
difference values di are likely to be small (see Section III), a
variable length code is needed. We use a zeroth order signed
exponential-Golomb code as used in the H.264 standard [10]
and described in detail in [20].

Although exponential-Golomb codes are optimal for geo-
metrically distributed values [20] and the difference values di

are unlikely to be exactly distributed in this way, we use this
code as it is able to compactly represent small difference val-
ues, which are very likely to occur. Large difference values,
which are not very likely to occur, may slightly affect coding
efficiency.

Table I shows both signed and unsigned zeroth-order
exponential-Golomb code words for the corresponding inte-
ger input values, i.e., possible di in our use-case. Note that
it is necessary to use signed exponential-Golomb code words
since the difference values di may be negative.

A value of zero can be encoded using just one bit. All
other signed exponential-Golomb code words can be con-
structed by mapping the unsigned exponential-Golomb code

TABLE I
LIST OF EXEMPLARY VALUES AND THEIR RESPECTIVE SIGNED AND

UNSIGNED ZEROTH ORDER EXPONENTIAL-GOLOMB CODE WORDS.
HYPHENS DENOTE INVALID VALUES. ADOPTED FROM [21]

words alternately to negative and positive values, respectively.
Using this encoding, each difference value di is transformed
into a corresponding variable length code word ci as illustrated
as in Fig. 2 (step C).

D. Code Word Concatenation

To group the variable length code words ci from the pre-
vious step for the subsequent step, they are concatenated to
a bit string b as illustrated in Fig. 2 (step D). Note that no
delimiters are required since the code words include implicit
length information (the number of leading zero bits is equal
to the number of value bits after the delimiting one bit).

E. Entropy Coding

As a final step, we perform entropy coding on the con-
catenated bit string b in order to get the final compressed bit
representation e, as illustrated in step E in Fig. 2. By using
an arithmetic coder, which theoretically allows perfect, i.e.,
zero-redundancy entropy coding under certain conditions [22],
this aims at removing most of the remaining redundancy.

Since the code words ci have variable length and are poten-
tially large, we use binary arithmetic coding which operates on
bit level and therefore only distinguishes two symbols—zero
and one. Since the probabilities of these two symbols, which
are required as an input for the arithmetic coder, may differ
depending on the input values, we start with 50:50 proba-
bilities and perform adaptive encoding, i.e., we modify the
probabilities of the two symbols during the encoding process
according to their actual occurrences.

In order to avoid floating point operations during arithmetic
coding, an implementation relying only on integer operations
is recommended. As described in Section VI, we use an
implementation which is based on the algorithm proposed
in [22]. Although, it is possible to faster implementations,
see [20] or [23], the latter rely on approximations. Therefore,
their final bit string length may in some cases be slightly
different from our results.

F. Summary

As summarized in Fig. 2, the input values vi (1) are normal-
ized to integer values ni (2), which are differentially coded as
di (3). After each differentially coded value di is encoded as
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TABLE II
WORST-CASE TIME COMPLEXITY OF OUR APPROACH AND ITS CORE

STEPS WITH RESPECT TO THE NUMBER OF INPUT VALUES n AND

THEIR MAXIMUM SIZE m IN BITS

one variable length code word ci (4), all code words are con-
catenated to a single bit string b (5), which is finally entropy
coded as a compressed bit string e (6).

G. Decoding Process

Decoding a bit string encoded with our approach requires
applying the inverse operations in the reverse order, i.e., the
decoding equivalents of the encoding steps (E–A). These
decoding steps are shortly described below.

First, entropy decoding (inverse of step E) is performed on
the bit string, yielding a string of variable length code words,
which can be split (inverse of step D) due to the implicit length
information they contain (see Section IV-D). The exponential-
Golomb code words are then decoded (inverse of step C) to
yield difference values. Finally, these values are added to their
respective predecessors (inverse of step B) in order to get the
original absolute values, which can be denormalized through
division (inverse of step A).

V. ALGORITHMIC PROPERTIES

The approach presented in Section IV exploits the char-
acteristics of load profile data for compression. However, its
applicability for a smart metering use-case is not obvious.
Hence, this section analyzes its properties with a strong focus
on practicality. It describes those features which are relevant
when the proposed approach is used to process and transmit
load profile data and provides a detailed overview of its time
and space complexity.

A. Algorithmic Complexity

When encoding n values with a maximum size of i and m
bits each before and after normalization, respectively, all sub-
sequent steps of our proposed compression approach require
processing time and memory depending on m, n or both. In
this section, we derive the worst-case time and space complex-
ity of our approach and the aforementioned steps. The results
are summarized in Tables II and III.

We use asymptotic notation [24] and assume that all val-
ues are available in memory when they are needed by our
algorithm, i.e., they are either all in memory the whole time,
consuming O(mn) bits, or loaded into memory one by one on
demand, consuming O(m) bits. Furthermore, we assume that
the encoded data is either transmitted or stored immediately
so that no temporary memory for the fully encoded bit rep-
resentation has to be taken into account and the algorithm’s

TABLE III
WORST-CASE SPACE COMPLEXITY OF OUR APPROACH AND ITS CORE

STEPS WITH RESPECT TO THE NUMBER OF INPUT VALUES n AND

THEIR MAXIMUM SIZE m IN BITS

space complexity analysis can focus on the overhead of the
algorithm itself.

The first step, i.e., the normalization, largely depends on the
format of the input values. If they are already integer, no oper-
ation needs to be performed. Otherwise, one multiplication for
the i-bit input values, followed by an optional rounding oper-
ation, is required. This requires O(i2) time complexity when
using a straight-forward implementation of an i-bit multiplica-
tion algorithm [24]. For the optional rounding operation, the
same applies.

Since the normalization step itself is optional and, if per-
formed, highly dependent on the input values and their
format, its time and space complexity are not included in
Tables II and III, respectively. It should be noted, however,
that the space complexity of the multiplication is O(i). If i is
proportional to m, this is equal to O(m).

The second step, i.e., the differential coding, can be per-
formed value by value and requires only the last value to
be stored in order to calculate the current value difference.
This takes up m bits of space constantly, plus m bits for
the calculated difference, being of a total space complexity
of O(m).

One m-bit subtraction per value has a time complexity of
O(m) [24]. Since n−1 values need to be processed, this step is
performed n−1 times, corresponding to O(n) time complexity
times the complexity per value, totaling a time complexity
of O(mn) for all values.

The third step, i.e., the variable length coding, can also
be performed value by value. Since the worst-case encoding,
i.e., the variable length encoding of the largest possible value,
is proportional to the input value bit size m [20], the total
space complexity of this step is O(m).

Calculating a variable code word of an i-bit value requires
a constant number of additions and subtractions as well as
i divisions or shift operations [20], followed by a maximum
of 2i + 1 bit writing operations. With the worst-case input bit
length being proportional to m, this requires a time complexity
of O(m), since m-bit additions, subtractions and shift opera-
tions are all of time complexity O(m) [24]. In total, this yields
a time complexity of O(mn) for all values.

Note that the fourth step, i.e., the bit string concatenation,
is not listed in Tables II and III. This is due to the fact
that the output values of the preceding step can be passed
directly to the next step, i.e., the entropy coding step, one
by one so that no intermediate memory is required and no
actual concatenation has to be performed. The bit string con-
catenation can therefore be regarded as a conceptual step
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rather than an actually necessary one in a straight-forward
implementation.

The fifth and final step, i.e., entropy coding, is performed
on the whole output of the third step, value by value, one bit
at a time. This conceals the intermediate concatenation step
as explained above. Since the output of the third step has a
total length which is O(mn), the per-bit time complexity of
the entropy coder times mn yields the time complexity of the
complete entropy coding step.

In total, the time complexity of an adaptive binary arithmetic
encoder for each input bit is constant, i.e., of time complexity
O(1) with respect to m and n [22]. Hence, processing O(mn)

input bits is of time complexity O(mn). The space complexity
is constant, i.e., O(1) [22].

Summing up the space and time requirements of all
described steps, this yields a total time complexity of O(mn),
which is proportional to the number of input values and their
maximum size in bits and thus equal to, e.g., the time com-
plexity of performing n m-bit additions, i.e., relatively low. The
space complexity is O(m) and therefore not dependent on n,
which enables encoding with very modest space requirements.

Since, decoding involves the inverse operations of the
described encoding steps in opposite order (as explained in
Section IV-G), the time and space complexity of a decoder
are expected to be equal to the encoder’s. In order to avoid
a complete complexity analysis of the decoding process, we
refer to the symmetry of the operations involved to claim this
without explicit proof.

B. Resumability

As load profile data is transmitted extensively in smart grids,
the adequacy of our compression approach for this use-case
has to be assessed. Although effective compression reduces
data size and thus transmission time, it may have undesir-
able side effects compared to uncompressed transmission, for
example when data is lost.

Although our approach does not include native error detec-
tion capabilities, it allows for retransmissions of parts of the
data with very low overhead. This subsection discusses the
conditions under which a lost part of the transmitted data
can be retransmitted so that the transmission process can be
resumed. Furthermore, the retransmission procedure as well
as its overhead are discussed.

The state of the decoder during the decoding process is
limited to a small number of variables. First, the differential
coding step stores one m-bit variable containing the last coded
value, as described in Section V-A. Second, the arithmetic
coder stores three machine-word-sized integers representing
the probability of the symbol zero, the current interval and the
number of bits to be output after the next one, respectively.

Since this information is sufficient to represent the entire
state of the decoder, a decoding process can be resumed by
sending the aforementioned variables. For example, if m = 32
and the machine word size is 16, the decoder state can be
represented by 32 + 3 · 16 = 32 + 48 = 80 bits, or 10 bytes.

Since our compression approach is not able to detect errors,
it relies on an encapsulation format or transmission protocol
to do so. In case of an error, the decoder’s state can be reset to

the last known good state by keeping a copy of the decoder’s
state after each successfully decoded data packet. The retrans-
mission overhead is then equal to the size of the decoder state,
e.g., 10 bytes.

Alternatively, it is possible for the decoder to request the
encoder’s state in order to resynchronize. Since both perform
symmetric operations, their states have to be equal. Note that
they can only exchange their states if the used protocol and
channel allow them to do so.

This allows for resumability, i.e., the possibility to resume
the decoding process at a given point. However, it is not
possible to reconstruct preceding values which have been omit-
ted between the last known good value and the resumed one
(if there are any), since prior decoder states cannot be recon-
structed. However, it is possible to deliberately omit parts of
the data as long as the decoder state required to start decoding
after the omitted parts is available.

If our approach is used in combination with packet-based
transmission, we suggest to add the decoder state to each
packet. This way, the decoder can process each packet inde-
pendently and does not rely on the retransmission of preceding
packets in order to decode the current one. The overhead
should be negligible for typically large packet sizes, e.g.,
1500 bytes for IEEE 802.3 (Ethernet), as well as for practical
values of m and typical machine word sizes.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of our proposed
approach, we analyze its compression efficiency as well as
its processing time for a number of data sets and compare
the results to those of related standards. Before discussing the
results, we describe our implementation and test environment
as well as the used data sets and the related standards used
for comparison.

A. Related Standards

As mentioned above, we use two common uncompressed
data formats for comparison with the proposed method. We
only consider the encoding of the actual payload, i.e., we omit
any encapsulation and/or protocol overhead since this would
bias the results.

The first uncompressed format is described in
IEC 61334-6 [15], which is also referred to as A-XDR
encoding. Although this standard describes a number of
possible encodings for numerical values, we consider the
fixed-length unsigned integer encoding [15, Section VI-A1a]
to be the most practically relevant one due its low per-value
overhead.

As explained above, we omit all encapsulating identifier
and length fields to make the comparison between the our
encoding and the one from A-XDR as fair as possible. This
way, n encoded values with a maximum of m bits size each
require a constant amount of n ·�m/8� bytes or 8n ·�m/8� bits,
as illustrated in Fig. 3(a).

Since A-XDR provides no explicit encoding for floating
point values, all input values to the A-XDR encoding pro-
cess are considered to be integer values. This can be assured
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(a)

(b)

Fig. 3. Encodings of the integer value 123 from related standards.
(a) 16-bit fixed-length unsigned integer A-XDR encoding. (b) ASCII-based
IEC 62056-21 encoding with trailing zero (delimiter).

through a normalization preprocessing step, as described in
more detail in Section VI-B. As this preprocessing step is
part of our proposed compression algorithm anyway, it can
be performed once on the input data instead of once within
each algorithm. This also allows for a fairer comparison of
all evaluated encodings since they are provided with the same
input data.

The second uncompressed format is described in
IEC 62056-21 [13]. It encodes values in data blocks
[13, Section VI-C4] which consist of one or more data lines
[13, Section VI-E1], which themselves contain one actual
value and its corresponding unit each. All data lines consist
of a limited set of printable characters expressed in the ASCII
character set [25].

Again, we only consider the actual payload, i.e., the
ASCII-encoded values and omit the units and other protocol
overhead. Note, however, that one additional byte per value is
required to separate consecutive values due to their variable
length, as illustrated in Fig. 3(b). This is not necessary for our
approach or the A-XDR encoding described above since the
latter uses a fixed number of bytes and our approach implicitly
encodes length information (see Section IV-D).

B. Implementation and Test Environment

We implemented our approach proposed in Section IV in
Python. For the arithmetic coding step, we used D. MacKay’s
implementation1 which is practically identical to the imple-
mentation from [22]. Since MacKay’s implementation operates
on a bit string, the preceding step of our approach, i.e., the
exponential-Golomb coding, outputs such a bit string instead
of the corresponding byte sequence, as opposed to all prior
steps.

In order to make the comparison between our approach and
the ones from related standards fair, we reimplemented the lat-
ter so that they output bit strings as well. Note that, although
this alters the processing time slightly, it still allows compar-
ing the algorithms with respect to the order of magnitude of
processing time.

As described in Section VI-A, some of the algorithms
from related standards are not capable of handling noninteger
(i.e., in this case, floating point) values. To simplify process-
ing and make the processing time comparison fairer, all data
is preprocessed by applying the normalization step described
in Section IV-A. Thus, all algorithms operate on integer input
data. This reduces the processing time of those algorithms in

1http://www.inference.phy.cam.ac.uk/mackay/python/compress/#AC

Fig. 4. Average value size in bits for the MIT (black) and the TUD data
set (gray). The bars indicate the average number of bits per value for those
load profiles which require the minimum and maximum number of bits in
each data set, respectively.

need of preprocessing, but still allows for a comparison with
respect to the order of magnitude of processing time.

Our test environment is a server hosting an
Intel Xeon E5-2620 CPU with six physical cores run-
ning at 2 GHz each. The server runs Ubuntu 12.04.2 LTS
on a 64-bit Linux 3.2.0-48 kernel. We use Python 2.7.3 and
its built-in clock function from the time module to measure
processing times.

C. Data Sets

For our evaluation, we use the MIT and TUD data sets
described in Section III. As the values in the MIT data set are
stored with a precision of 0.01 watts, we normalize them by
multiplying them by 100 as described in Section IV-A. The
values in the TUD data set are already stored as integers and
therefore require no normalization.

For the fixed-length A-XDR encoding we used a bit length
of 32 bits, since this is the smallest whole-byte size which is a
power of two (which is typically used in practice) that allows
covering the whole value range present in the input files.
Similarly, our algorithm uses 32 bit variables for the difference
calculation in the differential coding step (see Section IV-B).

D. Compression

For all load profiles of each data set, we evaluate the aver-
age number of bits required to represent one value. Fig. 4
illustrates this for all tested approaches. Obviously, fixed
length A-XDR coding always requires 32 bits, while the
IEC 62056-21 encoding and our approach requires a variable
number of bits.

It is clear that our approach outperforms the other two by
an order of magnitude. Furthermore, there is no load profile
for which our approach is inferior to one of the other two,
since the maximum number of bits per value required by our
approach is always significantly smaller than the minimum
amount of bits per value required by both, the fixed-length
A-XDR and the IEC 62056-21 encoding.

As the value range of the TUD data set is smaller than the
one of the MIT data set (see Section IV-B), the average number
of bits required per value is significantly smaller for the TUD
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Fig. 5. Average value size in bits for each house from the MIT data set.
The bars indicate the average number of bits per value for those load profiles
which require the minimum and maximum number of bits in each house,
respectively.

data set. This reflects in the results for both, our approach and
the IEC 62056-21 encoding, which are variable-length codes.

Since the MIT data set is a collection of load profiles from
multiple houses, it is possible to investigate the differences
between them in terms of compression efficiency. Fig. 5 shows
the average number of bits required per value and house for
each encoding approach.

Again, our proposed compression approach outperforms
the other two by an order of magnitude for each individ-
ual house, revealing that averaging the values per data set
(as shown in Fig. 4) did not conceal any inefficiencies of
our approach. Interestingly, the compression efficiency of our
approach shows a slight correlation with the IEC 62056-21
encoding, albeit inherently not proportional.

As the load profiles of each house from the MIT data set cor-
respond to one channel each, it is possible to investigate their
individual compression performance. Fig. 6 shows the average
bit length per value for each channel of each house. Note that
the channel labels are taken directly from the MIT data set’s
companion files and have not been modified, i.e., corrected
orthographically.

For almost all individual channels, i.e., load profiles, our
compression approach is significantly superior to the other
two. Although, it is not always more efficient by an order
of magnitude, it is at least twice as efficient for all channels.

One advantage of our approach becomes clear for chan-
nels which are typically constant or quasi constant over long
periods of time, e.g., the oven and stove channels in house 1
(top left). Since the load on such a channel typically changes
rarely and rapidly, the number of zero and small differences
(due to noise and measurement inaccuracies) is very high,
allowing our approach to effectively compress the data.

However, channels with relatively unpredictable load behav-
ior, like the mains of all houses, can still be compressed very
efficiently as compared to the other two encodings. The same
is true for channels with low variable load, like the kitchen
outlets of all houses, showing that our proposed approach
is able to compress these types of load profiles efficiently
as well.

Although, our approach achieves better compression per-
formance for channels with relatively small changes between

values, the employed exponential-Golomb code and arithmetic
coding still allow for sufficiently good compression in cases
of larger changes between values. This is mainly due to the
fact that the length of exponential-Golomb codes (in bits)
only increases logarithmically with increasing input values,
i.e., increasing value differences in our method. Thus, only
very large value differences would generate notably longer
codewords and thereby impact the compression performance
significantly, which is a practical feature of our proposed
approach.

E. Processing Time

Fig. 7 shows the average number of microseconds required
to encode one value with each approach for the MIT (black)
and the TUD data set (gray), respectively. As explained in
Section VI-B, our implementation only allows assessing the
order of magnitude of the processing times.

Thus, it cannot be asserted that our approach is significantly
faster than the other two. However, it requires about the same
order of magnitude in terms of processing time per encoded
value, hence being comparable to both, fixed-length A-XDR
and IEC 62056-21 encoding.

Since all variable-length coding approaches depend on the
actual size of their input values, both, our approach and the
IEC 62056-21 encoding, clearly require less time per value
on average for the TUD data set than they do for the MIT
data set. This is clear, since the latter’s value range is larger.
This confirms the linear dependency of both approaches to the
input bit length, allowing for faster processing of small input
values.

Note that further investigations, e.g., per house or per chan-
nel of the MIT data set, are not meaningful due to the limited
measurement accuracy. This is supported by the difference
between the average processing times of the MIT and the
TUD data set for the A-XDR encoding, which should be zero
in theory assuming a perfect implementation and execution
environment, since A-XDR is a fixed-length code.

VII. FUTURE WORK

Our approach has been shown to perform very well in
terms of compression efficiency, but there is still room for
improvement. For example, signal characteristics like peri-
odicity could be exploited as most load profiles tend to
exhibit weekly, daily or even hourly patterns based on the
types of appliances and users. By forming a prediction
signal from the last week, day or hour, respectively, one
could encode the difference between the current data val-
ues and the predicted ones instead of encoding consecutive
value differences, thereby further increasing compression effi-
ciency. It should also be possible to combine these two
approaches.

Another issue to be addressed is the diversity of the evalu-
ated load profiles. Although the amount and diversity of load
profiles from the MIT and the TUD data set are already very
high, it would be desirable to have a larger amount of real-
world test data available in order to extend the results of this
paper. This does not only include data from different sources,
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Fig. 6. Average value size in bits for each channel of each house from the MIT data set (top left: house 1; top right: house 2; etc.). Each channel corresponds
to one load profile.
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Fig. 7. Average encoding time per value for the MIT (black) and the TUD
data set (gray). The bars indicate the average number of microseconds per
value for those load profiles which require the minimum and maximum time
in each data set, respectively.

but also different granularity, e.g., a sampling time of minutes
or even hours. This way, the compression efficiency could be
evaluated more thoroughly.

Finally, the overhead introduced by using our proposed
resumability feature has to be evaluated thoroughly. This does
not only include analyzing the overhead for different loss rates,
but for different link types and protocols as well. Since such
an analysis is beyond the scope of this paper, it remains future
work.

VIII. CONCLUSION

We proposed a compression approach tailored for the
requirements of load profile data transmission in smart meter-
ing. We showed that our approach allows for resumability
with very low overhead, which enables it to operate in
error-prone transmission lines in smart grids. Even with pro-
viding resumability, our approach has been shown to maintain
the same compression results as standard compression algo-
rithms, which do not provide this important feature. Currently
employed state-of-the-art transmission encodings are outper-
formed by an order of magnitude in terms of compression
performance without significantly impacting the processing
time required for the encoding process. In summary, the pro-
posed approach is ideally suited for compression of smart
meter load data as it delivers competitive compression results
with low computational complexity, low memory require-
ments, low overhead for initialization and the ability to resume
after interruption.
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a b s t r a c t

Particularly with respect to coordinating power consumption and generation, demand response (DR) is a
vital part of the future smart grid. Even though, there are some DR simulation platforms available, none
makes use of game theory. This paper proposes Okeanos, a fundamental, game theoretic, Java-based,
multi-agent software framework for DR simulation that allows an evaluation of real-world use cases.
While initial use cases are based on game theoretic algorithms and focus on consumption devices only,
further use cases evaluate the effects of plug in electric vehicles (PEVs). Results with consumers show
that the number of involved households does not affect the costs per household. Further evaluation
involving PEVs demonstrates that with an increasing penetration of PEVs and feed-in tariffs the costs
per household per month decrease.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Energy demand in the USA is expected to increase by at least
19%, the supply, in contrast, is only expected to rise by 6% [1]. Fur-
thermore, this energy mismatch is not a US-specific problem [2,3].
While renewable energy could help relieve the load on the grid, it
also poses a significant challenge to the grid in terms of keeping
supply and demand in balance. With respect to coordination,
demand response management (DRM) could pose an ideal solution
to this problem [4,5]. DRM refers to ‘‘changes in electric usage by
end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time, or to
incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability
is jeopardized” [6, 21].

Game theory, in its essence, aims to help understand situations
in which several decision-makers interact. Being a mathematical
framework and analytical tool, game theory helps study the
relationships and actions among rational players. This characteris-
tic renders it an ideal tool to model and understand the inherent
complexity of demand response (DR) resulting from this interac-
tion. Publications in this area range from load shifting approaches
[7,8] to using storage devices such as PEVs in micro-grid storage

games [9] to games that focus on utility companies [10,11]. One
thing that these works have in common is a mathematical proof
that by optimizing a utility function, a stable point called a Nash
equilibrium will be reached [12,13].

This study proposes Okeanos, a novel, game theoretic, Java-
based, multi-agent software framework for DR simulation that is
capable of investigating the effect of optimizing multiple electric
appliances using a game theoretic approach. It is fundamentally
different from other DRM software approaches as it plans con-
sumption and production ahead of time. By utilizing game theory,
Okeanos benefits from mathematically sound solutions for finding
the optimal schedule for household appliances. It supports the sim-
ulation of different types of loads and can be configured to work
with different game theoretic DRM approaches. The current source
has been released as open source1 and can be used and extended to
fit various needs.

While initial results show that savings of up to 6% can be
achieved by changing the switch-on time of three household appli-
ances, higher savings can be achieved either by adding more man-
ageable devices to the simulation or by incorporating elective
vehicles (EVs) of some sort. In this study, the focus will remain
on plugin EVs (PEVs).

The remainder of this paper is structured as follows: The funda-
mental DR simulation platform, Okeanos, is introduced and key
concepts are highlighted in Section ‘‘Okeanos”; Results of load
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shifting are presented and described in Section ‘‘Simulation of mul-
tiple households with load-shifting devices”; This is followed by
simulations that incorporate PEVs in Section ‘‘Evaluation of
Okeanos with plug in electric vehicles”; and, finally, Section
‘‘Conclusion” concludes this work.

Okeanos

Okeanos is a novel DR simulation platform with a special focus
on the inclusion of game theory. Unlike the software presented in
[4,14,15], any coordination mechanism that complies with the
defined interface is compatible with Okeanos.

Okeanos aims to be a holistic platform for DRMwith support for
a wide variety of appliances. Through the means of extensibility,
new devices can be added by writing a driver for the specific appli-
ance. With OSGi as the foundation, new features can be easily
developed, deployed or replaced.

Independent smart household appliances

Similar to other approaches, Okeanos utilizes the multi-agent
paradigm to represent household appliances. Thus, with a one-
to-one matching between agents and household devices, every
device can work towards and set goals or targets on its own. Appli-
ances are proactive and make independent decisions according to
the information available to them.

In order not to implement all multi-agent features from scratch,
Okeanos builds on JIAC, a feature-rich, modularized and easy to use
framework [16]. JIACs modern approach that uses the Spring
framework as the basis for the whole system is unique throughout
a comparison of multi-agent frameworks including JADE [17],
Janus [18] and Jason [19]. Additional evaluation criteria included
functionality, active development, ease of use and adoption
throughout the software developer community.

In JIAC, the functionality of agents is defined by agent beans.
Each bean is a small module with a well-defined responsibility,
leading to improved reusability [16]. The energy consumption
game described in Section ‘‘Coordination mechanism in Okeanos”
is an ideal example for this. Its responsibility is to ensure the cor-
rect sequential execution of the algorithm. All agents taking part in
the schedule optimization process use this bean. Due to the auton-
omy of agents, it is possible that agents use different games. The
meaningfulness of such a mixture, however, is questionable, as
no guarantee of the existence of a Nash equilibrium can be given
under such circumstances.

The callback functions (cf. Fig. 2) allow for separation of con-
cerns, as the agent itself is still responsible to forward requests
to the corresponding components. Similarly, drivers and other ser-
vices are agent beans as well, ready to be used by agents to support
its goals.

Plug in support

OSGi and the Spring framework are two well-known Java
frameworks that provide a solid foundation for Okeanos. While
both are very powerful tools and offer many features for their
respective fields, they share some key concepts, most notably loose
coupling and separation of concerns. Naturally, it is beneficial to
combine the two and have a module-based, service oriented sys-
tem as the platform Okeanos runs on, using Spring for the wiring
of the components. Eclipse Gemini Blueprint provides a clean
and easy to use interface for integrating the two frameworks.

However, to be able to fully utilize benefits of loose coupling,
thorough planning is required. Device drivers are the perfect
example for the need for extensibility. A flexible and powerful

interface eases the interaction with new implementations and
the integration of new modules into the system. This is crucial to
be able to keep the threshold for developing new modules as low
as possible.

With Okeanos built on OSGi, it comprises a conglomerate of
various bundles (see Fig. 1) rather than a monolithic core. To allow
for optional bundles, the OSGi R5 specification [21] recommends
separating interfaces from the implementation in a separate bun-
dle. Consider, for example, a logging service: The application does
not necessarily need an implementation for a correct execution,
however, at least the interface needs to be present to allow for
proper resolution.

As indicated in Fig. 1, every service in Okeanos could be repre-
sented in its own module. While, this is possible, it also implies an
explosion of projects and, therefore, an increase in complexity.
Therefore, layers serve as the boundaries for modules in Okeanos.
As recommended, the interfaces of each layer are separated from
the implementation and consolidated in different bundles.

Likewise, as it is possible to have no implementation in an OSGi
container, it is possible to have multiple implementations present.
This is especially true for device drivers, as they all implement the
same interface. To be able to distinguish between drivers, addi-
tional properties, such as year and brand of a household device,
can be specified.

Fig. 1 shows the logic separation between the supporting
libraries in the infrastructure bundles area and the application
bundles that provide the actual functionality. The Spring extender
bundle that is part of the Eclipse Gemini Blueprint project is
responsible for activating all Spring powered application bundles
and starting up their Spring contexts. This is similar to a J2EE envi-
ronment, where the Spring application context is started by the
application server, whereas here, the extender bundle is responsi-
ble for starting all application contexts.

Every such bundle has its own independent context that can
import and export services by using special tags2 in the con-

text.xml file. The exported services are regular Spring beans that
are registered in the OSGi service registry and, thus, made available
to other contexts. For imported services, respectively, Gemini Blue-
print searches for a suitable match in the OSGi service registry,
fetches it and makes it available to the context.

Coordination mechanism in Okeanos

The requirement of game theory that players have to act ration-
ally is ensured by representing every player by its own agent. Play-
ers in this context are household appliances as described earlier.

While there are a number of published game theoretic
approaches to DR management [7–11], the game proposed by
Mohsenian-Rad and co-authors [7] was modeled with Okeanos as
a first proof of concept. Reasons for this include that the algorithm
was formulated in pseudo code, which allows for accurate adapta-
tion. Further, potentially more devices can be integrated in the first
place by utilizing load shifting as if it were possible with storage
devices due to the lack of available data.

The decentralized objective function in [7] with xhn;a as the
energy consumption of a scheduled appliance a of user n at hour
h is given by

minimize
xn2Xn

XH
h¼1

Ch

X
a2An

xhn;a þ
X

m2Nnfng
lhm

 !

subject to lhm ¼
X
a2An

xhm;a h 2 H

ð1Þ

2 For detailed instructions on the exact syntax see [22].
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with a set of cost functions Ch that are increasing and strictly con-
vex [7].

Every appliance only needs to optimize its own schedule xhn;a,

because the consumption of all other players lhm; m 2 N n fng is
static. For debugging reasons and the sake of comprehensibility,
Okeanos uses particle swarm optimization (PSO).

As denoted in Fig. 2, the algorithm proposed in [7] is started by
the agent every time a new schedule is needed. Okeanos adopts the
suggested 24 h planning horizon, which requires the agent to initi-
ate it once a day.

The next step is to minimize the costs, i.e., solve the objective
function (1). To be able to do that, the necessary information needs
to be obtained first. The game has no knowledge, which device is
used, therefore, it asks the agent. It knows about the configuration,
obtains the information from the driver and returns it. Because the
agent is the broker, it could also decide to alter this information.
That is, stricter time frames could be set or it could remove itself
completely from the schedule.

With that information in its memory, a configuration object of
the local device and the most current information of all other
devices is assembled. Subsequently, the agent is asked to optimize
the configuration. Again, due to re-usability only the agent has
knowledge about which optimization algorithm, game and drivers
are used. The agent forwards the request to the optimization algo-
rithm, e.g., PSO, which then returns the optimized schedule to the
agent and, finally, to the energy consumption game.

The agent is then asked to approve the schedule before contin-
uing. At that point, the algorithm proceeds by checking whether
the optimized schedule has changed since the last announcement.
If so, it broadcasts the new schedule to other agents. If not, Okea-
nos sets a timeout after which the agent assumes that no new
schedules will be announced anymore.

If a new schedule is received within this time, the timeout is
reset and the process starts again, as denoted by the loop-box in

Fig. 2. This is repeated until no new schedules are received
anymore and the timeout finally expires.

Once the timeout has expired, the equilibrium is reached and
the agent informed about it by calling a callback function with
the final schedule for the local device and the sum of the final
schedules of all other devices.

Optimization algorithm

The optimization algorithm tries to find solutions to (1).
Currently, only two different implementations of PSO are available.
PSO belongs to the category of swarm algorithms and is loosely
inspired by bird flocks or fish schools as first presented by Eberhart
and Kennedy in 1995 [23].

The two implementations only differ in the solution space: The
first implementation PSORegulableLoadOptimizer covers load shift-
ing, while the second, PSORegenerativeLoadOptimizer, also handles
charging and discharging of PEVs. Therefore, for load shifting, the
velocity, as it represents a change relative to the current position,
is represented as a vector of time differences in 15 min steps. This
resolution tries to strike a balance between an optimal solution,
which requires a higher resolution and a good solution, which
can be calculated considerably faster. The position comprises the
start times a device runs. That is, the position of a washing
machine that has to run twice a day would be represented by a
vector that comprises two values: the start time of the first run
and the start time of the second run.

For charging and discharging of PEVs, Okeanos takes a different
approach using PSORegenerativeLoadOptimizer. Not the start time is
relevant here, but the amount of power charged or discharged at
every 15 min interval is important. This is also exactly what a par-
ticle’s position comprises. The velocity is a vector containing the
change of charge for every interval. Optimizing regenerative loads
like PEVs is more challenging, as a maximum capacity, minimum

Fig. 1. Okeanos bundle structure with sample household devices and services. The indicated dependencies are only for illustrative purposes. Drivers do not depend on each
other in Okeanos. Adapted from [20].
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capacity and maximum charge per slot need to be taken into
account too.

Simulation of multiple households with load-shifting devices

In a recent publication [24] Pipattanasomporn et al. collected
the load profiles of selected major household appliances like dish-
washers, AC units, refrigerators, washing machines and dryers. The
data is available either in one second intervals or in one minute
intervals that average the consumption over 60 s periods. Hence,
due to the quality of the data, devices from this survey are modeled
in Okeanos.

Here, the initial results presented in [25] are extended. These
results show that by optimizing three household appliances of
one household, Okeanos can save up to 5.9% of energy costs per
month. The next logical step is to increase the number of house-
holds involved. That is, this section studies the impact of a rising
number of households on the costs per household per month.

Not every household is alike, therefore, the load profile for every
household is randomly scaled to either 25, 28, 30, 33 or 35 kWh per
day. Additionally, it is randomly shifted between 1 h of its regular
time. Finally, dishwashers, washing machines and clothes dryers
run with a 33% chance. This configuration is chosen to account
for different habits and usage patterns of customers.

As illustrated in Table 1 and Fig. 3, altering the number of
households does not change the outcome. It, however, can be seen

that the peaks are getting more extreme the more households are
involved.

At least two explanations should be considered when
interpreting this results. On the one hand, there are too few devices
that can be shifted. Also, because the load profiles of households
have a minimum at the point in time when energy is cheapest,
devices hardly have any other choice but to be switched on at that
time. Further, because the average consumption of households is
mostly the same, the energy consumption keeps stacking up and,
as aforementioned, load shifting devices cannot smoothen the
peaks.

On the other hand, the convex cost function at every point in
time could need its parameters readjusted. This, however, is not
very likely, as the devices that respond to costs, already run at
the cheapest points in time. Households, however, do not react
to different costs, which explains the peaks and the stacking of load
profiles.

Fig. 2. Process flow of energy consumption game.

Table 1
Comparison of costs per household per month with an increasing number of
households.

10
Households

20
Households

50
Households

Costs per month per
household

$88.57 $86.84 $90.23
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According to Table 1, the costs per household per month do not
show a significant difference when the number of participating
households is increased. The reason for this is the same as
described before: The load profiles are stacked.

Evaluation of Okeanos with plug in electric vehicles

This use case investigates the impact of integrating PEVs in the
previous use case. As electric vehicles are all about storing energy,
this is an extension to the implemented game theoretic algorithm
[7], which proposes an energy consumption scheduling game. The
original game was never designed for storage. The micro-storage
management game proposed by [9] is contrary to that, it only
proposes storage devices and does not do any load shifting.
The proposed combination of both games is based on simulation
only and there is no mathematical proof given unlike the
individual games. Further, due to the use of PSO and the fact that
it is a meta-heuristic, an optimal solution cannot be guaranteed.
It should also be noted that all PEVs begin with an initial
state-of-charge of zero.

Impact of penetration of plug in electric vehicles on costs per
household

The first use case in the category of PEVs evaluates the impact of
different penetrations of PEV on the total consumption. This simu-
lation is based on 20 households, with either 0%, 25%, 50%, 75% or
100% of them owning one PEV. Owning really means having it
stand around and not actively use it for transportation as for what
it is made. In this configuration it acts like a rechargeable battery.

Furthermore, it uses a feed-in tariff of 50%. This means that if
any device sells back energy to the grid, it will get 50% of the
money it would cost the device to buy the same amount of energy.
Additionally, as in the previous section, load shifting devices are
switched on with a 33% chance.

As Fig. 4 shows, if only five of the 20 households, i.e., 25%, have a
PEV, they completely change the load profile of households, over-
riding it with their own consumption pattern. This pattern, ulti-
mately, is derived from the price function. As can be seen, PEVs
charge themselves at the beginning of the day where the price
for energy is cheap and use this energy later in the day to prevent
the household from having to pay the peak price.

Fig. 3. Impact of the number of participating households on load profile.

Fig. 4. Impact of penetration of PEVs on load profile. % PEV: variable, feed-in tariff: 50%.

W. Lausenhammer et al. / Electrical Power and Energy Systems 75 (2016) 1–7 5

94



An interesting phenomenon can be noticed at the end of the day
at around 11 p.m. At this time devices start to discharge their
remaining energy. This is due to the limited planing horizon, which
is currently 24 h. Because devices cannot plan more than that, they
want to sell the remaining energy to get the most out of the day.

The change of the load profile can be either wanted or
unwanted. Even with a 25% penetration of PEVs, the peak con-
sumption is nearly at 40 kW, compared to roughly 30 kW if there
are no PEVs present. For higher penetrations, there is an even
higher peak at the low-cost periods. This could be another
unwanted peak as the grid needs to be prepared for that. If the grid
is capable of transporting that amount of energy, this could be
valuable to the utility company, because it sells cheap energy to
customers and gets expensive energy for a cheap price, e.g., with
a 50% feed-in tariff, which can be sold to other utility companies.
Customers, despite the low feed-in tariff, still profit from selling
energy back.

If the grid is not capable of handling that amount of energy, a
possible countermeasure would be to adjust the cost function.
The base price could either be changed or the factor, the costs
per kWh at a point in time rise, could be adjusted as well. The latter
countermeasure potentially has higher prospects of success, as it
particularly penalizes high uses of energy, which, eventually, leads
to a flatter load profile.

Table 2 compares the average costs per month for a household
for a different penetration of PEVs with a 50% feed-in tariff. Most
notably, the more households use PEVs the cheaper the average
price for all households. Finally, when all households own a PEV
and do not use it for anything else beside from participating in load
scheduling, households can cut down electricity costs to approxi-
mately one fourth compared to not using PEVs at all.

This, however, is very unlikely to happen outside of simulation,
as the simulation does not take a wide range of factors into
account. Especially, (i) households own PEVs to use them and not
let them stand in the garage at the charging station and (ii) the
wear of batteries, etc. is not taken into account.

The simulation, though, respects the maximum capacity, the
minimum capacity, the maximum charge at a time and is also
capable of ‘‘unplugging” a PEV, which means that the vehicle is
currently in use and cannot be used for load scheduling. Further-
more, if a PEV is used, it also loses some charge, which can be
expressed by the software as well.

Cross comparison of impact of feed-in tariff and penetration of plug in
electric vehicles on costs per household

This use case is based on the previous use case, however, greatly
expands the changed parameters. A parameter study of the feed-in
tariff and the penetration with PEVs is done, unlike the previous
use case that assumed a fixed feed-in tariff of 50%.

Fig. 5 illustrates the load profile when changing the feed-in
tariffs. It clearly shows that the higher the incentive, i.e., the higher
the feed-in tariff, the higher the likelihood that PEVs will charge
during low-cost periods and discharge at high cost periods. Again,
this is very similar to previous findings and is the result of trying to
minimize the occurring costs for each device.

More interesting, however, is Table 3 and Fig. 6, which
illustrates, respectively gives the exact numbers of the costs per
household per month depending on the feed-in tariffs and the
penetration with PEVs.

As previously pointed out, the costs per household per month
decrease the more incentive is given (a higher feed-in tariff) or
the more PEVs are available in the simulation. This effect results
in households earning money at the end of the month when there
are both, a high incentive and a high number of PEVs available.

The reason that the costs decrease with an increasing number of
PEVs even with a 0% feed-in tariff is that the PEVs in that case are
not actually selling the energy back to the grid, but provide it to
other devices. Obviously, in total, this leads to a lower price, as
PEVs provide energy during the high-cost periods.

Table 2
Comparison of costs per household per month with an increasing number of
households owning PEVs with a 50% feed-in tariff.

Penetration of PEVs

0% 25% 50% 75% 100%

Costs per month per
household

$88.20 $65.98 $52.27 $40.36 $27.50

Fig. 5. Impact of feed-in tariffs on load profile. % PEV: 100%, feed-in tariff: variable.

Table 3
Comparison of costs per household per month with different feed-in tariffs and a
different penetration of PEVs.

Feed-in tariff

0% 25% 50% 75% 100%

Households with PEVs
0% $87.01 $86.41 $88.20 $86.78 $87.24
25% $69.25 $68.70 $65.98 $63.77 $64.37
50% $64.21 $61.55 $52.27 $38.81 $35.36
75% $66.65 $58.73 $40.36 $17.47 $9.05
100% $67.52 $56.01 $27.50 �$9.50 �$14.98
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However, earning money through the use of PEVs seems
unlikely as [9] simulated the impact of storage devices as well,
with the result that in the UK 38% is ideal number of households
owning a 4 kWh storage device, when the savings of up to 13% is
at its maximum. These savings do not result in the households
earning money at the end of the month. What can be done to make
it more realistic is to adjust the aforementioned factor by which
the costs per kWh rises.

Further, it can be noted that increasing the feed-in tariff from
75% to 100% has a significantly smaller impact than increasing it
from 50% to 75%. One reason could be that the PEVs already use
their whole available capacity when the 75% feed-in tariff is
offered. Similarly, increasing the percentage of PEVs from 75% to
100% does only have a big impact with high feed-in tariffs.

There does not seem to be a particular parameter combination
that is ideal for every case. The decision on the feed-in tariff has to
be made by the utility company for every specific situation.
Obviously, the number of PEVs in a grid need to be taken into
account for that decision.

Conclusion

In this paper, Okeanos, a novel multi-agent demand response
simulation platform focusing on the evaluation of game theoretic
approaches was described. A major characteristic is its extensibil-
ity, which allows to support numerous household devices and
enables the simulation of various games.

Simulation with three household devices shows that the costs
per household are unaffected by number of involved households.
Results involving PEVs demonstrate a decrease in the monthly
utility bills per household with an increasing penetration of PEVs
and feed-in tariffs. Future work will study the impact of using PEVs
for commuting on the costs per household over longer periods
(e.g. months, years, etc.).
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Abstract—Intrusion Detection systems (IDS) are a crucial and
necessary aspect of the smart grid, particularly when considering
the possible attack vectors and their consequences. While there
are many different approaches on IDS for Smart Grid, the
benefits of an anomaly detection technique is still in discussion,
due to its capability of detecting zero-day attacks and misuse.
This paper proposes a weighted vote classification approach and
a general weight calculation function to improve the detection
performances of anomaly IDS systems. Initial results show that
a combination technique is able to improve classifier performance
by several percent.

I. INTRODUCTION

Since the beginning of electrical power distribution, many
ways have been found to compromise the metering system
in order to gain financial benefits. A collection of attacks on
the grid components and other issues regarding power grid
security are given in [1]. These examples show that even
with digital technology and securely acting implementations,
attackers can and will try to manipulate the power grid
infrastructure. One specific Smart Grid scenario, in which an
attacker tries to lower the billing rates is discussed in [2].
This scenario describes the procedure of packet manipulation
to inject false data into the Smart Grid network. As a result,
billing rates are compromised and other clients have to pay
more. Another problem is the intention to weaken a company
or country by invading communication networks to limit or
stop critical services. Recent events show that hacking activity
is used for espionage and can be used as an instrument to
threaten or damage countries. Viruses or attacks, like Stuxnet
or countless examples of exploits available in the Internet are
menacing threats for the Smart Grid security. In a survey of
the anti-virus company Symantec, attacks on the energy sector
were gathered and presented. It states that in the second half of
2012, the energy sector was the second most targeted asset, and
attackers tended to go after valuable information. In addition
to that, the sector is also a major target for sabotage attacks
[3]. With the possibility of controlling electrical devices and
cutting power supply, the Smart Grid functionality must be

ensured and secured. Even though anomaly detection does
have downsides (e.g.false positives, etc.), the flexibility of its
implementation and the possibility to detect zero day attacks
encourage the use of this technique. As it has previously been
shown that the use of ensemble techniques may outperform
single classifiers [13], this work focuses on extending the
current research in the area of smart grid IDSs by proposing
a novel, ensemble classification methodology using weighted
voting to identify potential threats.

II. LITERATURE REVIEW

The area of intrusion detection, both in general and in
the area of smart grid, is a well researched area [4], [5].
Some concepts have the potential to be adapted and integrated
into a Smart Grid security concept including improvements
in the Mobile WAN Connection, Rule-based IDS, Domain
Knowledge for IDS, general Smart Grid Intrusion Detection
systems, and ensemble classification.

A. Mobile WAN Connection Concept

In the work of [6], the Smart Meter is the core element
of all functionality. Due to the mobile Internet connection,
which is used to communicate with the power provider, a
network infrastructure besides the Home Area Network (HAN)
is not required. Also, the Smart Meter is considered a multi-
functional device which contains a firewall and provides Power
Line Connection, Zig-Bee or WLAN for HAN communica-
tion. To ensure the security and integrity of the connection,
a tamper-resistant cryptoprocessor is used. The device will
also have cryptographic algorithms and functions to support
a public-private key infrastructure. The concept also suggests
that, apart from the sender and receiver part of the transmitted
data, packets should be fully encrypted. Using encryption
would make this system safe, if the methods are applied and
implemented correctly. It also would make IDS rather difficult,
because the package content could not be read and checked
against attacks. Another issue, which Anderson states in [7],
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is the problem of key compromising. If the private key of a
provider is acquired, an attacker could remotely control a high
number of meters and would be able to cause large electricity
blackouts. Nevertheless, the concept provides good security
measures and does not require the construction of a NAN and
WAN infrastructure.

B. Rule-Based IDS

In the work of [8], a Behavior-Rule-Based Intrusion Detec-
tion System is suggested. The argumentation is that anomaly
detection methods cannot avoid false classifications and still
have too many false positives in the current research. There-
fore it is argued, that they are not suitable for Smart Grid
implementations. Instead, the work suggests a derivation of
a specification-based IDS technique. In order to specify con-
straints for the possible actions of network nodes, a table of
behavior rules is created. A rule defines valid behavior, for
example the increase of billing rates on high demand. Any
derivations from this rule would be considered as an attack.
Every node has a monitor and a trustee to be able to control the
behavior of each other. This approach can be very effective,
since known as well as unknown attacks would trigger invalid
behavior, like lowering the price, even if the demand is high.
The downside of this is similar to the specification based
concepts. If complex implementations already exist or if there
is not enough effort done to be able to implement this rule
based concept, the creation of this type of IDS might become
too complex

C. Domain Knowledge for IDS

One method of enhancing anomaly-based intrusion detec-
tion is presented in the work of [8]. This concept suggests
using Fuzzy Logic systems in order to represent human
domain knowledge. To achieve this, several rules have to
be defined. One given example is the increase of protocols
during an attack. This can be the case if a system only uses
a small variety of protocols and it is rather unlikely that a
large protocol variety occurs. This knowledge can be mapped
to a fuzzy rule, which controls the sensitivity of an anomaly
detection algorithm. In case the amount of protocols increases,
the detection sensitivity is high and packets are more likely
to be considered as an attack. This triggers more findings. It
will also increase the likelihood of false positives, but since an
attack might occur, it would be useful to find every malicious
packet. The other way round would happen when the number
of protocols is low. In this case, less detections are triggered.
This concept could be used very efficiently, when good human
domain knowledge rules can be found for a system. It also
could be combined with an already existing implementation,
in order to enhance detection accuracy.

D. Smart Grid Intrusion Detection System

One promising and popular concept for detecting anomalous
traffic in the Smart Grid is the Smart Grid Distributed Intrusion
Detection System (SGDIDS) [9]. This concept uses intercon-
nected, distributed IDS nodes in a network infrastructure. The

concept was tested with a modified KDD-NSL dataset and
three different anomaly detection methods were used. Also,
clustering algorithms CLONALG and AIRS2Parallel were
used in order test unsupervised classification efficiency. The
basic principle is to have IDS systems in every network layer,
which are able to communicate between the IDS nodes in the
hierarchy. In case a node in the lower level of the hierarchy
cannot classify the data, the packet is passed to the next
instance, which has more powerful detection algorithms. Since
this approach uses a popular infrastructure as well as a widely
usable and retrofittable anomaly detection, this work aims to
further improve the concept by providing a new approach
for anomaly detection algorithms, which are used in the IDS
nodes.

E. Ensemble Classification Concept
Ensemble classification scenarios already exist in different

implementations [10], [13]. Ensemble techniques, as they are
used in [11], [12], were successfully implemented in many
other pattern recognition tasks. A common technique is to
combine differently trained models in a voting system in order
to improve the classification results. Usually, a large number of
weak classifiers are used to achieve this. Different approaches
exist to realize the combination, as stated in [13]. In general,
two common methods show that models can be combined
either with a majority vote or with a weighted technique.
When a majority vote is used, the most votes collected for a
single decision wins. This usually requires an uneven amount
of votes or a decision rule, in case the votes are even. Another
method is to use a weighted vote, which implies that for every
classifier model, a certain weight is assigned. Each classifier
votes with its weight and a decision will be made based on
the highest assigned weight. The weight calculation can be
done with different methods. In this approach, the weight is
calculated based on the performance of a test set. Also, to
achieve the best results, different weights will be used when a
classifier either votes for an attack or against it. The difference
in common methods is the use of a diverse set of algorithms
in the combination, instead of differently trained models of
the same algorithm. A similar concept has been used in [14].
To carry out this voting and weight checking, each classifier is
first trained and the performance is determined by classifying
a test set.

The combination is carried out by integrating true negative
(TN) and true positive (TP) rates in a function and assign the
calculated weight. In this case, it is intended that weights for
normal and attack decisions differ. Each of the model weights
are summed up and compared afterwards, in order to carry
out the final decision. To assign and calculate weights for
each model, a formula was developed to balance the given
amount in an efficient way. Due to the problem that several
classifiers might work better than others, it is crucial to assign
more or less weight, based on the performance. To do this,
the following function f(x) was developed:

f(x) =
1

(1− x) ∗ a+ b
(1)
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The variables a and b are used for various adjustments. The
variable x stands for the precision of TP or TN values. Those
values are between 0 and 1 and represent the probability of
a correct prediction of either normal traffic or an attack. The
closer the value is to 1, the better is the prediction rate. This
means that high values should produce high weights, which
is enforced by the formula. Weight values increase strongly
as they get closer to one. On the other hand, lower values in
classification performance will be penalized with low weight.
The a value is used to control the slope of the function. A small
a value will create a slower rising slope, beginning with lower
x values. This means that even low performance numbers get a
higher base weight and the impact of the formula is decreased.
On the other hand, when higher values are used, only very
well performing classifiers will have higher weights assigned.
The maximum achievable weight is also decreased. To be able
to control the highest assigned value and to avoid an infinite
number for the weight, the b value can be adjusted. Very small
b values will allow the weight value to rise very high. When
x is close to 1, smaller b values will decrease the slope and
also decrease the impact of the formula. For example, if a 1
is chosen for b, the weight formula is practically non-existent
and, therefore, the classification can be compared to a majority
vote.

III. TEST SETUP

For testing and result analysis, a python environment with
the Scikit-learn library [15] was used. The project was com-
plemented with developed code and the open source library
is available on Bitbucket1. The tested smart grid network is
identical to that in [9] and the metholology for when and how
to pass information between layers is also identical.

A. Dataset and Scaling

To evaluate the classification performance, the KDD-NSL
dataset is used. Even though this work suggests a Smart
Grid solution, an Internet traffic dataset was chosen for the
evaluation. This is due to the lack of available Smart Grid
communication data. A dataset with attacks and Smart Grid
traffic is not yet available. The files can be downloaded on
the website of the Information Security Center of Excellence
[16]. This dataset is a modified version of the dataset KDD
Cup 1999. For the classification purpose, 41 features with
four different attack types are contained in the dataset. It is
composed with normal traffic, U2R, R2L, Probing and DoS
attacks. Contrary to the KDD Cup 1999, the NSL dataset
comes down to a size of about 20 Megabytes, which makes it
very applicable for experimenting with classification systems.
The NSL training set consists of 125,973 instances, the testing
set has 22,544. The Training dataset has 45,927 DoS and
11,656 Probing instances. The amount of R2L and U2R types
is rather small, only 52 instances of U2R and 995 of R2L.
In contrast to that, the amount of R2L and U2R attacks in
the testing set is fairly large. There are 2,938 R2L instances

1https://bitbucket.org/bgsufhs/python-intrusion-detection

TABLE I
MODEL RESULTS FOR ATAN-SCALED KDD-NSL TEST SET.

Decision Tree AdaBoost kNN SVM
True Positive 85% 91% 97% 96%

True Negative 78% 76% 68% 70%

False Positive 15% 9% 3% 4%

False Negative 22% 24% 32% 30%

Accuracy 81.2% 83.1% 79% 80%

and 781 U2R attacks. This means that an efficient training
for those attacks is rather difficult with the provided data.
This condition implies that an IDS needs high zero-day attack
detection capability, in order to be efficient.

For the dataset preparation, several steps had to be com-
pleted. In order to use the set with Scikit-Learn modules,
the string types had to be mapped to numeric values. This
was carried out with a developed library provided within
the project. In addition, scaling methods were used for more
efficient classification and to produce a variety of different
outputs. This helped to further identify the voting-classifier
performance. After the KDD-NSL set had been mapped to
only numeric values, either no scaling was applied, normalized
scaling with the range between -1 and 1 or Arctangent scaling
was used.

Since the dataset has a very specific test set, another mod-
ification was carried out to add three more testing scenarios.
Therefore, the whole KDD-NSL set, including test and training
data, was randomized. This balanced the intrusion and normal
traffic instances and generated a dataset with increased training
and testing performance. The newly generated sets were split
into sets and scaling was applied. An issue that had to be
addressed was the requirement of a weight-calibration set, in
order to determine each classifier performance and calculate
the weight. To do this, the test sets were bisected and one part
was used for calibration. The other half was used for testing.
For the modified dataset, a 5% split of the randomized data
was used for the calibration task.

B. Classifiers

The classifier selection was composed of a K-Nearest
Neighbour (kNN) , Decision Tree, AdaBoost and a Support
Vector Machine (SVM) model. kNN was configured with k =
1 and “distance” as weight. The Decision Tree classifier used
a minimum of 20 leaf samples and the AdaBoost classifier was
configured to use a DecisionTree algorihm with a maximum
depth of 3. The maximum allowed estimators were set to 70.
For the SVM, a Radial Basis Function kernel was chosen, with
C = 1 and a degree of 3. For evaluation purposes, a confusion
plot was created and the overall TN,TP, false positive (FP) and
false negative (FN) percentages were calculated. In addition
to that, the accuracy for overall efficiency was given. The
stated setup of classifiers uses different algorithms, where each
produce a different output. Table I shows a test run with an
arctagent scaled NSL-KDD dataset.
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Fig. 1. Weight calculation function.

For the weight calibration, the constant a was set to 1, b
was set to 0.01, resulting in (2) being used for weighting. For
x, the specific TN or TP rate is used. TP rates are used to
calculate the attack weight and TN is used for normal traffic
weight. The chosen function values result in a graph as it is
shown in Fig. 1.

f(x) =
1

(1− x) + 0.01
(2)

The graph rises when x is close to 0.85, which implies that
85% of the existing normal or attack instances in the dataset
have been found. The intention with this formula is to reward
good performances with a higher weight and increase the
likelihood of a correct vote-prediction. To carry out the final
classification, the assigned, summed up weights for attacks
and normal predictions are compared with each other.

IV. INITIAL RESULTS

For result analysis, the best accuracy, which was achieved
by a single model, and the occurring false negative and positive
values are compared with those of the vote-classifier. The
results for all six scenarios are presented in Table II.

This data shows that voting was able to obtain a higher
level of accuracy in most of the cases. To further illustrate the
net performance improvements, Table 3 shows the subtracted
values.

When the modified test set was used, each of the models
started to become very efficient. In two cases, a large per-
formance gap occurred between the classifiers, which caused
the vote classification to be less accurate. In classification
scenarios with lower performance, overall accuracy was in-
creased significantly and either or both of the FP and FN rates
were lowered. In the last case, the increase of performance is
limited to very few false predictions, since the performance is
already close to the 100%. Best possible results were achieved
with the atan-scaled NSL set and the modified normalized

TABLE III
NET IMPROVEMENT VALUES OF VOTE CLASSIFICATION.

Set/Scaling Accuracy False Positive False Negative
NSL (Arc.) +3.60% -0.53% -4.01%

NSL (Norm.) +2.69% +6.70% -5.60%

NSL (None) +2.31% +4.26% -4.06%

Mod. NSL (Arc.) -0.02% -0.09% +0.10%

Mod. NSL (Norm.) 0.13% -0.11% -0.12%

Mod. NSL (None) -0.03% +0.00% +0.05%

set. The weighted vote was able to improve both the FP and
FN rates and increased the accuracy. In two cases, individual
models produced a lower FP rate than the vote classifier, but
were not able to uncover many attacks. To further test, if this
generalized approach of combination is exact enough, a script
was programmed to iterate through the a and b values of the
function, to find better working parameters. The results showed
that only very little improvements on individual scenarios were
achieved, which implies that the suggested function might be
a good approximation to combine the models efficiently.

V. CONCLUSION

The reduction of FN or FP-rates and with it, the improve-
ment of classification accuracy is a complicated task for even
a single classifier. In the presented scenario, this is even more
difficult as the use of an ensemble of techniques is being
used, resulting in increased complexity. In contrast to this
downside, several benefits have been discovered with the use
of the voting-based ensemble classifier. With the experiments
carried out on the classifier-voting system, it has been observed
that a voting technique was able to show, in most cases,
significant increase in prediction accuracy. When a combina-
tion of very efficient classifiers was used, the improvement
of accuracy was either the same or only slightly significant.
The positive aspects of this study included dropping FP- or
FN-rates. Low FP rates are in many cases more favorable
in machine-to-machine traffic, when the same accuracy can
be achieved. Another aspect treated was the combination
technique. Although the output is always dependent on the
chosen classifiers and their performance, the weight balancing
formula was able to produce favorable results in most of the
test scenarios. This general approach with the stated formula
proved to be successful in the different test scenarios. Based
on these findings, it might be possible to apply a successful
voting mechanism in a Smart Grid network. Especially since
there are not any detailed attack scenarios available yet,
clustering classifications or outlier detection might be used
in the future. Those algorithms often have lesser performance
than supervised classifiers and a voting scenario might be able
to improve the resulting accuracy. Also, due to the machine-to-
machine generated traffic of Smart Grid applications, a feature
space for efficient classification might be developed more
easily than in Internet applications. This will result in strong
classification algorithms which can be improved afterwards
with voting. Even if the enhancements are limited to several
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TABLE II
MODEL RESULTS FOR ATAN-SCALED KDD-NSL TEST SET COMPARING SINGLE CLASSIFERS TO VOTE CLASSIFIERS.

Single Classifier Weighted Voting Classifier
Dataset (Scaling Method) Accuracy False Positive False Negative Accuracy False Positive False Negative

NSL (Arctangent) 83.41% 8.75% 24.19% 87.01% 8.22% 20.18%

NSL (Normalized) 78.45% 2.57% 32.93% 81.14% 9.27% 27.33%

NSL (None) 78.03% 3.65% 33.04% 80.34% 7.91% 28.98%

Modifed NSL (Arctangent) 99.81% 0.20% 0.17% 99.79% 0.11% 0.27%

Modifed NSL (Normalized) 99.67% 0.23% 0.40% 99.80% 0.12% 0.28%

Modifed NSL (None) 99.86% 0.11% 0.15% 99.83% 0.11% 0.20%

percent, the output can avoid thousands of false or negative
detections on the long run. Elaborated scenarios also showed
the strong dependency on the chosen scaling method and
training data. In terms of FP-Rates, one scenario showed a
decrease of false attack predictions from 0.23% to 0.12%.
Even though this does not seem much, it reduces the amount
of FPs by roughly 50%. For Smart Grid implementations, this
can be crucial to avoid false alarms and stabilize the system
behavior. In addition to that, defective packets, which might
be produced due to system errors, can very likely be detected
by an anomaly IDS. In general, the scenarios showed that
implementations may benefit from improved accuracy in Smart
Grid applications. By combining this technique with other
anomaly detection approaches, this technique could find its
way in reliable IDS system for the Smart Grid.
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Abstract

The availability of individual load profiles per household in the smart grid
end-user domain combined with non-intrusive load monitoring to infer personal
data from these load curves has led to privacy concerns. Privacy-enhancing
technologies have been proposed to address these concerns. In this paper the
extension of privacy enhancing technologies by wavelet-based multi-resolution
analysis (MRA) is proposed to enhance the options available on the user side. For
three types of privacy methods (secure aggregation, masking and differential
privacy) we show that MRA not only enhances privacy, but also adds additional
flexibility and control for the end user. The combination of MRA and PETs is
evaluated in terms of privacy, computational demands and real-world feasibility
for each of the three method types.

Keywords: Smart meter; homomorphic encryption; masking; differential privacy;
multiple resolutions; smart grid

Introduction
Intelligent energy systems, so-called smart grids, change the way electricity is gen-

erated, distributed and used. The widespread roll-out of smart meters is one of the

consequences. Such smart meters record energy consumption in a specified granu-

larity (usually the time between readings is between 1 and 15 minutes, cf. Table

10 in [1]) and have the ability to transmit these load curves in a specified interval

(e.g., once a day). Therefore, this involves a considerable amount of information

that needs to be processed and analyzed. Smart grids further demand accurate and

fine-grained data on network status, as well as a detailed analysis of load profiles

from customers [2]. This is crucial for applications such as billing with dynamic

pricing, demand response and network monitoring.

However, it has been shown that personal information on the end-user can be

inferred from fine-grained load curves [3, 4], and this has led to privacy concerns

(e.g., [5]). This also implies some severe privacy threats such as the identification of

customer presence at home, customer habits and even the customer position when

using electric vehicles [6]. In [7] and [8], the authors show the impact of resolutions

on privacy and that information can be deduced even at comparably low frequencies.

The accuracy of the inferred information is directly connected to the available

resolution of the load data. A number of methods have been proposed to balance

the need for privacy with the information needed for correct operation of smart

grids. Two types of approaches show high potential to resolve this issue: (i) privacy-

aware aggregation of encrypted load curves; and (ii) representation of load curves

in multiple resolutions, each associated with different access levels.
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Privacy-aware Aggregation

Approaches for privacy-aware aggregation can again be divided into three categories:

protocols using masking [9, 10], protocols using secure aggregation by homomor-

phic encryption [11, 12] and protocols using differential privacy [13, 14]. In

this paper, the focus is put on the application of multi-resolution load curve repre-

sentation in combination with secure aggregation protocols.

Privacy-enabling encryption for smart meter data by the use of homomorphic en-

cryption is suggested by, e.g., [11, 12, 15, 16], allowing the aggregation of encrypted

signals, also termed “secure signal processing”. A recent overview of secure signal

processing, covering four proposals for privacy-preserving smart metering aggrega-

tion is given in [17]. Protocols that are using masking for aggregating data have

been proposed by, e.g., [9, 10, 18]. Masking approaches aim to hide individual con-

tributions by additive noise, but still produce a valid aggregate. Differential privacy

follows a similar approach, where contributions are hidden in a noisy aggregate that

fulfills some statistical properties. Differential privacy is adapted for applications in

the smart grid by, e.g., [13, 19, 20, 21].

Multiple Resolutions

Approaches of this type suggest to represent load curve data in multiple resolutions,

where each resolution can be used for a different purpose – e.g., low resolution for

billing – and is therefore disclosed to selected parties only, e.g., [22]. Using the

wavelet transform in order to produce an integrated bitstream supporting multi-

ple resolutions has been proposed by [23]. Combined with conditional access, i.e.,

different encryption keys for each resolution [24], this wavelet-based representation

allows user-centric privacy management: access can be granted or revoked for each

resolution. Access to high resolutions, which are privacy-sensitive, may be reserved

to a small number of trusted entities only, whereas resolutions of medium granular-

ity may be provided more freely, e.g., to contribute to network stability (in exchange

for lower energy prices or other incentives). An approach combining multiple reso-

lutions and direct user control for smart metering is shown in [25]. The combination

of MRA with homomorphic encryption, which is also one of the topics in this paper,

has been discussed in [26].

Contribution

In this paper, a set of three privacy-preserving smart metering data aggregation

methods that combine the two types of approaches, namely multi-resolution rep-

resentation and (i) homomorphic encryption; (ii) masking; and (iii) differential

privacy, is proposed. This improves the capabilities for managing privacy require-

ments, as the combination of “traditional” privacy enhancing methods with multi-

resolution representation significantly increases the choices available for both, sys-

tem operator, and end user. We further contribute the sketch of a protocol for

distributing keys and providing distinct resolutions to different parties. Access con-

trol does not relate to the aggregated signal as a whole anymore, but access can

be granted on the aggregate on each resolution individually. This is an important

feature, as it allows to grant access to participants in the smart grid system, based
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on their roles and the functions they have to fulfill. Each role can be assigned ac-

cess to the aggregate on the minimum resolution necessary to fulfill the functions

associated with this role.

The combination of MRA with homomorphic encryption has previously been pro-

posed in [26]. This paper extends the previous work by applying multi-resolution

techniques to masking and differential privacy. A comprehensive presentation, dis-

cussion and evaulation of multi-resolution representation in combination with widely

used PETs is given.

The rest of this paper is structured as follows: In Section Multi-resolution PETs

the application scenario and common definitions are introduced. In Section Back-

ground, background is presented on wavelets for the multi-resolution representation

of load curves as well as on the three privacy enhancing technologies (PETs) ho-

momorphic encryption, masking and differential privacy. Sections Multi-resolution

Secure Aggregation, Multi-resolution Masking and Multi-resolution Differential Pri-

vacy describe each of these PETs individually and propose the combination of these

approaches with wavelets. In Section Evaluation the security features of the pro-

posed protocols, as well as cost and complexity are discussed and further, the system

is evaluated with respect to real-world applicability on the basis of a prototypical

implementation. Section Conclusion and Outlook summarizes this paper and gives

an outlook to future work.

Multi-resolution PETs
While homomorphic encryption, simple masking and differential privacy are effi-

cient methods for the spatial reduction of resolution, temporal aggregation is not

sufficiently covered with any of these approaches. Temporal resolution of time series

can be reduced by subsequently applying a number of filters. When – for instance

– applying an appropriate lowpass filter to a time series, all frequencies above the

cutoff-frequency are omitted, which results in a signal with less information. This

is effectively performed by applying the wavelet transform, in particular the Haar

wavelet, to a series of values.

Application Scenario

Smart meter data has a wide range of applications, such as in-house monitoring,

billing, network monitoring and demand response. As pointed out in [8, 2], data

resolution depends on the use case and has an impact on the privacy, i.e., the

information the recipient can gain from that data. In the following we introduce

three typical application scenarios and motivate the need for multi-resolution PETs

and their flexibility with respect to spatial and temporal resolution.

1 Settlement and Profiling. In the energy market electricity generators and

electricity suppliers trade at a wholesale marketplace. The arrangement of

payments among these parties is called settlement [9, 2]. Profiling is used for

determining forecasts and training models, e.g., in the UK this is based on

half-hourly meter data from a representative sample of households [2]. Both

applications thus require data in a comparably low resolution, but spatially

aggregated over a number of households.
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2 Network Monitoring. Network monitoring is used for detecting outages

and peaks, and thus maintaining the stability of the power grid. A detailed

monitoring of power consumption, voltage levels and phase shifts is an impor-

tant feature for network operators. For monitoring purposes, data at a high

temporal resolution but with little spatial resolution is required.

3 Billing. Billing requires meter data in a low temporal resolution (e.g., one

value per month or year), however on a per household or on a per meter basis,

hence not spatially aggregated at all. In future applications, dynamic pricing

might also require more fine grained data [27]. Multi-resolution PETs enable

the provision of load profiles in certain resolutions depending on the particular

use case.

Topology

For data aggregation in the smart grid, a number of different topologies are pro-

posed, such as star topologies (e.g., [20], [28]), ring topologies (e.g., [10]) and tree

topologies (e.g., [16]). In any case, the smart meters generate a time series of val-

ues that is either sent to a dedicated collector node or data concentrator, which is

responsible for aggregating these measurements. Or the smart meters aggregate in

a hop-by-hop manner, i.e., a smart meter sends its measurement to its successor

or parent node where this measurement is combined with its own value. The data

concentrator and the last smart meter, respectively, forward the aggregated mea-

surements to one or more recipients (in the following referred to as aggregators).

Each aggregator receives data in a different spatio-temporal resolution depending

on the role of the recipient and the needed granularity. Fig. 1 shows examples for

star and tree topologies. For the protocols presented in this paper, the aggregation

method (direct or hop-by-hop) is not restricted and either of these approaches can

be used.

Problem Statement and Definitions

Given a number of smart meters SMi, for i = 1 . . . N , one or more aggregators Ak,

for k = 1 . . .M , and a trusted third party (TTP), each meter i measures a time

series of values, i.e., at time t it measures mi,t. In this paper, a series of values

measured by a meter i is denoted as mi. In order to protect customer privacy, the

sum of the energy consumption for all smart meters should be provided to the ag-

gregator. The following restrictions and requirements apply (aggregator oblivious):

(i) no aggregator can gain any information about individual contributions; (ii) each

aggregator can only unmask a valid sum up to the time resolution r ≤ R (with

R as the maximum resolution) that is intended to be revealed for this aggregator.

Hence, the aggregator is considered to be untrusted. In practice, the smart meters

can be considered to be physically arranged in either a tree or a ring topology.

Logic topologies may defer and depend on the concrete protocol. For homomorphic

encryption and masking, the TTP is needed to provide the keys (pkr, skr) and the

key shares (keyr), respectively, to the smart meters and aggregators.

For this paper we assume that there is a sufficient underlying secure communi-

cation infrastructure, i.e., the bidirectional and reliable exchange of information

and the secure distribution of keys is given as well as authenticated communication
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among participants is guaranteed by, e.g., AES [29] and X.509 certificates [30]. We

further assume all devices to be tamper-proof, i.e., the meter value itself cannot be

manipulated.

Background
In this section, we briefly review the existing work on multi-resolution representa-

tion, homomorphic encryption, masking and differential privacy.

Wavelet-based Representation

A wavelet transform starts with the original load curve m = (m1,m2, . . . ,mT ),

which denotes a series of values. Each step splits the original load curve into a

highpass component h and a lowpass components l. If the wavelet transform is

performed recursively in d steps, this is denoted as Wd(m). In each step q, for

q = 1, . . . d, half of the data (the highpass data) hq are stored as the wavelet

coefficients (subband) of scale q and the next step is performed for the lowpass

data. At the end of the transformation the final subband hd consists of a fraction of

2−d samples compared to the original load curve. The higher the scale q, the lower

the time resolution r := d−q. Reindexing, and introducing the notation hr = hd−q,

at the end of the transformation one obtains a sequence h = (l0, h1, . . . , hd).

The synthesis step of the inverse wavelet transform W−1 starts with the lowest

resolution r = 0. To get the next higher resolution of the signal the next higher

resolution subband is needed, so that in a series of d steps one finally obtains the

original load curve (since we only consider lossless transformations). In order to

provide a signal mr with maximum resolution r, only r synthesis steps must be

performed and only the subbands with resolution r ≤ R, i.e., mr = (l0, h1, . . . , hr),

are needed. Denoting the selection of the r highest resolutions as a function Tr, this

can be written as

mr = W−1 (Tr(W (m))) . (1)

This selection can be realized in practice by replacing the highpass subbands with

zeros, i.e., applying Tr (·) to a sequence W (m) = (l0, h1, . . . , hr, . . . , hd−1, hd) yields

a sequence Tr(W (m)) = (l0, h1, . . . , hr, 0, . . . , 0). This limits, after applying the

inverse wavelet transform, the resolution of the signal. Making the signal available

at the needed resolution instead of the full resolution increases privacy because less

(personal) information can be deduced [8].

In [23], a variety of wavelet filters regarding their utility for the multi-resolution

representation of load curves was evaluated. Only lossless transformations are useful

in the context of smart metering. The Haar wavelet filter preserves the average over

all resolutions, which is an important property for many use cases. Using the lifting

implementation of the Haar wavelet, the transformation can be realized efficiently.

The lifting steps for the forward transform with the Haar wavelet have been

formulated by [31]. As the original Haar wavelet uses real coefficients, it is ill-suited

for use with homomorphic encryption. Therefore, for the combination with PETs,

a modified version of the Haar wavelet is used that only produces integer values

for the transformed load curve. While this is generally not an issue for masking
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and differential privacy, we still use the modified version for all PETs. A detailed

description of the Haar wavelet lifting scheme can be found in [23]. Note that the

average of the original series is still preserved over all resolutions for the modified

Haar filter:

∀r :

T∑

t=0

mt = 2−r
T∑

t=0

mr
t . (2)

Additive Homomorphic Encryption

Following previous proposals [11, 12, 15], for this work the Paillier cryptosystem [32]

is employed. This additive homomorphic cryptosystem has the following important

property, which is called the additive property :

D
(
E(m1)E(m2) mod n2

)
= (m1 +m2) mod n. (3)

This property means that the decryption of the product of the ciphertexts is the

sum of the original plaintext messages.

In a practical setting, the network is assumed to have tree-like connections. Each

smart meter sends its measured load in encrypted form to its parent node. The par-

ent smart meter multiplies the obtained encrypted signals with its own encrypted

signal and in turn sends this product to its parent node. Finally, the aggregator

multiplies the obtained signals and decrypts the product. Due to the additive ho-

momorphic property, the result is the sum of the measurements. With E and D

denoting Pailler encryption and decryption this can be stated as

D

(∏

i

E(mi) mod n2

)
=
∑

i

mi mod n. (4)

Privacy is preserved because of the distributed way of processing. Smart meters only

have the plaintext information of their own messages, because they cannot decrypt

the messages they get. The aggregator can decrypt messages, but, as it receives the

product of the individual ciphertexts, can only decrypt the sum of the load curves.

Masking

Masking refers to the obfuscation of individual contributions, such that the sum-

mation of load profiles over a number of households yields the correct sum, but

no individual contribution is traceable. This is achieved by adding for each SMi

at time t a random share si in the range 1, . . . , κ− 1 to the meter value mi. This

results in a masked meter value m̃i = mi + si mod κ. The set of random shares is

constructed in such a way that

∑

i

m̃i =
∑

i

(mi + si) =
∑

i

mi (all mod κ), (5)

hence the shares cancel each other out upon summation.

Principally, smart meters calculate the masked value m̃i and submit this value to

an aggregator. Once the aggregator has received all masked values, it can calculate
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the unmasked sum. If a single value is missing, the secret shares will not cancel

each other out, and neither the aggregate, nor any individual contribution can be

reconstructed.

Kursawe et al. [9] present a number of methods for constructing such shares that

meet the requirement for untraceability of individual contributions: (i) aggregation

protocols for determining the sum as described above; and (ii) comparison protocols

that require the aggregator already knows an (at least) approximate sum. For our

purpose we focus on the low-overhead protocol from the first group which has

already been used in practical implementations [33]. For the low-overhead protocol

all smart meters hold a public key pki = gXi with Xi as a secret key and g ∈ G
as a generator of a group satisfying the computational Diffie-Hellman assumption

[34]. Each SMi is given the set of all public keys and computes a set of N−1 shared

keys by Ki,j = H(pkXij ) with j = 1 . . . N .

As described in [9], for each meter value at time t each SMi creates a random

share by

si =
∑

k 6=i
(−1)b(i,j)H(Ki,j ||t), (6)

where b(i, j) returns 1 if j < i and 0 otherwise, and H : {0, 1}∗ → G is a hash

function mapping its input to an element of G. This term in Equation 6 results

in +H(Ki,j ||t) for b(j, i) = 0 and −H(Ki,j ||t) for b(j, i) = 1. Summing up this

values assures that all si cancel each other out pairwise since Ki,j = Kj,i because of

gXiXj = gXjXi . This is shown for N smart meters for one point in time t in Table

1, where the rows represent k and the columns represent i for values from 1 to N .

Summing up the resulting terms in each row yields the random share si,t.

Differential Privacy

Differential privacy is a privacy definition that defines privacy of a function f

by an indistinguishability property of the function result. In this paper the func-

tion is the time series of the sum of different smart meter measurements f(t) =∑N
i=1 Tr (W (mi)). However, note that here the noise is added to the selected res-

olutions (operator Tr) in the wavelet domain and not in the original domain. The

aim is that by examining a perturbed result f̃(t), one cannot distinguish whether

a single person’s entry is contained or not. Since the noise is only added to the

needed resolutions ≤ r, only a small amount of noise is added. More formally, two

neighboring datasets D and D′ that differ in the entries of a single person/household

only are considered. The function mechanism f̃ is then ε-differentially private, if for

a small privacy parameter ε > 0

Pr[f̃(D) = y] ≤ exp(ε) Pr[f̃(D′) = y]. (7)

While differential privacy is a theoretically appealing definition with nice proper-

ties (e.g., a function is differentially private under postprocessing), it is achieved by

perturbing the function result with Laplacian noise f̃(t) = f(t)+nt [19], where each

noise value nt is independently and identically sampled from a Laplacian distribu-

tion nt ∼ Lapλ (the parameter λ must be set using the sensitivity of the function
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f [19]). As a drawback, the function result is not exact and can be useless if the

number of entries in the dataset is too small.

More specifically, according to the Theorem of Dwork [19], the Lp sensitivity of a

function f : Dn → Rd is the smallest number Sp(f) such that for two neighboring

datasets x and x′

Sp(f) = argmax
x,x′

‖f(x)− f(x′)‖p. (8)

The most common mechanism that achieves differential privacy is the Laplace

mechanism ML that perturbs the output of f by adding noise from a Laplace

distribution having the density

Lapλ(x) =
1

2λ
exp

(
−|x|
λ

)
, (9)

in a non-interactive way, yielding

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk), with Yl
i.i.d.∼ Lapλ. (10)

An important theorem states that the Laplace mechanism is ε-differentially private,

if the parameter λ is chosen by

λ =
S1(f)

ε
. (11)

The resulting noise does not need to be added directly to the function result. It

can also be added in a distributed manner [20, 35] when each contributing party i

adds i.i.d. noise Gλ,N defined by

Pr[Gλ,N = x] = G1
1/N,λ(x)−G2

1/N,λ(x), (12)

where G1 and G2 are two i.i.d. gamma distributions with identical shape parameter

1/N and scale parameter λ. Then

Pr[nt = x] =
N∑

i=1

Gλ,N (x) = Lapλ(x). (13)

Multi-resolution Secure Aggregation
In this section the combination of the wavelet transform with homomorphic encryp-

tion is presented. The principal scheme is shown in Fig. 2. First, the basic approach

with only one aggregator is presented and second, it is shown that this approach

can easily be extended to multiple aggregators.

Principal Secure Aggregation Scheme

Homomorphic encryption is applied to each resolution separately with a different

pair of keys (pkr, skr) for each resolution r. The resulting signal m is the sum of

all signals mi (each of which has a maximum resolution of R) at resolution r ≤ R,
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whereby W (·) denotes a wavelet transformation. The collector node can perform

aggregation (i.e., multiply) in the encrypted domain, i.e., it does not have any keys.

This ensures that the aggregating node cannot get information about the loads of

its children, e.g., by divisions.

Basic Approach

The basic approach covers a number of smart meters and a single aggregator. Writ-

ing the principal scheme mathematically yields the following calculation of the ci-

phertext c

c =
∏

i

E (Tr (W (mi))) mod n2. (14)

The ciphertext c is decrypted by the aggregator by

m = W−1 (D (c) mod n) . (15)

Using this procedure, the wavelet transformation is compatible with homomorphic

encryption, i.e., the property that the message m equals the sum of the messages is

preserved (choosing r = R). Even more, choosing r ≤ R, the decrypted message m

equals the sum of the messages of resolution r:

m = W−1

(
D

(∏

i

E (Tr (W (mi))) mod n

))
=
∑

i

mr
i mod n. (16)

The aggregator gets the product of the encrypted messages and can therefore not

extract any information about the individual messages. However, it can calculate

the sum of the messages which is the information needed, e.g., for load forecasting.

Note again that the product of the ciphertexts is calculated in either a distributed

way by the smart meters or by a data concentrator and not by the aggregator (see

Section Topology). The number n must be chosen depending on the desired security

level. It further determines the aggregation group size, since
∏
iE (Tr (W (mi))) <

n2 and D (
∏
iE (Tr (W (mi)))) < n. In Section Space considerations the issue of

aggregation group sizes is discussed in detail. For the sake of readability the modulus

parts of the calculations are omitted in the following proof.

Proof Without loss of generality two messages are considered. To simplify the anal-

ysis the notation yi := Tr (W (mi)) is used, so E (Tr (W (mi))) = E(yi). The aggre-

gator calculates the signal W−1(D(c)). Using the fact that the ciphertext c is the

product of the individual ciphertexts and the homomorphic encryption property

leads to

W−1 (D (c)) = W−1 (D (c1c2))

= W−1 (D (E (y1)E (y1))) (17)

= W−1(y1 + y2)

112



Knirsch et al. Page 10 of 22

Substituting the yi, using the linearity of the wavelet transform and the definition

of mr yields

W−1 (D (c)) = W−1 (Tr (W (m1)) + Tr (W (m2))) (18)

= W−1 (Tr (W (m1))) +W−1 (Tr (W (m2)))

= mr
1 +mr

2

So in general for N different messages and ciphertext c =
∏
i ci, the desired property

(16)

W−1 (D (c)) =
N∑

i=1

mr
i . (19)

is obtained.

Multiple Aggregators

An example use-case scenario is the use of aggregated load information for energy

monitoring by the network operator, as, e.g., suggested by [17]. The approach pro-

posed here adds an additional layer of flexibility by making the aggregates available

at different resolutions and only grant access to parties on the resolutions they

need to fulfill a specific task. In combination with suitable key management, this

approach implements the “need-to-know” principle of access for aggregated signals.

The secure aggregation scheme presented above can be extended to support multi-

ple aggregators. Each aggregator receives data in a certain resolution. This is easily

achieved by encrypting with different keys at the collector node.

Multi-resolution Masking
In this section the multi-resolution masking approach is presented. The principal

scheme is shown in Fig. 3. After briefly recapitulating the principal masking scheme,

first, the basic approach for one aggregator is presented and second, this approach is

extended to multiple aggregators receiving data in different resolutions. The latter

is especially useful for application scenarios such as settlement and profiling, where

different parties should be provided information in different resolutions.

Principal Masking Scheme

Each smart meter SMi calculates at each time t = 0 . . . T a masked value m̃i,t by

adding a random share si,t to its measured value mi,t. Upon spatial aggregation the

shares si cancel each other out and the aggregator receives an unmasked sum. Note

that in the following, operations involving masking of type a+b mod κ are written

as a+ b, i.e., the modulo parts are omitted for the sake of brevity and readability.

This approach can be enhanced by allowing to reduce the temporal resolution of

the signal. Even more, a number of different resolutions can be provided within the

same bitstream and the key for a certain resolution is only given to the aggregator.

This is achieved by applying a wavelet transform to the signal. Hence, even if the

aggregator is given the full load curve data, it can only unmask the bitstream up

to the resolution for which it holds the key share.
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Basic Approach

The basic approach describes spatio-temporal masking with one aggregator.

Initialization. TTP agrees with all smart meters in the groupG = {SM1, . . . ,SMN}
on providing a resolution r of a total of T values to an aggregator A.

Masking. Simultaneously, all SMi and TTP calculate a random share si,t for t =

0 . . . T , as described for the principal masking above. Each smart meter now holds

a set of shares si and TTP holds a key share key.

All SMi now calculate a series of masked values m̃i = W (mi)+si and submit this

series to A. TTP calculates the key share keyr for the resolution r of its key share

by Tr(key) and submits this to A. Note that the wavelet transform is only applied

to the metered value, and before adding the random share.

Aggregation. After receiving both, the shares from all smart meters and the key

share, A can calculate the aggregated sum over all smart meters at a time resolution

r by

∑

i

mr
i = W−1

(
Tr

(∑

i

m̃i

)
+ keyr

)
. (20)

If the aggregator attempts to retrieve any resolution r+ > r, the result will be noisy

and useless. However, the aggregator may reconstruct arbitrary resolutions r− ≤ r
from the data.

Proof Proof that reconstructing a resolution r+ for a key with resolution r will be

noisy. The aggregator receives an aggregation of the masked meter values

∑

i

m̃i =
∑

i

(W (mi) + si) , (21)

and a key share keyr = Tr(key) for some resolution r. Applying this function Tr(·)
to a series of values replaces the highpass components by zeros. The key share and

the random shares for masking have the property that

∑

i

si + key = 0, (22)

but that the key share for a particular resolution r yields

∑

i

si + keyr 6= 0, (23)

since the highpass components are set to zero in the key share and do not cancel

out the corresponding components in the sum of the shares. Therefore,

W−1

(∑

i

(W (mi) + si) + key

)
=
∑

i

mi, (24)
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and

W−1

(∑

i

(W (mi) + si) + keyr

)
6=
∑

i

mi. (25)

However, after applying the function Tr(·) with the same parameter r to the equa-

tion, this yields Equation 20 which is the correct result for this particular resolution

r. Note that the wavelet transform is recursively applied to the resulting lowpass

band, i.e., any resolution r− < r can be retrieved, since applying Tr(·) to the key

share only replaces the highpass components by zero and only the lowpass compo-

nents remain for reconstructing the signal.

Note that this scheme fulfills both of our initial requirements: (i) individual contri-

butions are masked and the aggregator cannot gain any information without having

all the values from all SMi ∈ G; and (ii) the highest resolution that is accessible for

the aggregator is determined by the resolution of the key share.

Multiple Aggregators

The scheme we present in the following extends the basic approach with multi-

ple aggregators that receive data in different resolutions. Extending the scheme

requires more overhead and communication than for the secure aggregation. A sim-

ple approach would be to have multiple bitstreams in multiple resolutions for each

aggregator. The advantage of the MRA approach is, however, to have all the in-

formation for different resolutions in a single bitstream where no data expansion

occurs. Therefore, a different key share for every recipient is created with the trade-

off of distributing an aggregate of M − 1 key shares in addition to the actual key

share.

Initialization. For the enhanced scheme supporting multiple aggregators L =

{A1, . . . ,AM}, a TTP agrees with all smart meters in the groupG = {SM1, . . . ,SMN}
on providing a resolution rk of a total of T values to each aggregator Ak ∈ L.

Masking. As in the basic scheme, all smart meters SMi calculate a random share

si,t for t = 0 . . . T . Again, each smart meter now holds a set of shares si, calculates

the series of masked values m̃i = W (mi) + si and submits this series to all aggre-

gators Ak ∈ L. TTP calculates a total of M (number of aggregators) key shares

key1, . . . , keyM . For each key share k = 1 . . .M , TTP further calculates the resolu-

tion rk by keyrkk = Trk(keyk) and submits this to Ak. It further submits the sum of

all other key shares
∑
i 6=k keyi to Ak.

Aggregation. After receiving both, the shares from all smart meters and the set of

key shares, each Ak ∈ L can calculate the aggregated sum over all smart meters at

a time resolution rk by

∑

i

mrk
i = W−1


Tr

(∑

i

m̃i

)
+ keyrkk + Tr


∑

i 6=k
keyi




 . (26)
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As for the basic approach, both of our initial requirements are fulfilled: (i) individual

contributions are masked and none of the aggregators can gain any information

without having all the values from all SMi ∈ G and the sum of all other key shares∑
i 6=k keyi; and (ii) the highest resolution that is accessible for each aggregator is

determined by the resolution of the individual key share. These requirements are

fulfilled due to the properties of the masking approach as introduced in Section

Masking and formally shown in Section Basic Approach.

Proof of Correctness

In the following it is shown that applying the wavelet transform to a meter value

and masking can be combined in order to provide a certain resolution only. This

proof is – for simplicity and without loss of generality – for a single smart meter and

a single aggregator. The proof also applies to multiple smart meters and multiple

aggregators. The only difference is that instead of a single meter value, share and key,

respectively, a (spatially) aggregated sum of values is used. For multiple aggregators

the sum of all other key shares is also required as shown in the previous section.

Proof Proof for a single aggregator that it is receiving mr
i at the end of the above

masking scheme. Starting from

W (mi) + si︸ ︷︷ ︸
SMi

+ key︸︷︷︸
TTP

= W (m̂i)︸ ︷︷ ︸
A

, (27)

where the braces indicate what the smart meter and the TTP calculate, respectively,

and what the aggregator receives at the end of the protocol, Tr ◦W−1 is applied on

both sides of the equation:

W−1 (Tr (W (mi) + si + key)) = W−1 (Tr (W (m̂i))) . (28)

Due to the linearity of both, the wavelet transform and the function Tr(·) this is

equivalent to

W−1 (Tr (W (mi))) +W−1 (Tr (si) + Tr (key)) = m̂r
i . (29)

Substituting mr
i = W−1 (Tr (W (mi))), s

r
i = Tr (si) and keyri = Tr (key) results in

mr
i +W−1 (sri + keyrt ) = m̂r

i . (30)

Given the property of masking, shares cancel each other out by sri + keyr = 0, and

therefore mr
i + W−1 (0) = m̂r

i . This is obviously equivalent to mr
i = m̂r

i , i.e., the

aggregator only receives a certain resolution mr
i of the original meter value mi.

Multi-resolution Differential Privacy
In this section, it is shown that the wavelet approach can be combined with an

additional differential privacy method. The benefit of this approach is an additional

ε-differential privacy guarantee (Equation 7) for the resulting aggregated signal.
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Combining Wavelets and Differential Privacy

Combining differential privacy in a distributed way with wavelets, only guarantees

differential privacy for the sum, but not for the individual signals. Therefore, com-

bining differential privacy with wavelets alone, would not enhance privacy so that

the combination with homomorphic secure aggregation is needed. Similar to the

masking approach, the combination with the differential privacy method requires a

distributed addition and later summation of random values. The scheme is described

in Fig. 2 and leads, using the additive homomorphic property of the encryption, to

the following intermediate result.

f̃ = W−1

(
D

(
N∏

i=1

crii

))
= W−1

(
N∑

i=1

wrii

)
= W−1

(
N∑

i=1

(Tri (W (mi)) +Gλ,N )

)
.

(31)

The additional use of homomorphic encryption is not the only difference to mask-

ing. In contrast to masking the random values are drawn independently from each

other from a non-uniform probability distribution Gλ,N , denoted as block DP in

Fig. 2. Due to Equation 13 these distributedly generated probability distributions

sum up to the Laplacian distribution which is needed for differential privacy of the

aggregate profile

f̃ = W−1

(
N∑

i=1

Tri (W (mi)) + Lapλ

)
. (32)

Thus, if the noise parameter λ is chosen such that
∑N
i=1 Tri (W (mi)) is ε-

differentially private, due to the postprocessing property of differential privacy, also

f̃ = W−1
(∑N

i=1 Tri (W (mi)) + Lapλ

)
is ε-differentially private. Finally, using the

linearity of W ,

f̃ =
N∑

i=1

mri
i +W−1(Lapλ), (33)

is shown to be a perturbed function of the smoothed consumption sum. This

smoothed consumption sum is ε-differentially private, if the Laplacian noise is set in

the right manner. Therefore, in principle the wavelet decomposition is compatible

with differential privacy.

Another difference to the presented masking scheme is that the noise is added to

the restricted wavelet values instead of the unrestricted values W (mi) (Equation

32). However, since several different resolutions occur, setting the right amount of

noise λ is not trivial and remains a task for future research. First preliminary steps

in that direction show that it is possible to derive a choice for λ which, however, only

provides differential privacy for a single resolution r. With such a noise differential

privacy can only be provided for a single resolution r and, due to the post-processing

property, all coarser solutions.
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Choice of Parameter λ

In this subsection we show how the parameter λ must be chosen by proving the

following theorem.

Theorem (choice of λ): The presented algorithm is ε-differentially private, if

(i) W is a tight frame; and (ii) parameter λ is chosen as

λ =

√
R
ε

argmax
mi,·

‖mi,·‖2 , (34)

where R denotes the number of coefficients up to resolution r = d− q.
Note that R consists of a fraction of 2−q samples compared to the original load

curve. The smaller the resolution r, the smaller λ and therefore the added noise is

chosen.

Proof First, the situation of this algorithm must be properly mapped into the dif-

ferential privacy setting. Note that the term w̃r of the algorithm can be rewritten

as

w̃r =
N∑

i=1

(
Tr (W (mi)) + G1

1/n,λε
(x)−G2

1/n,λε

)
. (35)

Due to the divisibility property, the sum of the Gamma-distributions yield the

Laplace distribution. Thus, we have

m̃r = W−1(w̃r) = W−1 (ML(m, f(·), ε)) = W−1
(
f(m) + Lapλε

)
. (36)

If we manage to prove differential privacy for our choice of f , the proof is fin-

ished since a function applied to a differentially private mechanism can not de-

stroy the differential privacy property (closure under post-processing property of

differential privacy). Therefore, if w̃r is ε-differentially private this also holds for

m̃r = W−1(w̃r).

In order to prove differential privacy for our choice of f , we will show that the

choice of λ ensures that it is at least as big as the one of theorem Differential

Privacy, whose application then proves differential privacy. Since m and m′ differ

in a single household’s entry we can write without loss of generality that m =

(m1,·, . . . ,mN,·,mN+1,·) = (m′,mN+1,·). Since in Theorem Differential Privacy a 1-

norm is needed instead of a 2-norm, first the transition is done using the inequality

‖x‖2 ≥ ‖x‖1 /
√
R.
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Note that this inequality can itself be proven by applying the Cauchy-Schwarz

inequality to 〈1, |x|〉. Together with the linearity of Tr and W this yields

‖f(m)− f(m′)‖1 ≤
√
R‖f(m)− f(m′)‖2 (37)

=
√
R
∥∥∥∥∥
N+1∑

i=1

Tr (W (mi,·))−
N∑

i=1

Tr (W (mi,·))

∥∥∥∥∥
2

(38)

=
√
R
∥∥∥∥∥Tr

(
W

(
N+1∑

i=1

mi,· −
N∑

i=1

mi,·

))∥∥∥∥∥
2

(39)

=
√
R‖Tr (W (mN+1,·))‖2 (40)

The restriction to a smaller resolution is equivalent to setting the higher reso-

lutions to zero. Therefore the restriction Tr decreases the norm while the wavelet

transformation does not change it due to our restriction of using only transforma-

tions with the tightness property

‖f(m)− f(m′)‖1 ≤
√
R‖W (mN+1,·)‖2 (41)

=
√
R‖mN+1,·‖2 . (42)

Finally, this equation directly yields

λ =

√
R
ε

argmax
mN+1,·

‖mN+1,·‖2 (43)

≥ 1

ε
argmax
m,m′

‖f(m)− f(m′)‖1 (44)

=
S1(f)

ε
. (45)

Thus, theorem Differential Privacy can be applied and proves differential privacy

for f .

Evaluation
In this section we evaluate the proposed PETs in combination with MRA with

respect to the security features, cost and complexity and real-world applicability.

Applications

In this paper, multi-resolution secure aggregation has been introduced for both, a

single aggregator and multiple aggregators. Given the building blocks of the additive

homomorphic Paillier cryptosystem, masking and differential privacy in combina-

tion with the wavelet transform, a scheme can be constructed that allows to encrypt

different resolutions with different keys while maintaining a single bitstream. In Sec-

tion Application Scenario, three typical application scenarios for smart grid have

been introduced: (i) Settlement and Profiling; (ii) Network Monitoring; and (iii)

Billing.

Settlement and profiling require data in a comparably low resolution, but spatially

aggregated over a number of households for determining forecasts and training mod-

els. Network monitoring, by contrast, still works with the aggregate, but requires
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a much higher temporal resolution. Both, homomorphic encryption and masking

can be used for aggregating over a number of smart meters, e.g., from households

connected to the same substation or participants belonging to the same consump-

tion group (residential/industrial). By adding the ability to selectively decrypt a

subset of multiple resolutions, the same aggregated bitstream, but with different

keys, can be provided to both, the utility provider for forecasts and model training

and the network operator for network monitoring. This reduces the overhead for

managing and transferring various bitstreams simultaneously to distinct recipients.

While network monitoring might require very high accuracy (e.g., voltage levels

must remain in a narrow band), for settlement and profiling, customer privacy can

be even enhanced by adding differential privacy in order to prevent the detection

of the presence of a single household in the aggregate, while at the same time pro-

viding a certain guaranteed ε-differential privacy-level. While differential privacy is

a compelling approach due to this property, it is not suitable for applications that

require the exact aggregate.

Billing and dynamic pricing will require data at high resolutions and generally

not aggregated. Further, differential privacy is not a desired property for billing.

However, if in a dynamic pricing scenario, data in different granularity is needed

over the day (e.g., a stable night tariff and more dynamic tariffs at noon), the

multi-resolution approach allows to dynamically adjust the level of granularity of

the provided meter data.

Security Analysis

In this section a security analysis of the proposed PETs is conducted. We consider a

honest-but-curious adversarial model, meaning the adversary follows the protocols

but tries to gain additional information.

Secure Signal Processing: For MRA with secure signal processing, an honest-

but-curious aggregator will not learn any information. Due to the additive homo-

morphic property of the cryptosystem, even at collector nodes all operations are

performed in the encrypted domain and the aggregator can only decrypt the sum.

Masking with Single Aggregator: For a total number of smart meters N >

1 and a single aggregator M = 1 the masking scheme preserves full privacy in

terms of spatial resolution and it preserves full privacy with respect to temporal

resolution. Given exactly one aggregator M = 1, the basic approach for multi-

resolution masking is applied. A receives a set of N masked values and a single key

share. By combining both, A can calculate the sum at a particular resolution. For

spatial aggregation privacy is preserved by the scheme proposed by Kursawe et al.

[9], i.e., the individual measurements are masked and the random shares cancel each

other out upon summation. The temporal resolution is limited by the resolution of

the key share. The privacy preserving feature of this approach has been discussed

in detail in Section Basic Approach. Section Proof of Correctness includes the proof

of correctness for the masking approach in combination with wavelets.

Masking with Multiple Aggregators: For a total number of smart meters

N > 1 and a total number of aggregators M = 2, the multiple aggregators approach

for multi-resolution masking is applied. Each aggregator Ak, k = {1, 2} receives a

set of N masked values, an individual key share keyr1 and keyr2, respectively and the
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sum of the keys of all other aggregators
∑
i 6=1 keyri = keyr2 and

∑
i 6=2 keyri = keyr1,

respectively. Therefore, each aggregator additionally holds the other aggregators

share in full resolution and thus privacy in terms of temporal aggregation is not

given anymore.

For a setting with M > 2 privacy is preserved, as the key shares of all other

aggregators are hidden in the sum. Therefore, the above limitation for M = 2 does

not apply, since
∑
i 6=k keyri 6= keyri for any i, k ∈ {1 . . .M}. This means that holding

all keys except for one does not yield a valid key. This assures that the aggregator

cannot learn anything beyond the resolution of the key, which is formally shown in

Section Multiple Aggregators.

Differential Privacy: It is a proven property of differential privacy, that the

aggregator has no means to decrease privacy of the aggregated signal by any kind

of postprocessing. If differential privacy would be combined with wavelets only, the

aggregator could, however, inspect a single smart meter’s consumption profile. A

single profile is only protected by Gamma-distributed noise which does not provide

differential privacy. Therefore, the mechanism achieving differential privacy must

include a way to protect the summation operation by using a secure aggregation

scheme, e.g., as described in Section Multi-resolution Secure Aggregation.

Space considerations

When using homomorphic encryption for aggregation, the modulus n determines

the amount of data that can be stored within one encrypted packet. Let’s denote

the number of bits needed to represent a wavelet coefficient by m̄ and the number of

values used for the wavelet transform by T . The sum of two coefficients will take up

m̄+1 bits of space. More generally, the sum of u coefficients requires dlog2(u) + m̄e
bits. If encrypting each wavelet coefficient individually, i.e., using T encryptions,

the modulus of n bits allows to sum up a total of u ≤ 2n−m̄ wavelet coefficients,

since n = dlog2(u) + m̄e, i.e., u represents the total number of wavelet coefficients

from household measurement values that can be aggregated for a given modulus.

Setting T = 256, n = 1024 and m̄ = 16, this allows for the aggregation of

more than 2 · 10303 households but requires 256 encryptions. However, in practice

such large aggregation groups are not needed. Instead of encrypting each coefficient

individually, the available space of n bits can be exploited better when using data

packing [36]. Values are shifted to a certain bit range, such that a number of values

can be packed within a single encryption. The available space is therefore split

into p packets of fixed size n′, i.e., p = n
n′ . This allows for n′ = dlog2(u′) + m̄e a

number of u′ ≤ 2n
′−m̄ wavelet coefficients per packet and a total of u′ · p wavelet

coefficients of household measurement values per encryption. This results in only

T ′ = T
p encryptions.

Setting n = 1024, m̄ = 16 and n′ = 32, this results in p = 32 packets and still

allows to aggregate up to 65536 households, but with only a fraction (T ′ = 8) of

the number of encryption operations compared to the above approach where each

coefficient is encrypted separately. In practice, these values have to be chosen with

respect to the number of households that will be aggregated.
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Cost and complexity

Both methods, secure signal processing with the Paillier cryptosystem[1] and mask-

ing have been implemented together with the wavelet transform. The proof of con-

cept implementation is built on Oracle Java 1.8 and tested on a HP Z230 workstation

with 8 GB RAM and an Intel Xeon CPU (3.4 GHz). Results are shown in Table

2: Each value represents the execution time for a single load curve consisting of 96

values for the wavelet transform combined with different encryption settings and

masking, averaged over 400 load curves with 100 encryptions/additions for mask-

ing each (acquisition of the load curve and key generation as well as precalculating

the masking shares are not considered in the timing results). WAV denotes the

wavelet transform only, without any encryption or masking applied. AES denotes

the wavelet transform followed by encryption with the symmetric AES cipher with

a 256 bit key for each subband. HYB denotes hybrid encryption, which adds RSA

2048 bit public key encryption of the AES keys with a different public key for each

subband. PAI-n denotes Pailler encryption with a module of n bits and a different

key for each subband. For practical applications and according to [37] a module of

at least 2048 bits should be chosen. Finally, MA denotes the masking of values.

It can be seen that by using a lifting implementation the computational overhead

of the wavelet transformation is negligible compared to the encryption step. Ho-

momorphic encryption comes at the cost of a significant increase in computational

overhead compared to conventional encryption. The results show that the com-

putational demands grow exponentially with the module size. Although the used

implementation of Paillier is not optimized and could be improved considerably in

terms of efficiency, it is clear that running homomorphic encryption on smart meter

hardware will provide a challenge: While AES encryption only takes 1.25 ms, for the

used (non-optimized) implementation, Paillier encryption with a 2048 bit module of

a load curve with 96 values takes approximately 52 seconds. Further, it can be seen

that masking is highly efficient in terms of computation time when compared to

encryption, however, at the cost of losing the entire aggregate when a single smart

meter fails.

Conclusion and Outlook
The approaches proposed in this paper allow to get both, temporal and spatial

aggregation by combining the wavelet transform with homomorphic encryption,

masking and differential privacy. In this paper it has been shown, that it is possible

to combine homomorphic encryption, masking and differential privacy with the

Haar wavelet transform. Furthermore, a protocol has been sketched for addressing

different aggregators with different resolutions of the measured time series while

still maintaining a certain level of privacy. For masking, future work will focus on a

scheme that is more error-resilient and still yields the correct result even if a subset

of smart meters fail.
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Figures

Figure 1 Examples of two different topologies (star, left and tree, right). In the star topology the
data concentrator (DC) collects measurement values from the smart meters (SM) and forwards
the aggregated values to the aggregators (A). In the tree topology measuring values are
aggregated in a hop-by-hop manner by the smart meters.

Figure 2 MRA aggregation scheme for secure aggregation with homomorphic encryption and
multiple aggregators. The component “DP” representing the addition of Gamma distributed noise
is only needed if additionally differential privacy wants to be achieved. In this figure wi :=W (mi)
denotes the wavelet transform of mi.

Figure 3 MRA aggregation scheme for masking and multiple aggregators. In this figure
wi :=W (mi) denotes the wavelet transform of mi and w̃i :=W (mi) + si denotes the masked
values of wi.

Tables
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j/i 1 2 3 . . . N
1 −H(K2,1||t) −H(K3,1||t) . . . −H(KN,1||t)
2 +H(K1,2||t) −H(K3,2||t) . . . −H(KN,2||t)
3 +H(K1,3||t) +H(K2,3||t) . . . −H(KN,3||t)
...

...
...

...
. . .

...
N +H(K1,N ||t) +H(K2,N ||t) +H(K3,N ||t) . . .∑

j s1,t s2,t s3,t . . . sN,t

Table 1 In the method proposed by [9], shares cancel each other out pairwise, since si + sN−i = 0.
The columns correspond to N smart meters, the last row is the share created for each smart meter
for one point in time t.

WAV AES HYB PAI-2048 PAI-4096 MA
t < 0.001 0.07 0.7 5, 219 38, 700 < 0.001
σ < 0.001 0.02 0.01 25.4 51 < 0.001

Table 2 Execution time t in milliseconds and standard deviation σ for
transforming/encrypting/masking a single load curve (average over 400 load curves with 100
encryptions each)
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Abstract: In a smart grid, data and information are transported, transmitted, stored, and processed with various stake-
holders having to cooperate effectively. Furthermore, personal data is the key to many smart grid applications
and therefore privacy impacts have to be taken into account. For an effective smart grid, well integrated solu-
tions are crucial and for achieving a high degree of customer acceptance, privacy should already be considered
at design time of the system. To assist system engineers in early design phase, frameworks for the automated
privacy evaluation of use cases are important. For evaluation, use cases for services and software architectures
need to be formally captured in a standardized and commonly understood manner. In order to ensure this com-
mon understanding for all kinds of stakeholders, reference models have recently been developed. In this paper
we present a model-driven approach for the automated assessment of such services and software architectures
in the smart grid that builds on the standardized reference models. The focus of qualitative and quantitative
evaluation is on privacy. For evaluation, the framework draws on use cases from the University of Southern
California microgrid.

1 INTRODUCTION

In a smart grid a number of stakeholders (actors) have
to cooperate effectively. Interoperability has to be as-
sured on many layers, ranging from high level busi-
ness cases to low level network communication. Data
and information is sent from one actor to another in
order to ensure effective communication. Further-
more, the exchange of vast amounts of data is crucial
for many smart grid applications, such as demand re-
sponse (DR) or electric vehicle charging (Cavoukian
et al., 2010), (Langer et al., 2013). However, this
data is also related to individuals and privacy issues
are an upcoming concern (McDaniel and McLaugh-
lin, 2009), (Simmhan et al., 2011a). Especially the
combination of data, e.g., meter values and prefer-
ences for DR can exploit serious privacy threats such
as the prediction of personal habits. In system engi-
neering, privacy is a cross-cutting concern that has to
be taken into account throughout the entire develop-
ment life-cycle, which is also referred to as privacy by
design (Cavoukian et al., 2010).

Model-driven privacy assessment is especially
useful when applied in software engineering. In
(Boehm, 2006), the author thoroughly investigates the
phases in software engineering and the expected costs

for error correction and change requests. Costs dou-
ble with every phase and once an application or a ser-
vice is delivered, the additional adding of crosscutting
concerns such as privacy is tied to enormous costs. As
a result, design time privacy assessment is preferred
in early phases of the software engineering process.
Therefore, a framework is needed to (i) model the
system, including high-level use cases and concrete
components and communication flows; and (ii) to as-
sess the system’s privacy impact using expert knowl-
edge from the domain. Related work in the domain
of automated assessments in the smart grid mainly
focuses on security aspects and is not primarily con-
cerned with privacy and the modeling in adherence to
reference architectures.

In this paper we address these issues and present
an approach for the model-driven assessment of pri-
vacy for smart grid applications. The framework pro-
posed in this paper is designed to assist system engi-
neers to evaluate use cases in the smart grid in an early
design phase. For evaluation only meta-information
is used and no concrete data is needed. We use Data
Flow Graphs (DFG) to formally define use cases ac-
cording to a standardized smart grid reference ar-
chitecture. The assessment is based on an ontology
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driven approach taking into account expert knowledge
from various domains, including customer views on
privacy as well as system engineering concerns. The
output is a set of threats and a quantitative analysis
of risks, i.e., a number indicating the strength of that
threat. To evaluate the system we draw on insights
from the University of Southern California microgrid.
The primary contributions of this paper are (i) the use
of DFGs to model use cases in the smart grid; (ii) the
usage of DFGs for a quantitative privacy assessment;
and (iii) the use of an ontology driven approach to
capture domain knowledge.

The remainder of this paper is structured as fol-
lows: In Section 2 related work in the area of smart
grid reference architectures, privacy evaluation and
automated assessment tools is presented. In Section
3 the architecture of the proposed framework and its
components are described. This includes the concept
of DFGs for modeling use cases in the smart grid, the
principal design of the ontology and the mapping of
data flow graphs to the ontology, the methodology for
defining threat patterns and finally, how these patterns
are matched to use cases. The framework is evalu-
ated with a set of representative use cases in Section
4. Section 5 summarizes this paper and gives an out-
look to further work in this area.

2 RELATED WORK

In this section related work in the field of smart grid
reference architectures, privacy evaluation and assess-
ment as well as automated assessment tools are pre-
sented. Often, privacy and security are used inter-
changeably. For the purpose of this paper we refer to
privacy as legally accessing data but not using it for
the intended purpose. Security, by contrast, would in-
volve the illegal acquisition of data. In both cases, the
well established and widely understood terminology
from security assessment is used, i.e., threat, attacker,
vulnerability and countermeasure.

2.1 Reference Models

Stakeholders in the smart grid come from historically
different areas, including electrical engineering, com-
puter science and economics. To ensure interoperabil-
ity and to foster a common understanding, standard-
ization organizations are rolling out reference mod-
els and road maps. In the US the NIST Framework
and Roadmap for Smart Grid Interoperability Stan-
dards (National Institute of Standards and Technol-
ogy, 2012) and in the EU the Smart Grid Reference
Architecture (CEN, Cenelec and ETSI, 2012b) were

published. The European Smart Grid Architecture
Model (SGAM) is based on the NIST Framework, but
extends the model to better meet European require-
ments, such as distributed energy resources. In this
paper we investigate use cases from the US. In partic-
ular we are focusing on use cases from the University
of Southern California microgrid and we thoroughly
discuss a typical DR use case. Investigations have,
however, shown that for the purpose of this project
all use cases from the US can be directly mapped to
the European SGAM without the loss of information.
Therefore we propose the utilization of the SGAM for
two reasons: (i) the SGAM builds on the NIST model
and allows to capture both, use cases from the US and
the EU; and (ii) with the SGAM Toolbox (Dänekas
et al., 2014) present a framework for modeling use
cases based on the SGAM; in that way formally mod-
eled use cases are the input for the evaluation.

2.2 Privacy

Privacy (and security) issues in the smart grid are ad-
dressed by standards in the US (National Institute of
Standards and Technology, 2010) and the EU (CEN,
Cenelec and ETSI, 2012a). Privacy, in specific, has no
clear definition. According to a thorough analysis in
(Wicker and Schrader, 2011), privacy can be defined
as the right of an individual’s control over personal
information. More formally this is defined by (Barker
et al., 2009) in a four dimensional privacy taxonomy.
The dimensions are purpose, visibility, granularity
and retention. The purpose dimension refers to the
intended use of data, i.e., what personal information
is released for. The purpose ranges from single, a spe-
cific use only, to any. Visibility refers to who has per-
mitted access. The range is from owner to all/world.
Granularity describes to what extent information is
detailed. The retention dimension finally is the period
for storage of data. In any case, privacy is assured
if all these dimensions are communicated clearly and
fully disclosed to data owners and the compliance to
the principles is governed. Hence, data is collected
and processed for the intended purpose only, and the
degree of visibility, granularity and retention is at the
necessary minimum.

2.3 Assessment Tools

To measure the degree to which systems adhere to pri-
vacy requirements, approaches for automated qualita-
tive assessments (resulting in statements of possible
privacy impacts due to privacy critical actions or rela-
tionships) and quantitative assessments (resulting in a
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numeric value that determines the risk of privacy im-
pacts) exist.

In (Ahmed et al., 2007), the authors present an ap-
proach towards ontology based risk assessment. The
authors propose three ontologies, the user environ-
ment ontology capturing where users are working, i.e.,
software and hardware, the project ontology capturing
concepts of project management, i.e., work packages
and tasks and the attack ontology capturing possible
attacks, e.g., non-authorized data access, virus distri-
bution or spam emails. For a risk assessment, attacks
(defined in the attack ontology) are matched with in-
formation available from the other ontologies. For a
quantitative assessment, the annual loss expectancy is
calculated by combining a set of harmful outcomes
and the expected impact of such an outcome with the
frequency of that outcome. The approach presented
by Ahmed et al. is designed for security issues and
does not explicitly cover privacy assessments.

In (Kost et al., 2011) and (Kost and Freytag, 2012)
an ontology driven approach for privacy evaluation is
presented. The aim of these papers is to integrate pri-
vacy in the design process. High-level privacy state-
ments are matched to system specifications and im-
plementation details. The proposed privacy by design
process includes the following phases: identification
of high-level privacy requirements, translation of ab-
stract privacy requirements to formal privacy descrip-
tions, realization of the requirements and modeling
of the system and analyzing the system by match-
ing formal privacy requirements to the formal system
model. Contrary to our work this approach is not fo-
cused on use cases in the smart grid and therefore does
not model systems based on a standardized reference
architecture.

A workflow oriented security assessment is pre-
sented in (Chen et al., 2013). This approach is not
based on ontologies but on argument graphs. The pre-
sented framework uses security goal, workflow and
system description, attacker model and evidence as an
input. This information is aggregated in a discrimina-
tive set of argument graphs, each taking into account
additional input. Nodes in the graph are aggregated
using boolean expressions and the output is a quanti-
tative assessment of the system. Instead of focusing
on workflow analysis using graphs, we model systems
as a whole in adherence to the standardized reference
architecture using an ontology driven approach to in-
tegrate expert knowledge.

A considerably broader approach for an assess-
ment tool that incorporates both, the balancing of pri-
vacy requirements and operational capabilities is pre-
sented in (Knirsch et al., 2015). This work presents
a graph based approach that allows the modeling of

systems with respect to the operational requirements
of certain nodes (e.g. metering at a certain frequency)
and the impact of privacy restrictions on subsequent
nodes. The authors further present an optimum bal-
ancing algorithm, i.e. to what extent restrictions
gained from privacy enhancing technologies and the
necessary operational requirements can be combined.
However, this needs sufficient information on how
privacy is impacted by certain use cases which is pro-
vided by this work.

3 ARCHITECTURE

This section is dedicated to an architectural overview
as well as a detailed discussion of the components.
Figure 1 shows the principal components of the pro-
posed architecture, including input and output. For
a privacy assessment, the framework accepts two in-
puts, a use case UC modeled as a DFG in adherence
to the SGAM and a set of threat patterns T . In or-
der to qualitatively analyze this input the use case is
mapped to individuals – i.e., instances of classes – of
an ontology (sometimes referred to as the assertion
box, ABox (Shearer et al., 2008)). The correspond-
ing class model (sometimes referred to as the termi-
nological box, TBox (Shearer et al., 2008)) is based on
the SGAM. This qualitative analysis provides explicit
and implicit information about the elements from the
DFG: actors, components, information objects and
their interrelation. The results of the qualitative as-
sessment are the input for the subsequent quantitative
analysis. The output of that analysis is finally a class c
from a set of classes C that the use case is assigned to.
A threat pattern t is used to describe potential threats,
where t ∈ T and a class c represents a subset of threats
T ∗. A class c describes how threat patterns and the
qualitative results are combined, which is presented
as a threat matrix as an output. Note that the terminol-
ogy threat matrix is borrowed from security analysis
and that the output is not a matrix in the mathematical
sense. A threat matrix compares a set of threats and
the risk for these threats. Formally, the classifier is de-
fined as Assign UC to ci if t ∈ T ∗i ,∀t ∈ T,1≤ i≤ {C}.
A threat exploits a set of vulnerabilities and is miti-
gated by a set of countermeasures. Each threat pat-
tern can be evaluated for itself or multiple patterns
are combined to classes of threats. A vulnerability
is any kind of privacy impact for any kind of stake-
holder or actor. Threats are evaluated using the attack
vector model which is adapted from security analy-
sis and defined in detail later in this paper. In gen-
eral, an attack is feasible, if given (i) an attacker; (ii)
a privacy asset; and (iii) the resources to perform the
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Smart Grid Architecture 
Model (SGAM)

«Input»
Data Flow Graph (DFG)

Ontology TBox Ontology ABox

Qualitative Analysis

«Input»
Threat Patterns

Pattern Matching Quantitative Analysis

«Output»
Threat Matrix

Figure 1: Architecture overview showing input, output,
components and principal information flows of the frame-
work.

attack. Hence, a receiver or collector of privacy crit-
ical data items is potentially able to access these as-
sets and to use them in a way not corresponding to
the original purpose. This is formally represented as
〈data access,privacy asset,attack resources〉.

3.1 Data Flow Graphs

In order to qualitatively and quantitatively assess the
privacy impact of a use case a formalization is cru-
cial. In this section we introduce the concept of Data
Flow Graphs (DFG) for the smart grid based on a
model-driven design approach originally presented in
(Dänekas et al., 2014) and (Neureiter et al., 2013).
DFGs formally capture all aspects of use cases in the
smart grid in adherence to the SGAM. They contain
high-level business cases as well as detailed views of
a system’s characteristics such as encryption and pro-
tocols. DFGs are a powerful tool as they allow both,
easy modeling and full adherence to the reference ar-
chitecture. Furthermore, in the graph relationships
between actors, as well as the transported informa-
tion objects (IO) are modeled. Nodes in a graph rep-
resent business actors, system actors or components
and edges represent data flows annotated with IOs. In
accordance to the standard (CEN, Cenelec and ETSI,
2012b), DFGs consist of the following five layers:

1. Business Layer. In a DFG this layer is a high level
description of the business case. Business actors,
their common business goal and their business re-
quirements are modeled.

2. Function Layer. The function layer details the
business case by mapping business actors to sys-
tem actors and by dividing the high level business
goals in use cases and steps.

3. Information Layer. This layer describes informa-
tion flows in detail. System actors communicate
to each other through IOs. IOs are characterized
by describing information attributes on a meta-
level. An IO is one of the key data used for clas-
sification and is discussed in greater detail below.

4. Communication Layer. The communication layer
is a more detailed view on communication taking
into account network and protocol specifications.

5. Component Layer. In a DFG this layer contains
concrete components. Therefore system actors
are mapped to components and devices.

Each layer is a directed graph. Both, nodes and
edges can have attributes. The semantics, however,
are varying. For instance, where attributed edges in
the business layer describe a business case, in the in-
formation layer concrete meta-data of communication
flows are captured. Even though implicitly covered in
the model presented above, for automated evaluation
we introduce two additional layers: Between business
and function layer we include the Business Actor to
System Actor Mapping and between communication
and component layer the System Actor to Component
Mapping. This allows to capture the complexity of
use cases on different levels while still maintaining
the cross-layer relationship between high-level busi-
ness actors and their representation as components.
These layers are directed graphs as well, with edges
indicating the mapping. The mapping defines a one
to many relationship from business actors to system
actors and from system actors to components. In the
European Smart Grid Reference Architecture with the
SGAM Methodology an approach for mapping use
cases to the reference model is suggested. DFGs build
on this methodology focusing on actors and their in-
terrelation. An implementation for modeling DFGs
in UML is available as the SGAM Toolbox1. Data
Flow Graphs contain explicit information (what is
modeled) and implicit information (what can be con-
cluded). Conclusions are drawn using ontology rea-
soning.

3.2 Ontology Design

The ontology driven approach for classification has
been chosen for two main reasons: (i) ontologies are
powerful for capturing domain knowledge explicitly;
and (ii) through logic reasoning (Shearer et al., 2008)
ontologies are a source for implicit knowledge. The
power of ontologies to formally capture knowledge
and how to draw conclusions is discussed in (Guar-
ino et al., 2009). The power of reasoning for gaining

1http://www.en-trust.at/downloads/sgam-toolbox/
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additional, implicit knowledge can easily be outlined
with two examples: In a DFG, information objects
may be sent from an actor A to an actor B and from
there to another actor C. This is explicitly modeled in
the DFG. A reasoner in an appropriate ontology, how-
ever, may conclude directly the transitivity, hence that
actor A in fact sends information to actor C. Another
example is concerned with compositions of data. An
information object I1 may contain sensitive data and
it may be used by an actor D to compose another in-
formation object I2 that is sent to a collecting actor
E. It is not explicitly modeled in the DFG, but it can
be concluded by the reasoner, that E receives an in-
formation object which is of type sensitive data since
I2 is a composition of I1. The ontology we propose
here is designed to capture all aspects of a DFG. The
ontology is modeled in OWL2 and class expressions
are stated in Manchester Syntax3. Therefore, all com-
ponents available for modeling DFGs are represented
either directly or as an abstraction in the ontology (re-
ferred to as the TBox). The DFG is represented in
the ontology as a set of individuals (referred to as
the ABox). Figure 2 depicts the principal classes and
relationships of the ontology and therefore the most
relevant concepts for mapping a DFG to the ontol-
ogy. This view shows the main classes and relation-
ships for illustration purposes only; our current ontol-
ogy comprises more than 60 classes, data properties
and object properties. Crucial concepts represented
immediately, include which actor sends or receives
which data and IO and how these IOs are composed.
Furthermore, a set of pre-classifiers is defined to de-
termine implicit knowledge.

These classifiers are OWL classes using an
equivalent class expression in Manchester Syntax.
For instance, to determine if some aggregation
consists of direct personal data, the following expres-
sion is used: Data and isAggregationOf some
DirectPersonalData. To determine the multiplicity
of the sending actor and if the data is a composi-
tion sent by many of such actors, more elaborate
expressions can be phrased: Data and isSentBy
some Actor and Multiplicity value "n" and
isCompositionOfMany some Data.

3.3 Threat Patterns

In this paper we evaluate the privacy impact on cus-
tomers, thus we identified the following list of typ-
ical high-level threats based on literature reviews
(Cavoukian et al., 2010), (Langer et al., 2013),
(Simmhan et al., 2011a). These threats have been

2http://www.w3.org/TR/owl-features/
3http://www.w3.org/TR/owl2-manchester-syntax/

Data Actor

Event Series BusinessCase

+sends+isSentBy

+isReceivedBy +receives

+isAggregationOf

+isCompositionOf

+hasBusinessCase

+isSubjectTo

Figure 2: Principal components of the ontology, showing a
subset of the relationships between actor and data.

modified in order to be more representative for the
use cases from the University of Southern California
microgrid that are investigated in this paper. Subse-
quently, IOs that may cause these threats are deter-
mined.
Customer Presence at Home. This privacy concern
is discussed in (Cavoukian et al., 2010). To poten-
tially determine a person’s presence at home, some
device in the customer premises is needed. This de-
vice collects data at a certain frequency, high enough
to have a resolution that allows to draw conclusions
on the energy usage of specific devices. Furthermore,
data collected from that device needs to be sent to an-
other actor (i.e., a utility). At the utility an individ-
ual or a system needs to have access to the data in an
appropriate resolution. Since we always assume that
data is accessed legally, we do not focus on unallowed
data access. Additionally, the total delay of the data
transmission is of relevance. If data is collected and
transmitted in almost real time the presence at home
can be determined immediately. If data is available
with a delay only, the analysis of past events and pre-
dictions might be possible. If this information is pub-
lished, an attacker might exploit this vulnerability in
order to break in the house.
Tracking Customer Position. This threat is espe-
cially interesting for electric vehicle charging. As-
suming the customer has some identification towards
the charging station, at least the location, a timestamp
and the amount of energy consumed will be recorded
for billing. Depending on the design of the infrastruc-
ture only little information will be sent to the opera-
tor or a very detailed profile of the customer is main-
tained. Here, the multiplicity of the actors is crucial
and the fact that different actors have access to the
same data. Attacks for this threat are described in
(Langer et al., 2013), e.g., using information for tar-
geted ads, for tracking movements to certain places or
to infer the income based on recharges.

3.4 Pattern Matching

Actual classification is done in the pattern matching
process. For each actor in the DFG and the ontology,
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respectively, the attack vector is determined, i.e., to
which resources does an actor have access and what
is the effort. If that shows feasible matching this
is seen as a threat. It can be retrieved immediately
from the ontology if an actor has access to a certain
IO. This is done by evaluating actor and data object
properties and by incorporating information from
the pre-classifiers. Furthermore, relationships on the
business layer and data properties such as encryption
are taken into account. The following, discriminative
set of classifiers is used to determine potential threats:
first, for each information object the data provider and
the data collector are determined (according to the
terminology defined in (Barker et al., 2009)) and it is
assessed who has access to the data. This yields a list
of three-tuples in the form 〈information object (IO),
data provider (DP), data collector (DC)〉. Then it is
determined if an information object either contains
sensitive or direct personal data (according to the
terminology defined in (The European Parliament and
the Council, 1995)). This yields another three-tuple
in the form 〈information object (IO), sensitive (S),
direct personal (DP)〉. Finally it is determined if the
attacker has actual data access, yielding one more
three-tuples in the form 〈information object (IO),
data collector (DC), access (A)〉. Data access
depends on the relationship of actors, on data res-
olution, retention and encryption. Matching these
tuples to each other results in the components of the
attack vector, recalling 〈data access, privacy asset,
attack resources〉 yields 〈〈IO,DP,DC〉, 〈IO,S,DP〉,
〈IO,DC,A〉〉. An exemplary attack vector for a
DR use case where DR preferences are sent to
the utility is 〈〈DR preferences,customer,utility〉,
〈DR preferences, false, false〉,
〈DR preferences,utility, true〉〉. This already provides
thorough qualitative analysis. It is possible to deter-
mine which actor can potentially threaten the privacy
of another actor. It is even possible to conclude
how and where this might happen. However, for
a quantitative assessment the risk for a particular
threat is calculated. While a qualitative assessment is
useful in supporting detailed system design decisions
and evaluation, for a very first outline of the overall
system characteristics, a quantitative value is much
more expressive. Further, providing a numeric
value for the system’s privacy impact helps to easily
compare and contrast proposed designs.

Risk is calculated as the product of the probability
of occurrence (PO) and the expected loss (EL). For the
set T ∗ a number of patterns tv,1 . . . tv,N and tc,1 . . . tc,M ,
respectively is defined. A pattern therefore contains
a set of conditions for vulnerabilities tv,i and counter-

measures tc,i. Conditions are SPARQL ASK queries4

that return either true or false if the pattern applies
or not. For brevity, t ′v denotes the number of vul-
nerabilities that apply, t ′c the number of countermea-
sures that apply and tv and tc denote the total num-
ber of vulnerabilities and countermeasures, respec-
tively. In this paper we propose the following ap-
proach for determining values for the probability of
occurrence PO(t ′v, t

′
c) and the expected loss EL(t ′v, t

′
c):

PO(t ′v, t
′
c) is determined by defining a plane that satis-

fies the following conditions: PO(t ′v = tv, t ′c = 0) = 1,
PO(t ′v = 0, t ′c = tc) = 0 and PO(t ′v = 0, t ′c = 0) = 1

2 .

This yields PO(t ′v, t
′
c) =

1
2 (

t ′v
tv
− t ′c

tc
+1). A linear model

is chosen due to its simplicity and might be extended
by more complex approaches in future. A condition
that is of type vulnerability increases EL(t ′v, t

′
c), a con-

dition of type countermeasure decreases EL(t ′v, t
′
c).

The value of EL(t ′v, t
′
c) is defined in the pattern. Risk

R is finally defined by R = PO(t ′v, t
′
c)EL(t ′v, t

′
c).

To feed in the results gained from the quali-
tative analysis, certain variables in the query can
be bound to instances. For example, given the
following fraction of a query (where usc denotes
the namespace prefix for actors and IOs in the
University of Southern California microgrid) $io
usc:isSentBy ?systemactor . ?systemactor
usc:isRealizationOf ?businessactor .
?businessactor a usc:BusinessActor to
determine if some information object is sent by
some business actor. It is now possible to bind
the variable $io to a concrete value as deter-
mined in the qualitative assessment, e.g., $io ←
InformationObject.CustomerName. This allows
to assess a particular impact on a particular in-
formation object or component/actor based on the
previously calculated attack vectors.

We developed generic patterns for typical threats,
i.e., such as the ones mentioned above. The frame-
work is, however, not limited to this set of patterns
and allows the definition of an arbitrary number of
additional patterns to meet the individual needs of the
application scenario. The output of the framework is
a threat matrix contrasting the results from the qual-
itative analysis and from the quantitative risk assess-
ment. For a UC, a threat matrix contains the attack
vector and the assigned risk for the determined class
c.

For illustrative purposes, the following listing
shows an example pattern for customer presence at
home. This includes the vulnerability device in cus-
tomer premises (exemplary assigned an EL of 4) and

4http://www.w3.org/TR/sparql11-query/
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the countermeasure aggregation of data from multiple
customers (exemplary assigned an EL of -6).
<Pattern name="customer presence at home">
<Vulnerability

name="device in customer premises">
<EL>4</EL>
<Condition>

?device x:isRealizationOf $ba .
$ba a x:BusinessActor .
?device x:Zone
"Customer Premises"ˆˆxsd:string

</Condition>
</Vulnerability>
<Countermeasure

name="aggregation of data from multiple
customers">

<EL>-6</EL>
<Condition>

$io x:manyAreAggregatedBy ?io2 .
?io2 x:isReceivedBy ?ba1 .
$io x:isRecevivedBy ?ba2
FILTER (?ba1 != ?ba2)

</Condition>
</Countermeasure>

</Pattern>

4 EVALUATION

For evaluating the framework new, previously unused
use cases are applied. The set of threat patterns and
their impact on privacy is based on the aforemen-
tioned literature reviews. We are therefore using a
representative set of use cases describing typical ap-
plications in the smart grid. This includes, but is not
limited to, smart metering, electric vehicle charging
and DR. In this section a real-life use case from the
University of Southern California microgrid is eval-
uated as an example. This use case has been chosen
as it is (i) simple enough to verify results based on
literature reviews; and (ii) complex enough to have
an interesting combination of actors and information
flows. We are focusing on a DR scenario similar to
the one described in (Simmhan et al., 2011b). This
scenario is outlined in Figure 3. A customer inter-
ested in DR creates an online profile stating on which
DR actions the customer is interested to participate
(e.g., turning down air condition). When the utilities
want to curtail load with DR, a customer whose pro-
file fits the current requirements is sent a text message
to, e.g., turn down the air condition. This message is
acknowledged by the customer and the utility further
reads the meter values to track actual power reduc-
tion. Besides the data flows mentioned, this further
involves the storing of the profile and the past behav-
ior of the customer for a more accurate prediction.
For modeling this use case as a DFG, the following

actors and IOs are identified. Evaluation is performed
with a prototypical implementation that uses DFGs
and threat patterns as an input and produces a threat
matrix as an output.

4.1 Data Flow Graph

Actors. Business actors are the user and the utility.
The user is mapped to the system actors smart meter,
device and portal. DR requests are sent to the user de-
vice (e.g., a cell phone) and the user’s DR preferences
are set in the portal (e.g., a web service). The smart
meter is used to measure actual curtailment. The util-
ity is mapped to a DR repository, containing prefer-
ences for each user and past behavior, to a prediction
unit predicting DR requests based on the preferences
and a control unit to meter user feedback and actual
curtailment.
Information Objects. Cross-domain/zone informa-
tion flows include user preferences sent to the utili-
ties, DR requests sent to the user from the utility and
both, the user acknowledge/decline and the meter val-
ues sent back to the utility. Information flows within
the utilities’ premises are from the DR repository to
the prediction unit and from the control unit to the
DR repository. Given the threat patterns introduced
in Section 3, we use our framework to determine the
privacy impact of this use case which provides the fol-
lowing results.
Customer Presence at Home. The qualitative analy-
sis shows that in the DR repository of the utility infor-
mation about both, past customer behavior and cus-
tomer data is brought together, i.e., direct personal
data is composed with a detailed history of a per-
son’s actions. Furthermore, the customer’s acknowl-
edge/decline and the measured curtailment reveal if a
customer (i) responded to the DR request; and (ii) ac-
tually participated in DR; both is a indication for the
presence at home. For this threat we identified four
vulnerabilities (device in customer premises, collect-
ing data at a certain frequency, receiver has access to
data, data retention is unlimited) and one countermea-
sure (aggregation of data from multiple customers),
resulting in a PO of 0.9, an EL of 11.5 and a risk
value of 10.35.
Tracking Customer Position. In our case, this threat
might apply in two different scenarios: First, this
threat is immediate if the acknowledge/decline re-
sponse to DR requests contains the customer posi-
tion (e.g., if sent by a cell phone or other mobile de-
vice). This does not only show the customers past
and present position, but also if the customer is able
to remotely control devices in his premises. Second,
when the customer is represented by an additional
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Acknowledge/Decline

CurtailmentMetering

Figure 3: Outline of the DR use case that is discussed for evaluation.

component electric vehicle charging station. Assum-
ing that DR requests are also sent with respect to the
charging behavior. Based on the amount of energy
the customer is willing to DR it might be possible to
estimate the consumption of the electric vehicle and
subsequently the traveled distance. For this threat
we identified two vulnerabilities (composition of lo-
cation and timestamp, different actors have access to
the same data) and one countermeasure (aggregation
of data from multiple customers), resulting in a PO of
0.66, an EL of 5 and a risk value of 3.33.

The mode-driven assessment of the DR use case
has shown that the risk of tracking customer posi-
tion is low compared to the risk of determining cus-
tomer presence at home. This result stems from the
fact that there apply a number of vulnerabilities with
high expected loss value, hence a device in the cus-
tomer premises, data collected at a certain frequency,
receiver has access to data and unlimited data reten-
tion.

5 CONCLUSION AND FUTURE
WORK

In this paper we introduced a framework for the
model-driven privacy assessment in the smart grid.
The framework builds on an ontology driven ap-
proach matching threat patterns to use cases that are

modeled in adherence to standardized reference ar-
chitectures. The approach presented here builds on
meta-information and high-level data flows. It has
been shown how to utilize this framework to success-
fully assess the privacy impact on use cases in early
design time. Exemplary threats and exemplary use
cases draw on insights from the University of South-
ern California microgrid. Future work will include an
evaluation of the systems ability to generalize to arbi-
trary kinds of threats in the smart grid. Furthermore
the system will be extended to serve as a policy de-
cision point for system developers and customers in a
smart grid IT infrastructure.
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ABSTRACT
Smart Metering is an important component of Smart Grids.
Detailed load profiles are available through smart metering
at a high resolution. Load profiles allow inferring detailed
information on the end user by non-intrusive load moni-
toring. Therefore, these load profiles need to be regarded
as sensitive data, and treated with security and privacy in
mind. We propose a method that allows conditional access
to different resolution levels of the load data, allowing access
on a “need-to-know” basis only. For this purpose, a multi-
resolution representation of the load data is created using
the simple Haar wavelet transform. Securing the portions
of the wavelet representation pertaining to each resolution
with a unique key allows to implement conditional access for
smart meter data.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

1. INTRODUCTION
Smart Grids have recently come to the focus of atten-

tion of a large number of research programmes. The power-
ful combination of communication technology with electrical
grids leads the energy infrastructure into a new paradigm.

However, this transition is not without challenges. There
are security concerns: An overview of current research in
smart grid security can be found in [3], a comprehensive
proposal for securing smart grid infrastructure is given by
[16]. Privacy is another critical area, related to security.
Smart meters form a core component of smart grids. Each
of these devices contains a processor, as well as storage and
communication facilities and is capable of transmitting de-
tailed usage statistics to the energy provider. While the
exact granularity of the transmitted data is not finally spec-
ified, and may differ by country, it seems likely that the
interval between single measurements will lie between 1 and
30 minutes. The availability of per-customer load profiles on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISABEL ’11, October 26-29, Barcelona, Spain
Copyright 2011 ACM ISBN 978-1-4503-0913-4/11/10 ...$10.00.

such a fine granularity raises privacy concerns [17, 15, 8, 1].
A comprehensive discussion of such privacy concerns can be
found in [14, 13].

There are a number of approaches for matching appliance
signatures to load profiles to determine which appliances
were used at what time and for how long, e.g. [6, 9, 12].
This type of method is termed “non-intrusive load monitor-
ing” (NILM) or “non-intrusive appliance load monitoring”
(NALM). Detection based on NILM is remarkably accurate:
[14] reports over 90% accuracy in detecting presence and
sleep cycle intervals. The results reported in [13] show that
“even with relatively unsophisticated hardware and data-
extraction algorithms, some information about occupant be-
havior can be estimated with a high degree of accuracy”. [10]
uses genetic algorithms for identification and report flawless
identification for up to 10 types of appliances.

In [14] results of a collaboration between researchers from
law and engineering are reported. The authors argue that
there “exist strong motivations for entities involved in law
enforcement, advertising, and criminal enterprises to collect
and repurpose power consumption data.” For example, bur-
glars could use the data to determine occupancy patterns
of houses to time break-ins, or NILM may be used to iden-
tify specific brands of appliances, which can then be used
for targeted advertising. In summary, while there are many
useful applications of smart meter data, such as energy sav-
ing and tailor-made energy rates, the privacy of this kind of
data needs to be secured.

In this paper, we discuss the utility of wavelet multi-
resolution analysis (MRA) to afford privacy to smart me-
ter load profiles. We evaluate MRA-based privacy based on
multi-layer conditional access. Access to resolutions can be
defined individually, ranging from a low frequency dataset
over multiple refinement datasets to the highest resolution
representation. Conditional access to the different resolu-
tions has the advantage that a information can be made
accessible on a “need-to-know” principle.

Thereby it is possible to use data at lower resolutions, i.e.
a (daily) average, for accounting purposes with the energy
provider, while the high resolution data remain secured from
access. Access to these higher resolutions can selectively be
granted to third parties, e.g. to serve as input to energy-
saving tools, which match load signatures to determine ap-
pliances with high power consumption. The contribution
of the proposed approach is to provide both security and
privacy to the level specified as needed. For evaluation we
use data from a test project conducted by Salzburg AG, an
Austrian energy provider.
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The rest of this paper is organized as follows: Section 2
gives an overview of related approaches for smart meter pri-
vacy and security. Section 3 introduces the application of
multi-resolution wavelet analysis for the representation of
smart meter data. Section 4 details the proposed conditional
access encryption scheme. Section 5 evaluates security and
privacy provided by the proposed scheme, in comparison to
other schemes. In Section 6 the complexity and computa-
tional demands of the proposed are discussed. Section 7
concludes and gives an outlook on future research.

2. RELATED WORK
There are a number of proposals for secure transmission

of smart meter data, e.g. [19] proposes a secure multi-cast
protocol that automatically derives group memberships and
verifies configuration performance; [2] proposes a security
protocol for smart meter aggregation that provides hop-by-
hop security, while still providing end-to-end security. In
principle, the approach proposed here is compatible with
many of the basic methods used in secure transmission, such
as aggregation along a spanning tree. The advantage of the
approach proposed here, is the possibility to determine the
available granularity of the data along the spanning tree.

There are suggestions for security methods that also pre-
serve privacy. [11] proposes to employ homomorphic en-
cryption for smart meter data. Specifically a Paillier cryp-
tosystem is used, which supports the additive homomorphic
property, to enable aggregation of smart meter data in the
encrypted domain. The approach is evaluated in an honest-
but-curios adversary model.

There are some approaches that propose to install recharge-
able batteries at the end user home to mask the load profile
[7, 18]. While in theory this is an effective approach, the
practical applicability remains questionable due to the high
costs of installing batteries and the energy loss introduced
by using a battery buffer.

The authors of [14] use their NILM algorithm on power
consumption data from a two-week experiment to infer in-
dividual information and usage patterns. This endeavor is
highly successful on high resolution data (15 second inter-
vals). The authors then investigate the performance of their
algorithm in the face of downsampled data, i.e. decreased
resolution. They report that the algorithm performance“de-
grades quite gracefully”. “Meaningful estimates”are possible
even for 20 minute intervals. The observed graceful degrada-
tion for load signature detection supports the representation
of the smart meter data in different resolutions, as each res-
olution will exhibit different detection properties.

[5] proposes an anonymization scheme that is based on
two different resolutions. This scheme employs a trusted
third party escrow service. Two smart meter data sets are
generated: One of low frequency that can be used for billing
purposes, and one of high frequency that allows further in-
vestigation. Only for the low frequency data set a mapping
to the corresponding user is provided, foremost to allow the
energy provider to invoice the user for the consumed energy.
The high frequency data set is not attributable to a user, at
least not by the energy provider.

In this scenario, two IDs have to be used by the smart me-
ter hardware: HFID, or High-Frequency ID, which remains
anonymous, and LFID, or Low-Frequency ID, which is at-
tributable. Each message that is communicated from the
smart meter, needs to include one of these IDs. In order to

keep the mapping HFID and smart meter hidden from the
energy provider, the authors propose an agnostic data aggre-
gator (operated by the third party escrow service) that col-
lects high frequency profiles from a number of smart meters.
The validity of the used IDs is verified by the third party
escrow service. Low-frequency data is forwarded including
the LFID. HFID data is aggregated across multiple smart
meters and forwarded without the corresponding HFIDs.

As [3] points out, there are a number of security issues
with the approach proposed by [5]. As with all systems that
rely on a trusted third party, a compromise of this party is
devastating. Furthermore, an attacker could try to match
high-frequency data to low-frequency data (and thereby to
a unique user) by collecting high-frequency information over
time, summing up this information and matching it to ob-
served low-frequency data. A third issue is the fact that
both LFID and HFID need to be stored in hardware which
is in the sphere of control of the users. This may lead to the
possibility to tamper the hardware and manipulate the IDs.

3. WAVELET MULTI-RESOLUTION-
ANALYSIS OF SMART METER DATA

In [5] representations of the smart meter data in two res-
olutions are created, a low frequency and a high frequency
resolution. In principle, this is a valid approach in terms of
granting each party access only to the information that is
needed for the processing demands of this party.

As a first stage of our proposed approach, we generalize
this idea. Instead of creating only two variants that are sep-
arate, we generate a hierarchy of resolutions in an integrated
representation. The best suited tool for this endeavor is the
discrete wavelet transform (DWT).

A suitable wavelet transform is applied to the original
smart meter data. This leads to a low frequency and a high
frequency band. As an example, we use the Haar wavelet
transform, which in principle only consists of calculating av-
erages and differences.

To obtain a multi-resolution representation of the origi-
nal signal, the wavelet analysis step is recursively applied
to the low pass subband, up to a maximum level m. The
low-frequency portion at each step presents the data at a res-
olution with half the number of samples of the next higher
resolution. The resolution level corresponding to the highest
decomposition depth m is referred to as R0, and has a size
of 2−m samples.

The synthesis step of the inverse wavelet transform starts
with R0. Each next higher resolution can be obtained by ap-
plying the inverse wavelet transform to the low-pass subband
(i.e., the lower resolution) and the corresponding high-pass
subband. In this way, m further resolutions can be obtained.
Typically, the resulting subbands are represented in a single
bitstream.

Figure 1 shows an example of the wavelet decomposi-
tion of a smart meter signal. Figure 1(a) shows the orig-
inal signal. Figure 1(b) shows the first level of decomposi-
tion into a low-pass and a high-pass subband. Figure 1(c)
shows a wavelet decomposition with a maximum decompo-
sition depth m = 5. In this example, the interval between
smart metering values is 15 minutes. Therefore, 96 values
are produced within 24 hours. The lowest resolution of a
level 5 wavelet decomposition in this case contains 3 val-
ues, which roughly correspond to the average load during
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Figure 1: Example for Wavelet Decomposition of Smart Meter Data

the first, second and third eight-hour interval, respectively,
of the 24-hour interval. By combining subbands L0 and H1

the resolution R1 can be obtained, which contains double the
number of samples as R0. Depending on the needed gran-
ularity, higher resolutions can be reconstructed by applying
the inverse wavelet transform, up to the highest resolution
R5, which contains the original 96 values.

To implement multi-resolution analysis in a manner that
is suitable for smart metering devices, wavelet lifting [4] is
the best approach. This view on the wavelet transform fac-
tors wavelet filters into lifting steps, which for many filters
encompass only basic operations.

For the Haar wavelet, the lifting steps can easily be im-
plemented by hardware with lowest computing power, such
as the smart meter environment. Furthermore the trans-
formation is lossless, and the aggregation is equivalent to
subsampling.

4. CONDITIONAL ACCESS FOR SMART ME-
TER DATA

The idea of conditional access stems from the context of
multimedia entertainment data. Entertainment content usu-
ally exists in various resolutions (e.g. mobile content, stan-
dard definition, high definition), which may be priced differ-
ently. A multi-resolution representation of the multimedia
data allows the efficient representation of the resolutions in
a single bitstream. This is an advantage as only one ver-
sion of the bitstream needs to be handled and transmitted.
Conditional access allows end-users to pay only for the res-
olutions they are interesting in. For example, the owner of
a standard definition television has no need to pay for the
high-definition version of the content. Through conditional
access only the bitstream portion relevant for the desired
resolution is decrypted, the rest of the bitstream is ignored.

We propose to use the conditional access paradigm for
smart-metering data in multi-resolution representation. Each
high-pass subband is encrypted with a different key. The
lowest resolution is left unencrypted. The whole datastream
can be transmitted over the Smart Grid communications
network. Access to the different resolutions is thereby only
granted to parties that hold the needed keys, as illustrated
by Figure 2. The lowest resolution remains accessible to
the network provider at all times to enable invoicing. In
the example above this is done by leaving R0 unencrypted
(which in principle mirrors the situation in current energy
networks). Alternatively, R0 could also be encrypted with
an appropriate key that allows access to the energy provider.

Final result L0 H1 H2 H3

Ka Kb Kc

Figure 2: Final Bitstream Produced by Smart Meter

This scheme allows flexible control by the end-user how
access is granted to smart meter data. For example, the en-
ergy network operator may be granted access to the lowest
resolution for billing purposes, but the end-user may not be
willing to provide any detailed usage statistics to the energy
network operator. Through the conditional access scheme,
end-users can also decide to use the services of third parties,
by encrypting the relevant portions of their metering data so
that the third party offering a service can access the needed
data. Such services could include load signature matching
to identify appliances with high energy consumption. Ag-
gregation services through a trusted third party are another
possible type of service.

The proposed scheme also enables the relaying of data.
For example, the data needed by a third party analysis lab
can be forwarded in encrypted form by an aggregator, or
even the energy network operator. While the parties for-
warding the data on route to the destination can access the
low-frequency data, there is no access to the higher resolu-
tions.

Of course, the proposed scheme requires the smart meter
hardware to provide functionality for wavelet lifting and en-
cryption, and to support the manual or automatic setting of
encryption keys for the higher resolutions.

5. SECURITY
Following [11], we assume an “honest-but-curious” adver-

sary model, i.e. all parties are assumed to follow the protocol
(“honest”), but within this limitation try to infer as much
information about the other participating parties as possible
(“curious”). In this setting, the proposed scheme is very suc-
cessful, as detailed data of the high resolutions remains pro-
tected from unauthorized access, including eavesdroppers.
There are no methods to infer the higher resolutions by us-
ing the information from lower resolutions. Therefore, the
higher resolutions are secure, provided that state-of-the art
cryptographic ciphers are used.

If the adversary model is changed to malicious, an ad-
versary will also tamper the data to change aggregation or
billing data. Under these settings, the homomorphic encryp-
tion model proposed by [11] suffers from the fact that all
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homomorphic encryption schemes are malleable and allows
in-transit tampering. The scheme proposed here is widely
agnostic to the used encryption scheme, and supports tra-
ditional, non-homomorphic encryption, which do not suffer
from this malleability. Integrity checks can be added to pre-
vent in-transit tampering. However, as in the scheme pro-
posed by [11], the proposed scheme does not prevent tam-
pering of smart meter data at the point of origin, i.e. if a
tampered smart meter produces fake data, this is not rec-
ognized. To prevent this kind of tampering, the proposed
scheme needs to be combined with trusted computing (e.g.
[16]).

Other than the scheme proposed by [11], the method pro-
posed here does not allow a non-trusted aggregator. While
the proposed method allows to control the level of detail
an aggregator is allowed to process, there is no restriction
on readability on this level of data for the aggregator. The
recipients of the data, i.e. the key holders for a certain res-
olution, need to be trusted with the data at the given reso-
lution.

Regarding successful privacy protection of the higher res-
olutions, the proposed scheme has an advantage over the
scheme proposed by [5]. As stated by [3], the privacy af-
forded by the scheme proposed by [5] may be compromised
by data aggregation through an eavesdropper. The eaves-
dropper could link LFID and HFID by summing up high
frequency data that he observes. Such an attack is not pos-
sible in the scheme proposed here, as all high frequency data
is transmitted in encrypted form.

6. COMPUTATIONAL COMPLEXITY
As discussed above, implementing the wavelet transform

as lifting steps is computationally inexpensive. Generally,
the discrete wavelet transform has a complexity of O(n).
Due to the simple operations used in the lifting implementa-
tion, the transformation part can be realized by inexpensive
smart meter hardware.

The computational demands for encryption depends on
the used encryption scheme. For standard encryption schemes,
efficient hardware implementations exist that can be inte-
grated into the smart meter hardware. Depending on the
desired scenario, symmetric encryption alone can be used,
or in combination with asymmetric encryption. The latter
case is computationally more demanding but benefits from
the support for public key infrastructures, such as proposed
by [16].

Some overhead is introduced for key management, and
potentially for the creation of session keys. Both are compu-
tationally inexpensive, and implementations should be eas-
ily transferable to smart meter hardware, given that the
other tasks above should be implementable on the underly-
ing smart meter hardware.

To explore the complexity of the proposed approach em-
pirically, we use smart meter data from an Austrian energy
provider, which was generated by real households over a pe-
riod of 18 months. In our tests, we use 400 load profiles.
The load profiles originate from Siemens smart meter hard-
ware, model TD3510 (3 phase, 100 Amp.). The sampling
interval is 15 minutes, i.e. 96 readings a day. Three scenar-
ios were implemented: (i) Symmetric encryption: AES with
128 bit keys, (ii) Asymmetric encryption only: RSA with
2048 bit keys, (iii) Hybrid encryption: 128 bit AES session
keys encrypted with 2048 bit RSA keys. In each scenario

WAV AES RSA HYB

Avg. Exec. Time (ms) 35.9 246.4 1366.3 1425.5
Std. Deviation 3.4 17.7 18.9 76.8

Table 1: Execution Times for Test Implementation:
Total for 400 load profiles, averaged over 1000 exe-
cutions

the following steps are executed: (i) Level 5 wavelet trans-
form of the load profile, (ii)) Generation of different keys to
encrypt resolutions R1 through R5 (R0 is left unencrypted),
(iii) Encryption of R1 through R5, each with a different key.

The implementation was done in Java (OpenJDK 64-Bit
Server VM). The Java standard implementation of the cryp-
tographic routines were used. The Haar wavelet transform
was implemented as lifting steps. No special optimization
was performed. The tests were run on a Sun Fire V20z with
two AMD Opteron Processors 244 and 8GB of RAM, run-
ning 64-bit Ubuntu Linux 10.04.1 with kernel version 2.6.32.
We note that the execution environment for smart meter
hardware will be extremely restricted and generally not be
comparable to this test setup. However, the test setup is
suited for obtaining empirical data on the comparative per-
formance of the possible scenarios, and to estimate the com-
putational complexity of the wavelet transform in relation
to encryption.

Table 6 shows timing results in milliseconds comparing
wavelet transform only (WAV) with AES (128 bit), pure
RSA (2048 bit) and hybrid encryption (HYB) using an AES
128-bit session key encrypted with RSA (2048 bit). Due
to the small amount of time needed for the transformation
and encryption of a single load profile, in order to get valid
results, timing was done for a batch of 400 load profiles.
Each load profile was subjected to 1000 encryptions in each
of the aforementioned categories. In Table 6, each entry
corresponds to the total transformation/encryption time of
400 different load profiles, averaged over 1000 encryptions.

It can be seen that indeed the computational demands
for the wavelet transform are negligible. On average, the
transformation of 400 load profile takes 36 ms. Regarding
demand for encryption, as expected, symmetric encryption
with AES is the fastest method by far. In the used test
setup, this approach outperforms the other two encryption
approaches by a factor of 5. In many application scenarios,
where the superior key management of public key cryptog-
raphy is not needed, this advantage will make symmetric
encryption a prime candidate. Due to the limited size of
the subbands, public key cryptography can be used directly
on the load data. For our test setup, all subbands can be
encrypted using 2048 bit RSA keys. We compare this ap-
proach to a hybrid approach, in which a symmetric session
key is encrypted with a public key. For larger plaintext
data sets the hybrid approach allows to combine the speed
of symmetric encryption with asymmetric key management.
It can be observed that the hybrid approach in our scenario
is slower than the pure asymmetric approach. This is due
to the fact that the load profile subbands are limited in size.
Of course, for larger data sets using pure asymmetric en-
cryption is not feasible and the hybrid approach would have
to be used. However, it can be rated an advantage that the
multi-resolution representation of the load profiles allows the
direct application of public key cryptography.
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7. CONCLUSION AND OUTLOOK
We have shown that a multi-resolution representation of

smart-meter data is a way to balance the need for privacy
with the additional functionality introduced by the smart
meter load profiles. By using multiple keys to encrypt each
resolution separately, the scheme affords end-user control of
access to different granularities of the data. Apart from pri-
vacy, due to encrypting the higher resolutions, the proposed
scheme also implements secure transmission of the load pro-
files and prevents unauthorized access by eavesdroppers.

The scheme proposed here fits neatly into the larger frame-
works proposed to date, such as [16], as it is compatible
with other approaches for securing smart grid communica-
tion, including authentication, integrity checking, and the
integration into smart grid public key infrastructure.

Regarding computational complexity, some overhead is in-
troduced. However, we have shown that the simple Haar
wavelet transform, implemented as lifting steps, has very
low demands. The computational demands for encryption
of the higher resolution subbands are higher, especially if an
asymmetric or hybrid approach is chosen. However, com-
munication in the smart grid will have to be secured by
cryptographic means, and smart meters are no exception.
Therefore, it is likely that smart metering hardware will be
required to support encryption. The additional computa-
tional overhead for multi-resolution representation and mul-
tiple key-handling is acceptable, especially when seen with
the background of this requirement for secure communica-
tion and authentication.

Future work will focus on the details of integrating the
proposed approach into larger smart grid communication
frameworks. To support privacy preserving data aggregation
by non-trusted data aggregators, we will investigate if, based
on the simple operations used in Haar wavelet lifting, the
proposed scheme is compatible with the homomorphic en-
cryption approach proposed by [11]. Finally we will explore
possible advantages of using more sophisticated wavelets for
representing the load profiles.
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Abstract—A significant portion of (potential) end-users at this
point in time are wary about possible disadvantages of smart
grid technologies. A critical issue raised by end-users in various
studies is the lack of trust in the level of privacy. Smart metering
is the component in the end-user domain around which the most
intense debate on privacy revolves, because load profiles are
made available at high resolutions. Non-intrusive load monitoring
(NILM) techniques allow the analysis of these load profiles to
infer user behaviour, such as sleep-wake cycles. We investigate
and compare the utility of different variants of the wavelet
transform for creating a multi-resolution representation of load
profiles. In combination with selective encryption, this multi-
resolution representation allows end-users to grant or deny access
to different resolutions on a “need-to-know” basis. Access to the
different resolutions is thereby only granted to parties holding the
needed keys. The whole datastream can be transmitted over the
smart grid communications network. The lifting implementation
of the wavelet transform has computationally low demands and
can be run in embedded environments, e.g. on ARM-based
architectures, in acceptable time. The proposed approach is
evaluated based on the provided level of security, computational
demands and feasibility in an economic sense.

I. INTRODUCTION

The move towards smart grids has spawned a large number
of industry initiatives, research programmes and standardiza-
tion efforts, see e.g. [1] for a current overview. Many of the
earlier contributions focused on the smart grid ecosystem at
a larger scale, without exploring in detail the ramifications
of the move towards smart grid technology for the end-user.
More recent programmes increasingly accommodate the user
perspective, cf. [1]. Addressing the topic of user acceptance is
pointed out as a key issue by almost all authors.

Spreading Smart Grid technologies will be inherently diffi-
cult without addressing user concerns and actively managing
user acceptance by providing secure methods and demonstrat-
ing safety of user data and privacy. Methods for privacy and
security will be a critical in establishing end user trust and
thereby enabling end user participation.

Smart meters form a core component of smart grids. Each
of these devices contains a processor, as well as storage
and communication facilities and is capable of transmitting
detailed load profiles on a daily basis or even in real-time. The
exact granularity of the transmitted load profiles is not finally
specified, and may differ by country. The intervals between

single measurements will lie between a few seconds and 30
minutes.

The availability of data at such fine granularities has raised
privacy concerns: Apart from the data needed for regular op-
eration, a number of other information items can be extracted
from this data, some of them related to sensitive and personal
information on the end user. Especially in the area of indi-
vidual high resolution load profiles made available by smart
meters, severe privacy concerns have been expressed in numer-
ous contributions, e.g. [2]–[6]. In [5] results of a collaboration
between researchers from law and engineering are reported.
The authors argue that there “exist strong motivations for
entities involved in law enforcement, advertising, and criminal
enterprises to collect and repurpose power consumption data”
[5, p. 1]. For example, burglars could use the data to determine
occupancy patterns of houses to time break-ins. Marketing
agencies could identify specific brands of appliances used,
which could then be used for targeted advertising.

There are a number of approaches for matching appliance
signatures to load profiles to determine which appliances
were used at what time and for how long, e.g. [7]–[9].
This type of method is termed “non-intrusive load monitor-
ing” (NILM) or “non-intrusive appliance load monitoring”
(NALM). Detection based on NILM is remarkably accurate:
In [5] over 90% accuracy are reported in detecting presence
and sleep cycle intervals. The results show that “personal
information can be estimated with a high degree of accuracy,
even with relatively unsophisticated hardware and algorithms”
[5, p. 2]. The authors of [10] use genetic algorithms for iden-
tification and report flawless identification for up to 10 types
of appliances. In [11] successful identification of appliances
in low resolution load profiles is reported, e.g. 30 minute
intervals, with the use of data-mining techniques.

In summary, while there are many useful applications of
smart meter data, such as energy saving and tailor-made
energy rates, the privacy of this kind of data needs to be
secured, even within communication environments secured
against unauthorized external access. The authors of [1] make
the case for a system in which insiders will access “data in an
authorized manner and will only use this data in an acceptable
manner” [1, p. 8].
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In this paper we evaluate wavelet-based multi-resolution
representations to secure load profiles and to provide a user-
centric privacy approach. In previous work [12], the Haar
wavelet was used in a preliminary proof of concept. In this
paper, we detail the approach, show that aggregates are pre-
served and apply the approach in an embedded environment.
Furthermore, we investigate the utility of integer-based wavelet
filters and compare the filter variants. We provide a detailed
evaluation regarding computational demands, and investigate
the preservation of aggregates in real-world conditions, as
well as the level of security provided and feasibility from an
economic perspective.

The rest of this paper is organized as follows: Section II
discusses the state of the art as well as prior and related
work. The proposed scheme is detailed in Sections III and
IV and evaluated in Section V. Section VI summarizes the
most important findings and conludes.

II. RELATED WORK

There are two kinds of privacy approaches: regulatory-based
and technology-based [1]. An important source for regulatory
scenarios and recommendations are the reports of the Euro-
pean Commission Smart Grid Expert Group Two for regula-
tory recommendations for data safety, data handling and data
protection, e.g. [13]. Other sources include Common Criteria
for Information Technology Security Evaluation (ISO/EIC
15408) and country-specific recommendations, such as the
Federal Office for Information Security (BSI) in Germany, e.g.
[14].

In the context of smart grid privacy, there is a number
of contributions that deal with technological approaches to
end-user privacy in general, for an overview see [15]. In
[16] an anonymization scheme that is based on two different
resolutions is proposed. This scheme employs a trusted third
party escrow service. Two smart meter data sets are generated:
One of low frequency that can be used for billing purposes, and
one of high frequency that allows further investigation. The
authors of [17] propose the anonymization of smart metering
readings through the use of aggregation, i.e. high resolution
smart meter readings are aggregated at the NAN level and only
the aggregate is sent to the utility provider. They introduce
two solutions both with and without involvement of trusted
third parties. In [18] a scheme that allows to obfuscate smart
meter data is proposed that does not affect the performance
of overall state estimation. The authors of [19] propose a
scheme that trades off interests of utility and users based on
lossy source coding. In [20] the use of random sequences
in compressed sensing of load profiles to provide privacy
and integrity is proposed. The authors of [9] propose a zero-
knowledge protocol for privacy enhanced-smart metering. The
authors of [21] propose a privacy-preserving protocol for
general calculations on meter readings on high resolutions.
They use simple cryptography on the meters to certify readings
and propose to off-load high-integrity calculations to other user
devices. The authors show correctness through cryptographic
verification.

Secure transmission of smart meter data is a key topic
addressed by many contributions. A security protocol for smart
meter aggregation that provides hop-by-hop security, while
still providing end-to-end security, is proposed by [22]. In [23],
a comprehensive proposal for securing smart grid infrastruc-
ture is given, including a proposal for a key infrastructure.
The authors of [24] propose a scheme for authentication
in the smart grid that is privacy aware. In [25] a secure
transport protocol for smart grid data collection in general is
presented. The authors of [26] propose a model-based access
control system. In [27] a zero-configuration identity-based
signcryption scheme for the smart grid is proposed.

Privacy-enabling encryption for smart meter data by the
use of homomorphic encryption is suggested by both [28]
and [29]. Specifically, a Paillier [30] cryptosystem is used in
both contributions, which supports the additive homomorphic
property, to enable aggregation of smart meter data in the
encrypted domain. The approach suggested by [29] is eval-
uated in an honest-but-curious adversary model. The system
proposed by [31] uses multi-party computation in combination
with homomorphic encryption.

The need to deal with multiple resolutions of the available
data has been widely acknowledged, e.g. [1], [16]. Fur-
thermore multi-resolution representation can serve to protect
privacy while at the same time preserving essential statistics of
the underlying data [32]. We have previously proposed the use
of the Haar wavelet to create a multi-resolution representation
and to use selective encryption to grant conditional access to
the individual resolutions on a “need-to-know” principle [12].

III. MULTI-RESOLUTION REPRESENTATION OF LOAD
PROFILES

The basis for both, regulatory-based and technology-based
approaches to preserve privacy is detailed knowledge of what
information can be extracted with which tools from the
available user data. To date, there is little systematic research
on this subject in the context of smart grids. In [33] an
information theoretic approach to abstract privacy and utility
requirements is used. The authors aim at providing a measure
for the amount of information leaked, and also for the utility
that is retained in the data at different levels of abstraction.

In [9] the information revealed from load profiles at different
granularities is investigated. The authors show that with off-the
shelf statistical methods detailed information on the behavior
of users can be inferred from load profiles without prior
knowledge or precomputed appliance signatures. They argue
that “the information leaks directly correlate with the time
granularity that a meter measures power consumption” [9,
p.61] and list a number of privacy-relevant questions that can
be answered using load profiles at granularities ranging from
hours to seconds.

While a detailed empirical investigation of the exact amount
of information that can be extracted from load profiles at each
granularity is missing, current results, such as reported by
[9], indicate that it is safe to assume an increase in the order
of magnitude in detection accuracy each time the number of
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available samples for a specific time are doubled. In other
words, based on existing investigations it seems that classes
of detection accuracy can be based on a resolution increases
of powers of two.

A representation of load profiles in different resolutions
corresponds to these classes of detecting accuracy. The clas-
sical wavelet transformation in the lifting implementation is
the ideal tool to create integrated, dyadic multi-resolution
representations of load profiles. Each resolution contained in
the multi-resolution load profile can be tailored to correspond
to a class of detection accuracy. Granting access to third party
based on this multi-resolution representation allows informed,
privacy-aware data exchange to the user.

A. Wavelet-based Representation

A suitable wavelet transform is applied to the original load
profile. This leads to a low frequency and a high frequency
band. To obtain a multi-resolution representation of the orig-
inal signal, the wavelet analysis step is recursively applied
to the low pass subband, up to a maximum level m. The
low-frequency portion in each step presents the data at a
resolution with half the number of samples of the next higher
resolution. The resolution level corresponding to the highest
decomposition depth m is referred to as R0, and has a size of
2−m samples.

The synthesis step of the inverse wavelet transform starts
with R0. Each next higher resolution can be obtained by ap-
plying the inverse wavelet transform to the low-pass subband
(i.e., the lower resolution) and the corresponding high-pass
subband. In this way, m further resolutions can be obtained.
The resulting subbands are represented in a single bitstream.

To implement multi-resolution analysis in a manner that
is suitable for smart metering devices, wavelet lifting [34] is
the best approach. This view on the wavelet transform factors
wavelet filters into lifting steps, which for many filters rely on
simple operations only.

B. Haar Wavelet Filter

The Haar wavelet filter realizes low-pass filtering as averag-
ing of the sample values. The high-pass step is realized by the
corresponding differences to allow for lossless reconstruction.
Let xl be the input signal, and sl and dl be the low-pass and
high-pass output signals, respectively. The lifting steps for the
forward transform with the Haar wavelet can be written as
follows [34]:

s
(0)
l = x2l (1)

d
(0)
l = x2l+1 (2)

dl = d
(0)
l − s

(0)
l (3)

sl = s
(0)
l +

1

2
dl (4)

with the inverse transform written as:

s
(0)
l = sl −

1

2
dl (5)

d
(0)
l = dl + s

(0)
l (6)

x2l+1 = d
(0)
l (7)

x2l = s
(0)
l . (8)

The Haar wavelet filter perfectly preserves1. the first mo-
ment, i.e. the average of the whole sequence is preserved in
the lowpass signal with each transformation step:

∑

l

xl =
1

2

∑

k

sk. (9)

This is an important property as it allows the use of lower
resolutions for functions like accurate billing, as the sum of
the original sequence can be derived from any of the lower
resolutions.

Furthermore, the transformation is lossless, and the aggrega-
tion is equivalent to subsampling. In effect, the Haar wavelet in
the proposed approach is equivalent to reducing the sampling
rate.

C. LeGall 5/3 Wavelet Filter

The LeGall 5/3 wavelet filter [35] is a biorthogonal wavelet
filter, frequently used in image coding. An interesting property
of this filter is that its lifting implementation can be realized
using integer operations only. With the background of an
advanced metering infrastructure with limited computational
capacity this can be seen as an advantage.

On the other hand, the LeGall 5/3 filter uses more samples
for prediction in the lifting implementation than the Haar
wavelet. This may result in longer processing times. Further-
more, and also due to this fact, the LeGall 5/3 filter always
requires zero-padding.

The LeGall 5/3 also preserves the first moment. However,
due to the necessary border handling, the sum is not perfectly
preserved. It depends on the intended application if the loss
in accuracy is acceptable. Empirical results on this issue are
discussed in Section V.

IV. CONDITIONAL ACCESS OF MULTI-RESOLUTION LOAD
PROFILES

The idea of conditional access stems from the context of
multimedia entertainment data. Entertainment content usually
exists in various resolutions (e.g. mobile content, standard
definition, high definition), which may be priced differently. A
multi-resolution representation of the multimedia data allows
the efficient representation of the resolutions in a single
bitstream. This is an advantage as only one version of the
bitstream needs to be handled and transmitted. Conditional
access allows users to pay only for the resolutions they are
interesting in. For example, the owner of a standard definition

1There may be small discrepancies due to border handling, depending on
the length of the input signal. However, this can be resolved by using zero-
padding.
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Final result L0 H1 H2 H3

K0 K1 K2 K3

Fig. 1. Final Bitstream Produced by Smart Meter

television has no need to pay for the high-definition version
of the content. Through conditional access only the bitstream
portion relevant for the desired resolution is decrypted, the rest
of the bitstream is ignored.

We propose to use the conditional access paradigm for
smart-metering data in multi-resolution representation. Each
high-pass subband is encrypted with a different key. If desired,
the lowest resolution can remain unencrypted to be accessible
for each party, e.g. for billing purposes. The whole datastream
can be transmitted over Smart Grid communications infrastruc-
ture. Access to the different resolutions is thereby only granted
to parties that hold the needed keys, as illustrated by Figure
1.

The lowest resolution remains accessible to the energy
provider at all times to enable billing. In the example above
this is done by leaving R0 unencrypted (which in principle
mirrors the situation in current energy networks). Alternatively,
R0 could also be encrypted with an appropriate key that allows
access to the energy provider.

This scheme allows flexible control by the end-user how
access is granted to smart meter data. For example, a par-
ticular energy provider may be granted access to the lowest
resolution for billing purposes, but the end-user may not be
willing to provide any detailed usage statistics. A third-party
service providing energy saving advice by employing NILM
methods may be granted access to the highest resolution by
the user. Thereby, a hierarchical keying scheme (e.g., MIKEy
– Multimedia Internet KEYing [36]) needs to be employed,
allowing parties who hold Kn to access data encrypted with
Ki for i ≤ n.

The proposed scheme also enables relaying of data. For
example, the data needed by a third party analysis lab can
be forwarded in encrypted form by an aggregator, or even the
utility provider. The parties forwarding the data on route to the
destination can only access data in the resolution for which
they have been cleared by the owner of the data. This may
also mean no access at all, i.e. only forwarding is permitted.

Of course, the proposed scheme requires the smart meter
hardware to provide functionality for wavelet lifting and
encryption, and to support the manual or automatic setting of
encryption keys for the higher resolutions. Furthermore solu-
tions for key management, revocation and a key infrastructure
need to be provided.

V. EVALUATION

In the following we evaluate the discussed wavelet filters
for use in the proposed approach. We use smart meter data
from an Austrian energy provider, which was generated by
real households over a period of 18 months. In our tests, we

l = 1 l = 2 l = 3 l = 4 l = 5

Haar 0% 0% 0% 0% 0%
LeGall 5/3 0.44% 1.16% 2.24% 6.26% 11.6%

TABLE I
RELATIVE DIFFERENCE IN AGGREGATION OVER 400 LOAD PROFILES

use 400 load profiles. The load profiles originate from Siemens
smart meter hardware, model TD3510 (3 phase, 100 Amp.).
The sampling interval is 15 minutes, i.e. 96 readings a day.
This allows a maximum wavelet decomposition depth of 5.
With maximum decomposition, the lowest resolution consists
of 3 values per day.

A. Aggregation Preservation

For real-world applicability, the lower resolutions need to
be created in a way that preserves the original sum. Both
investigated wavelet filters preserve the first moment and the
original sum can be derived from wavelet decompositions
of arbitrary depth. However, due to the necessary border
handling, for the LeGall Filter a loss in accuracy is incurred.
Table V-A shows the average relative difference for the sum
of the lowpass subband compared to the sum of the original
data for the 400 load profiles in the test set for different
decomposition levels l.

B. Security

There are no methods to infer the higher resolutions by
using the information from lower resolutions. Therefore, the
higher resolutions are secure, provided that state-of-the art
cryptographic ciphers are used.

The proposed scheme does not prevent tampering of smart
meter data at the point of origin, i.e. if a tampered smart meter
produces fake data, this is not recognized. To prevent this kind
of tampering, the proposed scheme needs to be combined with
trusted computing (e.g. [23]).

Regarding successful privacy protection of the higher res-
olutions, the proposed scheme has an advantage over the
scheme proposed by [16]. As stated by [37], the privacy
afforded by the scheme proposed by [16] may be compromised
by data aggregation through an eavesdropper: The eavesdrop-
per could link the tow IDs for low and high frequency data
(LFID and HFID, respectively) by summing up high frequency
data that he observes. Such an attack is not possible in the
scheme proposed here, as all high frequency data is transmitted
in encrypted form.

C. Complexity

As discussed above, implementing the wavelet transform
as lifting steps is computationally inexpensive. Generally, the
discrete wavelet transform has a complexity of O(n). Due to
the simple operations used in the lifting implementation, the
transformation part can be realized by inexpensive smart meter
hardware.

The computational demands for encryption depends on the
used encryption scheme. For standard encryption schemes,
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WAV AES RSA HYB

Average Execution Time (ms) 0.3092 2.36 89.27 92.12
Standard Deviation 0.0356 0.42 4.92 6.59

TABLE II
EXECUTION TIMES FOR HAAR WAVELET ON A BEAGLEBOARD: AVERAGE

FOR 400 LOAD PROFILES WITH 1000 EXECUTIONS EACH

WAV AES RSA HYB

Average Execution Time (ms) 0.2684 2.34 89.15 91.69
Standard Deviation 0.0495 0.42 3.26 1.53

TABLE III
EXECUTION TIMES FOR LEGALL 5/3 WAVELET ON A BEAGLEBOARD:

AVERAGE FOR 400 LOAD PROFILES WITH 1000 EXECUTIONS EACH

efficient implementations exist that can even be integrated into
smart meter hardware. Depending on the desired scenario,
symmetric encryption alone can be used, or in combination
with asymmetric encryption. The latter case is computationally
more demanding but benefits from the support for public
key infrastructures, such as proposed by [23]. Some overhead
is introduced for key management, and potentially for the
creation of session keys.

Three scenarios are investigated for each wavelet filter: (i)
Symmetric encryption: AES with 128 bit keys, (ii) Asym-
metric encryption only: RSA with 2048 bit keys, (iii) Hybrid
encryption: 128 bit AES session keys encrypted with 2048 bit
RSA keys. In each scenario the following steps are executed:
(i) Level 5 wavelet transform of the load profile, (ii) Gener-
ation of different keys to encrypt resolutions R1 through R5

(R0 is left unencrypted), (iii) Encryption of R1 through R5,
each with a different key.

The implementation was done in Java (OpenJDK 1.6). The
Java standard implementation of the cryptographic routines
were used. Lifting implementations were used for both, the
Haar wavelet and the LeGall 5/3 wavelet transforms. No
special optimization was performed. The tests were run on
an low cost embedded environment (Beagleboard BB-XM-00
with a TI DM3730 ARM processor and 512MB of RAM)
running Ubuntu Linux 12.04. An ARM-based environment can
be envisioned to be used as the central unit for processing and
communication in a AMI Home Area Network or even as part
of the smart meter.

Tables II and III show the results for the Haar Wavelet and
the LeGall Wavelet, respectively. The timing results are given
in milliseconds comparing wavelet transform only (WAV) with
AES, pure RSA and hybrid encryption (HYB) using an AES
session key encrypted with RSA. In each category, 400 load
profiles were investigated, each of which was transformed and
encrypted 1000 times. The results present the average time
needed for processing one load profile.

It can be seen that compared to the computational demands
of the encryption stage, the computational demands for the
wavelet transform are almost negligible. On average, the

transformation of a load profile takes 0.31 ms for the Haar
wavelet and 0.27 ms for the LeGall wavelet. The fact that the
LeGall uses integer lifting operations accounts for the slightly
faster performance.

As expected, symmetric encryption outperforms asymmetric
and hybrid encryption by a factor of nearly 40. In application
scenarios, that do not require public key management, this
advantage will make symmetric encryption a prime candidate.

Due to the limited size of the subbands, public key cryp-
tography can be used directly on the load data. For our test
setup, all subbands can be encrypted using 2048 bit RSA keys.
It can be observed that the hybrid approach in our scenario
is slower than the pure asymmetric approach. This is due to
the fact that the load profile subbands are limited in size. Of
course, for larger data sets using pure asymmetric encryption
is not feasible and the hybrid approach would have to be used.
However, it can be rated an advantage that the multi-resolution
representation of the load profiles allows the direct application
of public key cryptography.

VI. CONCLUSION

Multi-resolution wavelet representation of smart-meter data
is a way to balance the need for privacy with the additional
functionality introduced by the smart meter load profiles. By
using multiple keys to encrypt each resolution separately,
the proposed scheme provides end-user control of access to
different granularities of the data. Apart from providing user-
centric privacy, due to encrypting the higher resolutions the
proposed scheme also implements secure transmission of the
load profiles and prevents unauthorized access by eavesdrop-
pers.

In terms of choice of wavelet filter, the Haar filter offers
the advantage of preserving the aggregate exactly over the
different resolutions, which makes functions like billing pos-
sible. The fact that the LeGall 5/3 wavelet offers slightly faster
computation cannot counterbalance this advantage.

The scheme fits neatly into the larger frameworks proposed
to date, such as [23], as it is compatible with other approaches
for securing smart grid communication, including authentica-
tion, integrity checking, and the integration into smart grid
public key infrastructure.

Regarding computational complexity, some overhead is in-
troduced. However, both employed wavelet transforms have
very low demands, when implemented as lifting steps. The
computational demands for encryption of the higher resolution
subbands are higher, especially if an asymmetric or hybrid
approach is chosen.

In terms of economic feasibility, it has been shown that the
proposed privacy-aware encryption scheme can be employed
on inexpensive ARM-based hardware, even running a non-
optimized Java implementation on Linux. In dedicated chipsets
that offer hardware acceleration for the cryptographic routines
the scheme can easily be integrated into smart meters or the
corresponding communication gateways.
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Abstract—The availability of individual load curves per house-
hold in the smart grid end-user domain combined with non-
intrusive load monitoring to infer personal data from these load
curves has led to privacy concerns. Two types of approaches
show high potential to resolve this issue: (i) secure aggregation
and (ii) multi-resolution representation with conditional access.
In this paper a combination of these two principle approaches
is proposed. It is shown formally that secure aggregation and
wavelet-based multi-resolution representation are compatible.
Furthermore, it is shown that that the wavelet transformation
is compatible with existing privacy-preserving protocols and can
be used to extend them with additional degrees of freedom. An
implementation of the proposed approach is used for evaluation
of feasibility in a low-cost embedded environment.

I. INTRODUCTION

Intelligent energy systems, so-called smart grids, revolution-
ize existing energy grids by combining them with information
and communication technology. Smart grids demand accurate
and fine-grained data on network status. The widespread
roll-out of smart meters is one of the consequences. Smart
meters record energy consumption in a specified granularity
(usually the time between readings is between 1 second and
15 minutes) and have the ability to transmit these load curves
in a specified interval (e.g., once a day).

It has been shown that personal information on the end-
user can be inferred from fine-grained load curves [1], [2],
and this has led to privacy concerns [3], [4]. The accuracy of
the inferred information is directly connected to the available
resolution of the load data. A number of methods have been
proposed to balance the need for privacy with the information
needed for correct operation of smart grids. Two types of
approaches show high potential to resolve this issue: (i) secure
aggregation of encrypted load curves, and (ii) representation
of load curves in multiple resolutions, each associated with
different access levels.

Approaches of the first type can again be divided into two
categories: protocols using masking [5], [6] and protocols
using homomorphic encryption. In this paper the focus is put
on the second kind of protocols. Privacy-enabling encryption
for smart meter data by the use of homomorphic encryption
is suggested by, e.g., [7]–[10], allowing the aggregation of
encrypted signals, also termed “secure signal processing”. A
recent overview of secure signal processing, covering four

proposals for privacy-preserving smart metering aggregation
is given by [11].

Approaches of the second type suggest to represent load
curve data in multiple resolutions, where each resolution can
be used for a different purpose, e.g., low resolution for billing,
and is therefore disclosed to selected parties only, e.g., [12].
Using the wavelet transform to produce an integrated bitstream
supporting multiple resolutions has been proposed by [13].
Combined with conditional access, i.e., different encryption
keys for each resolution, this wavelet-based representation
allows user-centric privacy management: access can be granted
or revoked for each resolution. Access to high resolutions,
which are privacy-sensitive, may be reserved to a small
number of trusted entities only, whereas resolutions of medium
granularity may be provided more freely, e.g., to contribute to
network stability (in exchange for lower energy prices or other
incentives).

In this paper, a privacy-preserving smart metering method
that combines the two types of approaches, namely homo-
morphic encryption and multi-resolution representation, is
proposed. This enhances the possibilities for managing privacy
requirements, as the combination of both methods significantly
increases the degrees of freedom. Access control does not
relate to the aggregated signal as a whole anymore, but
access can be granted on the aggregate on each resolution
individually. This is an important feature, as it allows to grant
access to participants in the smart grid system, based on their
roles and the functions they have to fulfill. Each role can be
assigned access to the aggregate on the minimum resolution
necessary to fulfill the functions associated with this role.

The rest of this paper is structured as follows. Section II
summarizes the principle of wavelet-based load curve rep-
resentation and homomorphic encryption. In Section III the
combination of the two approaches is introduced and their
compatibility is proven mathematically. Results are discussed
in Section IV-A. The usability of the wavelet transformation
with existing protocols is discussed in IV-B. Section V con-
cludes the paper.

II. BACKGROUND

A. Wavelet-based Representation

A wavelet transform starts with the original load curve and
is recursively performed in S steps. In each step s half of the
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Fig. 1. Wavelet transformation and encryption of load curve

data (the highpass data) H̃s are remembered as the wavelet
coefficients (subband) of scale s and the next step is performed
for the lowpass data. At the end of the transformation the
final subband H̃S consists of 2−S samples. The higher the
scale s, the lower the time resolution r := S − s. Reindexing
Hr = H̃S−s, at the end of the transformation one obtains a
sequence L0, H1, . . . , HS , see Fig. 1.

The synthesis step of the inverse wavelet transform W−1

starts with the lowest resolution r = 0. To get the next
higher resolution of the signal the next higher resolution
subband is needed, so that in a series of S steps one fi-
nally obtains the original load curve (since we only consider
lossless transformations). In order to provide a signal mR

with maximum resolution R only R synthesis steps must be
performed and only the subbands with resolution r ≤ R, i.e.,
L0, H1, . . . , HR are needed. Denoting the selection of the R
highest resolutions as TR this can be written as

mR =W−1 [TR(W [m])] (1)

Making the signal available at the needed resolution instead
of the full resolution increases privacy because less (personal)
information can be deduced. For allowing differentiated access
control, each subband (i.e., each resolution) of the resulting
wavelet decomposition is encrypted with a different key, as
illustrated by Fig. 1. A combination with public key infras-
tructures to allow fine-grained access control is possible. A
hierarchical key creation scheme can be used to minimize
overhead for key exchange. The result of this process is an
encrypted bitstream that forms an integrated representation of
all resolutions. Note that no data expansion occurs, i.e., the
size of the final bitstream equals the size of the original data.

The operator TR can be generalized to be any transformation
T of the wavelet coefficients to be used for example for denois-
ing. In the simplest case, using a global threshold η it could be
defined as T (W [m]) =W [m]δ(m−η) with δ denoting Dirac’s
delta function, for more sophisticated denoising methods, see
[14]. Using denoising transformations could turn out to be
valuable for transmission of signal aggregations.

Wavelets are also used for the generation of features in
load forecasting [15], [16]. The representation suggested in
this paper may be of advantage for load forecasting methods
based on wavelets. However, the main focus of this paper is
load aggregation with access control to different resolutions.

Key generation: generate public keys g and n and private key λ
- Generate private key prime numbers p and q randomly
- Set private λ = lcm(p− 1, q − 1)
- Set public key n := pq
- Select public key g with the property
gcd(L(gλ mod n2), n) = 1 for L(u) := u−1

n

Encryption: given message m ∈ Zn
- Generate random number r ∈ Z∗

n
- Ciphertext c = E(m; g, n) = gm · rn mod n2 ∈ Z∗

n2

Decryption: given ciphertext c ∈ Z∗
n2

- m = D(c; g, n, λ) =
L(cλ mod n2)

L(gλ mod n2)
mod n ∈ Zn

TABLE I
HOMOMORPHIC ENCRYPTION

B. Homomorphic Encryption

Following previous proposals [7]–[9], a Paillier cryptosys-
tem [17] is employed. The whole encryption and decryption
process can be split into three parts: key-generation, encryption
and decryption. It is described in Table I. Note that the num-
bers g, n and λ are kept fixed and are omitted for simplicity.

Homomorphic encryption has the following important prop-
erty, which is called the additive property:

D
(
E(m1)E(m2) mod n2

)
= m1 +m2 mod n. (2)

This property means that the decryption of the product of the
ciphertexts is the sum of the original plaintext messages.

C. Privacy Preserving Protocols

In [7]–[10], protocols using homomorphic encryption are
proposed as tools for privacy conserving aggregation of load
curves. As it is done there, the smart grid network consid-
ered consists of N households each having one smart meter
installed and an aggregator (Fig. 2).

Fig. 2. Aggregation of encrypted signals

The network is assumed to have tree-like connections. Each
smart meter i sends its measured load mi in encrypted form
to its parent smart meter. The parent smart meter multiplies
the obtained encrypted signals with its own encrypted signal
and in turn sends this product to its parent node. Finally, the
aggregator multiplies the obtained signals and decrypts the
product. Due to the homomorphic property, the result is the
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sum of the measured loads. With E and D denoting Pailler
encryption and decryption this can be stated as

D

(∏

i

E(mi) mod n2

)
=
∑

i

mi mod n. (3)

Privacy is preserved because of the distributed way of process-
ing. Smart meters only have the plaintext information of their
own messages, because they cannot decrypt the messages they
get. The aggregator can decrypt messages, but, as it receives
the product of the individual ciphertexts, can only decrypt the
sum of the load curves.

III. AGGREGATION OF ENCRYPTED
WAVELET-TRANSFORMED SIGNALS

The goal of this paper is an extension of the distributed
homomorphic encryption process in a way that is compatible
with the wavelet transformation. In particular it is shown
that when homomorphic encryption is applied to a signal
represented in the wavelet domain, homomorphic additivity
is not only preserved, but can be separately exploited for each
resolution.

In [13], a variety of wavelet filters regarding their utility
for the multi-resolution representation of load curves was
evaluated. Only lossless transformations are useful in the con-
text of smart metering. The Haar wavelet filter preserves the
average over all resolutions, which is an important property for
many use cases. Using the lifting implementation of the Haar
wavelet, the transformation can be realized efficiently. The
lifting steps for the forward transform with the Haar wavelet
have been formulated by [18]. As the original Haar wavelet
uses real coefficients, it is ill-suited for use with homomorphic
encryption. Therefore, for the combination with homomorphic
encryption a modified version of the Haar wavelet is used
that only produces integer values for the transformed load
curve (where L̃0 = X[i] is the input signal, H̃s[i] and L̃s[i]
are the resulting high-pass and low-pass subband at scale s,
respectively, with i denoting the position within the signal):

L̃
(0)
s+1[i] = L̃s[2i] (4)

H̃
(0)
s+1[i] = L̃s[2i+ 1] (5)

H̃s+1[i] = H̃
(0)
s+1[i]− L̃

(0)
s+1[i] (6)

L̃s+1[i] = 2L̃
(0)
s+1[i] + H̃s+1[i]). (7)

The inverse transform can be written as:

L̃(0)
s [i] =

1

2
L̃s+1[i]−

1

2
H̃s+1[i] (8)

H̃(0)
s [i] = H̃s+1[i] + L̃(0)

s [i] (9)
L̃s[2i+ 1] = H̃(0)

s [i] (10)
L̃s[2i] = L̃(0)

s [i]. (11)

Note that the average of the original series is still preserved
over all resolutions for the modified Haar filter:

∀s :
∑

i

X[i] = 2−s
∑

k

L̃s[k].

Fig. 3 shows the aggregation of a number of multi-resolution
load curves at a collector node. Homomorphic encryption
is applied to each resolution r separately with a different
key Kr = (gr, nr). The resulting signal m is the sum of
all signals mi (each of which has a maximum resolution
of R) at resolution r ≤ R, whereby W denotes a wavelet
transformation. The collector node can perform aggregation
(i.e., multiply) in the encrypted domain, i.e., it does not
have any keys. This ensures that the aggregator cannot get
information about the loads of its children, e.g., by divisions.

Fig. 3. Aggregation of encrypted multi-resolution load curves

Writing the procedure mathematically yields the following
calculation of the ciphertext c

c =
∏

i

E(TR(W [mi])) mod n2.

The ciphertext c is decrypted by the aggregator in the follow-
ing way

m =W−1[D(c) mod n]

Using this procedure the wavelet transformation is compatible
with homomorphic encryption, i.e., the homomorphic property
that the message m equals the sum of the messages is
preserved (choosing R = S). Even more, choosing R < S,
the decrypted message m equals the sum of the messages of
resolution R:

m =W−1[
∏

i

E(TR(W [mi])) mod n] =
∑

i

mR,i mod n.

(12)
The aggregator gets the product of the encrypted messages

and can therefore not extract any information about the
individual messages. However, it can calculate the sum of
the messages which is the information needed, e.g., for load
forecasting. Note again that the product of the ciphertexts is
calculated in a distributed way by the smart meters and not
by the aggregator. The number n must be chosen big enough
so that

∏
iE(TR(W [mi])) < n2 and

∏
iE(TR(W [mi])) < n

hold. For sake of readability the modulo parts of the calcula-
tions are therefore omitted in the proof.

Proof: Without loss of generality two messages are
considered. To simplify the analysis the notation yi :=
TR(W [mi]) is used, so E(TR(W [mi])) = E(yi). The ag-
gregator calculates the signal W−1[D(c)]. Using the fact that
the ciphertext c is the product of the individual ciphertexts and

154



the homomorphic encryption property leads to

W−1[D(c)] = W−1[D(c1c2)]

= W−1[D(E(y1)E(y1))]

= W−1[y1 + y2]

Substituting for the yi, using the linearity of the wavelet
transform and the definition of mR yields

W−1[D(c)] = W−1[TR(W [m1]) + TR(W [m2])]

= W−1[TR(W [m1])] +W−1[TR(W [m2])]

= mR,1 +mR,2

So in general for I different messages and ciphertext c =
∏

i ci
the desired property (12)

W−1[D(c)] =
I∑

i=1

mR,i (13)

is obtained.
An example use-case scenario is the use of aggregated load

information for energy monitoring by the network operator,
as, e.g., suggested by [11]. The approach proposed here adds
an additional layer of flexibility by making the aggregates
available at different resolutions with access being granted
to parties on the resolutions with the necessary granularity
to fulfill a specific task. In combination with suitable key
management, this approach implements the “need-to-know”
principle of access for aggregated signals.

IV. RESULTS

A. Cost and complexity

The proposed method has been implemented as a proof
of concept in Java (Oracle Java v8 preview with ARM-
extensions) and evaluated in a low-cost ARM-based environ-
ment (Beagleboard BB-XM-00, Rev C, with a TI DM3730
1Ghz ARM processor and 512MB of RAM) running Ubuntu
Linux 12.04.

Results are shown in Table II: Each value represents the
execution time for a single load curve consisting of 96 values
for the wavelet transform combined with different encryption
settings, averaged over 400 load curves with 100 encryptions
each (acquisition of the load curve and key generated are not
considered in the timing results). WAV denotes the wavelet
transform only, without any encryption applied. AES denotes
the wavelet transform followed by encryption with the sym-
metric AES cipher with a 128 bit key for each subband. HYB
denotes hybrid encryption, which adds RSA 2048 bit public
key encryption of the AES keys with a different public key for
each subband. Finally, PAI-n denotes Pailler encryption with
a module of n bits and a different key for each subband.

It can be seen that by using a lifting implementation the
transformation is very fast and the computational overhead
is negligible compared to the encryption step. Homomorphic
encryption comes at the cost of a significant increase in
computational overhead compared to conventional encryption.

WAV AES HYB PAI-256 PAI-512 PAI-1024

Exec. time 0.15 1.91 72.4 1,649 11,452 85,355
Std. dev. 0.01 0.03 0.1 16 22 133

TABLE II
EXECUTION TIME IN MILLISECONDS FOR TRANSFORMING/ENCRYPTING A

SINGLE LOAD CURVE (AVERAGE OVER 400 LOAD CURVES WITH 100
ENCRYPTIONS EACH)

The results show that the computational demands grow expo-
nentially with the module size. Considering that 256 and 512
bit modules will in most use-cases not be sufficient in terms of
security, the increased execution time for module sizes that are
more secure provides a challenge. While AES encryption only
takes 1.9 ms, for the used (non-optimized) implementation,
Paillier encryption of a load curve with 96 values takes nearly
90 seconds for a module of 1024 bit. It needs to be pointed
out that this drawback also affects all previously proposed
methods for homomorphic load curve encryption that rely on
a Paillier cryptosystems. Optimization of the implementation
is one option to be considered. Another option is to investigate
the utility of alternative homomorphic encryption schemes.

The approach proposed here adds the possibilities offered by
wavelets to distributed homomorphic encryption and decryp-
tion schemes. It is therefore compatible with any homomorphic
encryption scheme. The wavelet transformation can be seen as
an add-on which is compatible with homomorphic encryption.
Since the computational cost of the wavelet transformation is
small, the computational cost of the main privacy preserving
protocol dominates the overall cost. Thus, the complexity eval-
uation given in [11] can be used as a complexity assessment
for different kinds of privacy preserving protocols.

B. Usability with existing protocols

The extension of the privacy preserving protocol was de-
signed for the protocol used in [7]. Thus it can readily be
used within privacy preserving protocols, which directly rely
on the homomorphic encryption property such as [7], [9]. Here
we study, if wavelets can also be used together with other
protocols found in the literature.

The method in [8] combines Paillier’s homomorphic encryp-
tion with additive secret sharing. Generally, additive masking
terms need no adjustment since they cancel out in the decryp-
tion step before the inverse transformation takes place. Thus,
the method is compatible with the wavelet transformation.

The method in [10] extends [7] by preserving data integrity.
The wavelet transformation is compatible with this method
since it is mostly based on the ciphertext. There, it is irrelevant
if the encrypted message is in its original or in a transformed
form. Decryption is only done in the incremental verification
process where the compatibility can be verified for each
individual step.

Other existing protocols need a homomorphic property but
do not use Paillier’s homomorphic encryption [6], or they use
other principles as for example masking [6], [5]. Next, it will
be checked, if the wavelet transformation is also compatible
with these methods.

155



In [6], the modulo operation is used for homomorphic en-
cryption instead of Paillier’s homomorphic encryption scheme.
Privacy is achieved by masking. The second main feature
is the addition of Laplacian noise for differential privacy.
This encryption scheme can be made compatible with the
wavelet transformation by the following modifications: the
multiplication in the aggregation step must be substituted by
an addition. The signal TR(W (mi)) corresponds to the signal
Xi in [6]. As already stated above, the additive masking terms
need no adjustment. The same argument holds for the keys
added for ensuring confidentiality with the aggregator. How-
ever, the terms for differential privacy need to be modified.
The added noise must be adapted in two ways due to the
inverse transformation W−1 arising in the decryption step:
first, the parameter λ must be chosen suitable for the signals
W−1(TR(W (mi))) = mR,i. Second, the noise added to each
signal TR(W (mi)) which consists of the subtraction of two
gamma distributions (with the adapted parameter λ) must
be transformed by W which later cancels the W−1 in the
decryption step. With these changes wavelets are compatible
with the method of [6].

In [5], four different protocols which rely on masking are
described. These protocols can be categorized into so-called
aggregation and comparison protocols. The aggregation proto-
cols are compatible with wavelets. However, in the comparison
protocols, the transformed sum of the values is in the exponent
of the generating element of the Diffie-Hellman group. As the
reverse transformation cannot be calculated, wavelets are not
compatible with these comparison protocols.

Summarizing, the wavelet method is compatible with exist-
ing privacy preserving protocols except comparison protocols.
Adaptations are needed for differential privacy.

V. CONCLUSION AND OUTLOOK

The proposed approach enables access models on a “need-
to-know” basis for secure signal processing. This adds flex-
ibility to existing approaches and enhances privacy. Access
control to encrypted aggregates is not binary for the whole
signal anymore, but instead can be granted to parties for
individual resolutions, based on their roles and the associated
specific needs in terms of data resolution. A proof has been
given that shows that the wavelet transform is compatible
with any homomorphic encryption method. Furthermore, the
proposed approach can be included in most existing privacy-
preserving protocols to enhance the degrees of freedom. Com-
putational demands of homomorphic encryption schemes in
general remain a challenge. The overhead for multi-resolution
processing is negligible compared to the complexity of en-
cryption.

Like most papers this paper focuses on methodological
aspects. In the future we will extend existing work [19]
and investigate how these methods can be applied to the
relevant use cases like energy feedback, billing or grid stability
including practical aspects such as robustness against losing
the connection to individual smart meters.

ACKNOWLEDGEMENTS

The financial support by the Austrian Federal Ministry
of Economy, Family and Youth and the Austrian National
Foundation for Research, Technology and Development is
gratefully acknowledged.

The authors thank company partner Salzburg AG for pro-
viding anonymized real-world load curves for testing.

REFERENCES

[1] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the
IEEE, vol. 80, no. 12, pp. 1870–1891, Dec. 1992.

[2] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin,
“Private memoirs of a smart meter,” in Proc. 2nd ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Building, ser.
BuildSys ’10. New York, NY, USA: ACM, 2010, pp. 61–66.

[3] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the
smart grid,” IEEE Security Privacy Magazine, vol. 7, no. 3, pp. 75–77,
2009.

[4] M. Lisovich, D. Mulligan, and S. Wicker, “Inferring personal informa-
tion from demand-response systems,” IEEE Security & Privacy, vol. 8,
no. 1, pp. 11–20, 2010.

[5] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggrega-
tion for the smart grid,” in Privacy Enhanced Technology Symposium,
2011, pp. 175–191.

[6] G. Acs and C. Castelluccia, “I have a dream! (differentially private smart
metering),” in Proc. Information Hiding Conference, 2011, pp. 118–132.

[7] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart grids
using homomorphic encryption,” in Proc. of First IEEE International
Conference on Smart Grid Communications, Gaithersburg, Maryland,
USA, Oct. 2010, pp. 327–332.

[8] F. Garcia and B. Jacobs, “Privacy-friendly energy-metering via
homomorphic encryption,” in Security and Trust Management, ser.
Lecture Notes in Computer Science, J. Cuellar, J. Lopez, G. Barthe,
and A. Pretschner, Eds. Springer Berlin / Heidelberg, 2011, vol. 6710,
pp. 226–238.

[9] Z. Erkin and G. Tsudik, “Private computation of spatial and temporal
power consumption with smart meters,” in Proceedings of the
10th international conference on Applied Cryptography and Network
Security, ser. ACNS’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 561–577.

[10] F. Li and B. Luo, “Preserving data integrity for smart grid data
aggregation,” in Smart Grid Communications (SmartGridComm), 2012
IEEE Third International Conference on, 2012, pp. 366–371.

[11] Z. Erkin, J. Troncoso-Pastoriza, R. Lagendijk, and F. Perez-Gonzalez,
“Privacy-preserving data aggregation in smart metering systems: An
overview,” Signal Processing Magazine, IEEE, vol. 30, no. 2, pp. 75–86,
March.

[12] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization
of smart metering data,” in Proceedings of First IEEE International
Conference on Smart Grid Communications, Gaithersburg, Maryland,
USA, Oct. 2010, pp. 238–243.

[13] D. Engel, “Wavelet-based load profile representation for smart meter
privacy,” in Proc. IEEE PES Innovative Smart Grid Technologies
(ISGT’13), Washington, D.C., USA, Feb. 2013, pp. 1–6.

[14] A. Anestis, J. Bigot, and T. Sapatinas, “Wavelet estimators in nonpara-
metric regression: a comparative simulation study,” Journal of Statistical
Software, vol. 6, pp. 1–83, 2001.

[15] C. Chen, B. Das, and D. J. Cook, “Energy prediction based on resi-
dent’s activity,” in Proceedings of the 4th International Workshop on
Knowledge Discovery from Sensor Data, Jul. 2010.

[16] C. Guan, P. Luh, L. Michel, Y. Wang, and P. Friedland, “Very short-term
load forecasting: Wavelet neural networks with data pre-filtering,” IEEE
Transactions on Power Systems, vol. 28, pp. 30–41, 2013.

[17] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Proceedings of Eurocrypt ’99, Advances in Cryptology,
ser. Lecture Notes in Computer Science, J. Stern, Ed., vol. 1592. Prague,
Czech Republic: Springer, May 1999, pp. 223–238.

[18] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 247–269, 1998.

[19] M. Jawurek, F. Kerschbaum, and G. Danezis, “Privacy technologies for
smart grids - a survey of options,” Microsoft Research, Tech. Rep., 2012.

156



3.11 peer14a 157

3.11 peer14a

L C. Peer, D. Engel, and S. Wicker. Hierarchical key management for multi-re-
solution load data representation. In Proceedings of 5th IEEE International Con-
ference on Smart Grid Communications (SmartGridComm 2014), pages 926–932,
Venice, Italy, Nov. 2014. IEEE.



Hierarchical Key Management for Multi-resolution
Load Data Representation

Christian D. Peer
Josef Ressel Center for

User-Centric Smart Grid Privacy,
Security and Control

Salzburg University of
Applied Sciences, Austria

Email: christian.peer@en-trust.at

Dominik Engel
Josef Ressel Center for

User-Centric Smart Grid Privacy,
Security and Control

Salzburg University of
Applied Sciences, Austria

Email: dominik.engel@en-trust.at

Stephen B. Wicker
School of Electrical and
Computer Engineering

Cornell University
Ithaca, New York

Email: wicker@ece.cornell.edu

Abstract—It has been shown that information about a con-
sumer’s actions, beliefs and preferences can be extracted from
high resolution load data. This information can be used in ways
that violate consumer privacy. In order to increase consumer
control over this information, it has been suggested that load
data be represented in multiple resolutions, with each resolution
secured with a different key. To make this approach work in the
real-world, a suitable key management needs to be employed. In
this paper, we consider a combination of multi-resolution load
data representation with hierarchical key management. Emphasis
is placed on a privacy-aware design that gives the end-user the
freedom to decide which entity is allowed to access user related
data and at what granularity.

I. INTRODUCTION

Increasing energy needs accompanied by an emphasis on
alternative energy production creates a need for efficient power
grid management and regulated power consumption. This so-
called Smart Grid enables load balancing and forecasting
within the power grid. In addition it is able to influence the
consumer’s energy consumption by offering real-time pricing
information. Based on this information, consumers can decide
when to use devices so as to manage energy costs. Studies
show that Smart Grid Infrastructure can reduce peak load
during summertime by as much as 20% [1]. To fulfill this
task, the Smart Grid relies on Advanced Metering Infrastruc-
ture (AMI), a sensor network collecting fine-grained power
consumption data. Smart Meters form the core component of
an AMI. These devices collect fine-grained consumption data,
so-called load data, from a single household. While this data
plays an essential part in load balancing and real-time pricing,
its collection also creates serious privacy concerns.

It has been shown that apart from information needed for
grid operation, other pieces of information can be obtained
from fine-grained load data that are sensitive and private to
the end user [2]–[4]. Occupancy or sleeping patterns can be
determined and certain appliances within the household can be
identified and a usage pattern can be drawn. This information
can be valuable for targeted marketing as well as criminal
purposes. With regard to the former, techniques for matching
appliance signatures to load data are called non-intrusive load

monitoring (NILM) or non-intrusive appliance load monitoring
(NALM) [3].

Acting on privacy concerns, customers and governments
are rejecting the deployment of Smart Meters and therefore
blocking the deployment of the Smart Grid [5]. To address
this issue, privacy preserving methods have to be implemented.
Two types of approaches show great potential for ensuring pri-
vacy within the smart grid: (i) Secure aggregation of encrypted
load data and (ii) consumer control over load data in multiple
resolutions, each resolution associated with different access
levels. In terms of secure aggregation, Erkin et al. give an
overview of the recent development in [5].

This paper will focus on the representation and securement
of load data in multiple resolutions. NILM/NALM techniques
need high resolution load data to gain accurate results. By low-
ering the resolution of the load data, NILM/NALM techniques
can only achieve limited results. While a low resolution on a
daily average is sufficient for accounting purposes, applica-
tions like load forecasting or energy saving tools require high
resolution load data to achieve useful results. This is where
multi-resolution load data representation is needed. Each res-
olution is encrypted with a different key. Trusted services or
third parties are only granted access to the resolution level
necessary to fulfill their role. Access can be controlled by a
trusted authority, or better, by the user. This adds a new degree
of freedom, as the user can decide which party gains access
to which data.

An approach on how to represent load data in multiple reso-
lutions can be found in [6]. While this approach describes how
to split load data in multiple resolutions, it leaves the question
about suitable key generation and management unanswered.
In this paper, a key management system suitable for accessing
multi-resolution load data within the Smart Grid Infrastructure
will be introduced. Furthermore this paper will suggest the use
of hierarchical keys to keep key management efforts as low
as possible.

This paper also proposes a general communication infras-
tructure fulfilling the requirements within the Smart Grid In-
frastructure. It allows secure communication between entities
and third party entities without exposing the Smart Meters
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to a public network. Hence, it minimizes the risk of possible
attacks on the Smart Grid Infrastructure.

The rest of the paper is organized as follows: Related Work
and the state of the art are discussed in Section II. The
proposed key management system is discussed in detail in
Section III. Section IV introduces the idea of hierarchical key
management and generation. Finally Section V summarizes
the most important findings.

II. RELATED WORK

The following section gives a short overview of the tech-
nologies on which this paper is based.

A. Privacy Preserving Architecture

There are different possibilities to enforce privacy protec-
tion. One is by regulation and law. While this basic idea
is essential for a modern society, it still offers the potential
to violate privacy using legal or illegal means. As long as
system design and architecture offer the possibility to collect
personally identifying information, there is a possibility to
violate privacy protection. Therefore a better approach is to
ensure privacy protection by design. In [7], Wicker et al.
propose a framework for privacy aware design tailored to the
development of demand response architectures. They suggest
five major elements:

1) Provide Full Disclosure of Data Collection: Informa-
tion on which data is collected, collection purpose and
duration of storage has to be provided to the consumer

2) Require Consent to Data Collection: User must agree to
data collection

3) Minimize Collection of Personal Data: Only collect data
necessary for functionality of technology, use data as
close as possible to the point of collection

4) Minimize Identification of Data with Individuals:
Anonymize data wherever possible, separate functional
records and personally identifying records.

5) Minimize and Secure Data Retention: Store data only if
necessary and in a way that is not useful in any other
context. Notify user if data is lost or stolen.

The system proposed in this paper will take these design
principals into account.

B. Multi-resolution load data representation

To preserve users’ privacy, the resolution of load data
generated by a Smart Meter can be reduced. As different use
cases within the Smart Grid require different resolutions, it is
difficult to determine a resolution suitable for all use cases.
In addition, according to the framework for privacy aware
design proposed by Wicker et al. in [7], there is no need for
entities to get access to load data in a higher resolution than
actually needed. To solve this problem, Engel [6] proposes
to provide a Smart Meter’s load data in multiple resolutions.
Access to a certain resolution is only granted according to an
entity’s need. Furthermore, the user can decide, if access to
a certain resolution is granted or revoked. Engel [6] suggests
to use the wavelet transform based on the Haar wavelet and

lifting scheme. The Haar wavelet calculates averages and
deltas recursively, therefore adding only low computational
costs. In addition, transformation is lossless and preserves the
aggregate, meaning the whole consumption can be calculated
using any resolution.

C. Key Management

To ensure message integrity and prevent eavesdropping, a
secure way for communication between the single nodes is
required within a Smart Grid. A system guaranteeing both,
integrity and confidentiality for the communication channel
and authentication and authorization for accessing provided
services has to be implemented. A key management system
can be seen as the base of such a system.

In the literature, there are different approaches on how to
design a key management scheme for a secure communication
within a Smart Grid.

Long et al. [8] propose an encryption scheme based on
shared secrets. They divide the Smart Grid control architecture
into two levels, each with its own key management system,
tailored to the computational resources of the devices. While,
at a first glance, shared keys seem to be an easy solution,
within a growing infrastrucutre, the number of keys is growing
rapidly. Every entity has to maintain one key per secure
connection to another entity. Hence, causing high efforts for
key management, renewal and distribution.

To solve this key management issue and to keep the number
of secret keys to a minimum, the use of public keys is
recommended. As Smith points out in [9], due to the use
of digital signatures enabled by public key cryptography, the
secret known by each device cuts down to exactly one, its
own private key. Public key cryptography needs a Public Key
Infrastructure (PKI) used for establishing, maintaining and
distributing the public/private key pair and its assignment to
a certain identity. According to Smith, a PKI doesn’t have
good scalability properties. Therefore, deploying a PKI within
a Smart Grid Infrastructure can raise serious issues on how
to manage a vast amount of Certification Authorities (CA),
maintain the trust path and on how to revoke already issued
certificates.

To address these scalability issues, in [10], Baumeister
proposes a PKI using multiple CAs, including a CA acting as
a bridge between different PKIs. Baumeister also pointed out
that several PKIs have been standardized and widely accepted
for many years, hence guaranteeing reliability, stability and
security.

The same CA topology is also recommended by the United
States National Institute of Standards and Technology in [11].
It suggests that every Grid Operator maintains its own PKI
based on a hierarchical CA topology. Compatibility, commu-
nication and policy enforcement between different PKIs are
ensured using bridges.

Through compromising the private key or changing certifi-
cate information, a certificate can become invalid before its
lifetime is over, in which case it must be revoked. A PKI
can publish revoked certificates in a Certificate Revocation
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List (CRL). During the verification of a certificate, each entity
has to download the CRL to check if the certificate is listed and
therefore being revoked. CRLs tend to be large files generating
high overhead and hence are hard to process for low resource
entities. [12]

A better solution is the implementation of the Online Cer-
tificate Status Protocol (OCSP). During certificate validation,
the entity sends a query about the revocation status of the
certificate to a OCSP server. The provided information is up to
date and communication overhead is reduced. The accessibility
of the OCSP server can result in a high availability issue.
OCSP stapling1 can be used to solve this problem. An entity
obtains a OCSP response for its own certificate and provides
the cached response to any entity requesting the certificate.
[11], [12]

D. Hierarchical Key Generation

Already in 1981, Lamport [14] suggested to use a hash chain
generating a series of One Time Passwords (OTP) to address
the problem of identification by sending a secret password
over an insecure communication channel. To construct a hash
chain of length N , a one-way hash function F is applied to
an initial seed value s N -times.

F 2(s) = F (F (s)) (1)

FN (s) = F (FN−1(s)) (2)

FN is used as the initial value and therefore sent to the
server in a secure way. The remaining OTPs F 1...FN−1 are
stored in a secure manner on the client. The client can use
FN−1 as the next OTP. Knowing FN , the server can verify the
OTP by calculating FN = F (FN−1), but neither the server
nor any eavesdropper can determine the next valid OTP as F
is a one-way hash function. After a successful authentication,
the server stores FN−1 as the next value to compare with and
FN−2 is used for the next authentication attempt. The S/KEY
One-Time Password System is one example on how to use
OTP for authentication [15].

The idea of hash chains can be found in many security
systems [16]. Hash chains or hash trees are also used for access
control to JPEG2000 coded images or H.264/scalable coded
video (H.264/SVC) [17]–[19].

Imaizumi et al. propose a scheme for hierarchical access
control to JPEG2000 coded images in [17]. Image properties
are encrypted with different keys. According to the keys
gained, a certain resolution or property can be decrypted. To
minimize the number of managed keys, a hierarchical key
management is introduced. All keys used are derived from one
managed master key using hash chains and cyclic shifts. For
decryption, the key for the highest resolution, is used. As the
used hash function is no secret, the keys needed to decrypt the
requested resolution can be derived from the one key provided.
It is impossible to decrypt the image in a higher resolution,
as the needed keys can’t be derived from the one provided.

1see RFC 4366 [13]

In [18], Wu et al. propose a similar system for access control
to JPEG2000 coded images.

In [19], Asghar et al. suggest to use key derivation for
encrypting multi-layered coded video (H.264/SCV). The aim
is the same as with Imaizumi et al. [17]. A user should be
able to watch his/her subscribed layer data with just holding
one key. For key generation and distribution, Asghar et al. use
the Multimedia Internet Keying Protocol (MIKEY) [20]. Key
derivation is done within the MIKEY key generation process.
After key generation and distribution, an Advanced Encryption
Standard - Counter Mode (AES-CM) Cipher algorithm is used
for encryption.

Access control to a multi-resolution representation of load
data has similar requirements as for JPEG2000 coded images
or H.264/SCV encoded videos. Techniques used for these use
cases can be adopted to the Smart Grid. As many successful
security systems build on hash chains and one-way hash
functions, they can be seen as well-established and secure.

III. SMART GRID COMMUNICATION INFRASTRUCTURE

To preserve privacy and to ensure secure communication, a
system guaranteeing integrity, confidentiality, and authentica-
tion is needed within the smart grid. Encrypted communication
between two entities must be confidential, therefore no other
entity should be capable of decrypting this communication
channel. In addition, third party entities should also be able
to use provided services if access is granted to them. It is
essential that the system is designed following the framework
for privacy aware design proposed in [7]. Each entity should
only have access to services and resources on a need to know
basis. Information is only stored as long as needed and the
user has to be informed how his/her data is being used. Access
should be granted on an opt-in basis as opposed to the more
prevalent (and less privacy-enabling) opt-out basis.

Possible attacks on the Smart Grid Communication Infras-
tructure can come from many different sides, namely the user
or neighbor, the Grid Operator, Utility or any third party
with or without intended access to the Grid. Independent of
their origin, attacks can be classified into following groups:
altering/forging messages, eavesdropping, data misusage, al-
tering firmware or theft of private keys and denial of service.
The approach proposed in this paper addresses these attacks
by relying on well-established techniques for content and
communication encryption. Hence these techniques can be
assumed to be safe.

In Section II, different approaches on designing a suitable
key management system for the Smart Grid have been dis-
cussed. A PKI is the only suitable key management system
with the capability to manage a big infrastructure with a vast
amount of issued certificates. The approach proposed in this
paper relies on a certificate based Public Key Infrastructure
(PKI). Several PKIs are standardized and well-established,
therefore guaranteeing reliability and security. This approach
also allows third parties to access the Smart Grid Infrastructure
in a secure manner.

2014 IEEE International Conference on Smart Grid Communications

934

160



Grid Operator

Smart Meter

Smart Meter

Smart Meter 3rd Party Entity

Tunnel

Fig. 1. Smart Meters are connected directly to the Smart Grid Operator. Third
Party Entities can access a Smart Meter only via the Smart Grid Operator

The proposed PKI is managed by the Grid Operator and uses
bidges to enable communication with other PKIs, therefore
simplifying the certificate management as well as the trust
path. Each entity acting within the Smart Grid needs to have
a valid certificate proving its identity.

The Smart Meter plays a main role in the proposed system
and is therefore a trusted device. A Smart Meter must be
capable to generate strong keys and store these keys in a
manner, that they can’t be read or altered from outside.
In addition, a Smart Meter must be able to compute cryp-
tographic functions. Like suggested by the United States
National Institute of Standards and Technology (NIST) [11]
and Wicker et al. [7], a Hardware Security Module (HSM)
or a Trusted Platform Module (TPM) can be used to fulfill
these requirements. Another requirement is tamper resistance.
It must be guaranteed that nobody can intrude or tamper
with the Smart Meter without authorization. This embraces
changes in hardware as well as in software/firmware. For
identification and content encryption, each Smart Meter holds
a valid certificate including a private/public key pair.

The assumed Smart Grid Infrastructure is shown in Figure 1.
Smart Meters are connected directly to the Grid Operator.
Third parties can access the Smart Meter via an Application
Programming Interface (API) provided by the Grid Operator.
This approach has two benefits: On the one hand, the Grid
Operator can choose the technology on how to communicate
with the Smart Meters. On the other hand, not exposing Smart
Meters directly to a public network improves security as the
Grid Operator can act as firewall only allowing authorized
entities to communicate with the Smart Meters. Smart Meters
are devices with low computational power, vulnerable to
Denial of Service Attacks (DoS Attacks). An attack can result
in serious issues on grid balancing and pricing. Monitoring
and blocking unauthorized traffic by the Grid Operator is an
essential part of increasing reliability and availability within
the Smart Grid Infrastructure.

Smart Meter Grid Operator

enc2<service request>

close connection

enc2<response>

1..n
if access
granted, 
process 
request

establish enc. connection

if accepted
ack

ID and key exchange

Fig. 2. The Grid Operator can communicate with the Smart Meter using an
encrypted connection.

Smart Meter Grid Operator 3rd party entity

establish enc. connection

enc2<service request>

close connection

if accepted

enc2<response>

enc1<response>

ack

1..n
if access
granted, 
process 
request

ID and key exchange

enc1<service request>
establish enc. connection

if accepted
ack

ID and key exchange

close connection

Fig. 3. To establish a connection with a Smart Meter, a third party has
to send the request to the Grid Operator. If access is granted by the Grid
Operator, it requests the resource from the Smart Meter. If the request is
accepted by the Smart Meter, too, the Smart Meter processes the request and
sends the response back to the Grid Operator. The Grid Operator forwards
the response to the third party entity. Note: encrypted communication is
established between third party entity and Grid Operator (enc1) and Grid
Operator and Smart Meter (enc2). Hence, the Grid Operator can read the
response. Content encryption has do be applied in addition, if necessary.

Figure 2 shows the communication sequence for estab-
lishing a connection between the Smart Grid Operator and
a Smart Meter. First, the Grid Operator establishes an en-
crypted connection to the Smart Meter using Transport Layer
Security (TLS)2. The Smart Meter accepts the connection if
the Grid Operator provides a valid certificate. As soon as
the encrypted connection is established successfully, the Grid
Operator can use the Smart Meter’s API to place a service
request. If the Grid Operator has permission to access the
service, the Smart Meter processes the request and sends
the result back to the Grid Operator. The Grid Operator can
place multiple service requests. The Grid Operator closes the
connection as soon as the connection is not needed any more.

Whereas the Grid Operator can connect directly to a Smart
Meter, third party entities must connect via the Grid Op-
erator’s API with the Grid Operator acting as a proxy. As
shown in Figure 3, first the third party entity establishes an

2see IETF RFC 5246 [21]
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encrypted connection to the Grid Operator and identifies itself.
If the third party entity hast permission to access the Smart
Grid Infrastructure, the Grid Operator accepts the connection.
Now, using the encrypted channel, the third party sends a
service request including the target Smart Meter ID to the
Grid Operator. After verifying the service request, the Grid
Operator establishes an encrypted connection to the Smart
Meter and forwards the service request. Based on the third
party entity’s certificate, the Smart Meter grants or denies
access to the requested service. If access is granted, the Smart
Meter processes the request and sends the response back
to the Grid Operator. The Grid Operator then forwards the
response to the third party entity. The third party can place
multiple service requests. As soon as the connection is not
needed any more, the Grid Operator closes the encrypted
connection to the Smart Meter and the third party entity
closes the encrypted connection to the Grid Operator. Note
that an encrypted communication is established between the
third party entity and the Grid Operator as well as between
the Grid Operator and the Smart Meter. Since these two
connections are independent, the Grid Operator can read the
whole communication between third party entity and Smart
Meter. The proposed sequence only guarantees communication
encryption preventing eavesdropping. For content encryption
and hence privacy protection, the Smart Meter can encrypt
the response using the third party entity’s public key. An
example for content encryption is given in Section IV. It is
necessary for grid stability and reliability to differ between
communication and content encryption. Within the Smart Grid,
there are multiple data flows used for load balancing and
controlling/managing the grid. Intruding and altering these
data flows can cause severe damage to the grid. Hence, it
is necessary that the Grid Operator can monitor and control
the data flows within the Smart Grid Infrastructure, requiring
the Grid Operator to read the sent messages. For data flows
containing private information, content encryption has to be
applied, preventing the Grid Operator from reading these data
flows. However, it must be ensured, that these data flows can
not harm the grid.

The Smart Grid is aiming to alter consumption behavior
by providing fine-grained pricing information to the consumer
encouraging the consumer to use energy when it is cheapest.
Therefore, Wicker et al. [7] propose to broadcast real-time
pricing information to the Smart Meters. Each Smart Meter is
therefore accumulating price-weighted consumption data. The
Electricity Provider can than access the aggregate on a daily,
weekly or monthly basis. This proposal ensures protection
of consumers’ privacy and also fits perfectly in the scheme,
proposed in this paper.

Access to and encryption of load data is discussed in
Section IV.

IV. LOAD DATA ENCRYPTION AND DISTRIBUTION

As discussed in Section II, Engel et al. propose a multi-
resolution representation of load data to increase privacy [6],

original Load Data
r3

r2

r1

r0

Resolution 2

Resolution 1

Res. 0

low frequency band high frequency band

H3

H2

H1
Key0

Key1

Key2

Key3

Fig. 4. The Wavelet transform splits load data into high and low frequency
bands. The low frequency band equals load data with reduced resolution.

[22]. Access to a certain resolution is based on the condi-
tional access paradigm. A given entity is granted access to a
resolution necessary to fulfill its role. As a NILM or NALM
algorithm needs high resolution data to achieve accurate re-
sults, reducing the resolution of the provided load data reduces
the potential for abuse. In addition, the consumer can decide,
which entity is granted access to a certain resolution. This adds
another degree of freedom as entities have to explain their data
usage to gain users’ trust.

Load data can be represented in multiple resolutions using a
suitable wavelet transform, as suggested by Engel et al. in [6].
The Haar wavelet transform suits the requirements best. It
consists of calculating averages and deltas, therefore needing
few computational resources. The Haar wavelet is a lossless
transform; under each resolution, the total consumption over
the whole timespan can be derived.

The wavelet transform splits load data in a high and low
frequency band recursively up to a certain level. Where the
low frequency band is used for the next recursive operation,
the high frequency band is preserved. The low frequency band
represents the data at a certain resolution with half the number
of samples of the next higher resolution. The high frequency
band represents the delta of a sample to the according sample
of the low frequency band. The values from the high frequency
band and the remaining value from the low frequency band
are called wavelet coefficients. The wavelet coefficients are
needed to do the inverse wavelet transform and restore the
load data to a certain resolution. The described steps can be
seen in Figure 4.

To restore a certain resolution, the inverse wavelet transform
is performed on the low frequency band and its according
high frequency band. The inverse starts with the coefficients
of the lowest resolution and works its way up to the desired
resolution.

To fulfill the conditional access paradigm introduced prior
in this section, wavelet coefficients have to be encrypted with a
different key for each resolution (from now on resolution key).
Granting access to a certain resolution means to distribute the
resolution keys for the certain resolution and for all lower res-
olutions to the requesting entity. A high number of resolution
keys has to be managed and distributed, therefore introducing
significant overhead for key management and storage.
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To address the problem of high key management costs,
Hierarchical Keys are introduced. Hierarchical Keys allow the
decryption of multiple ciphertexts with a single key although
the messages were encrypted with different keys. For example
encrypting three messages m1,m2,m3 each with a different
hierarchical key k1, k2, k3. In terms of decryption, using k1
just decrypts m1, but k2 or k3 can be used to decrypt m1,m2

or m1,m2,m3, respectively. Hierarchical Keys therefore sim-
plify key management, as less keys have to be known to
decrypt multiple messages. Key generation and sample use
cases have been already discussed in Section II.

As the use case of multi-resolution representation of load
data is quite similar to H.264/SVC and JPEG2000 encryption,
techniques proposed in [17]–[19] can be adopted. A hierar-
chical resolution key is generated for each level of resolution.
Resolution keys are derived from a master key using hash
chains. Any appropriate one-way hash function can be used.
Resolution key renewal can be done within a certain time
period, e.g., daily. Wavelet coefficients are encrypted using
the appropriate resolution key. The wavelet transform itself
is performed on a cyclic basis, e.g., hourly, covering a fixed
time span, e.g., the last 24 hours. The wavelet coefficients are
packed into a single stream (see Figure 5) and transfered to any
entity requesting it. According to the entity’s resolution key,
the entity is only capable to decrypt the wavelet coefficients
of the resolution, to which access was granted to. As the
one-way hash function is no secret, the entity can derive the
resolution keys to encrypt the wavelet coefficients of a lower
encryption but it can’t encrypt any wavelet coefficients of a
higher resolution.

Figure 6 shows the service requests needed for obtaining
load data. This sequence is based on the communication
sequence shown in Figure 3. Before sending a service request
to the Smart Meter, the entity has to establish a connection via
the Grid Operator, as described in section III. To obtain load
data, the entity has to go through two steps, (i) obtaining a
suitable resolution key and (ii) retrieving the load data. To
obtain the resolution key, the entity has to request access
for a certain resolution. Therefore, it sends a service request
including the certificate and the requested resolution to the
Smart Meter. The Smart Meter has to decide, if access is
granted. If this is the entity’s first access request, the Smart
Meter forwards the request to the consumer as he/she can
decide, if access for a certain resolution is granted to a certain
entity. If the entity is known by the Smart Meter, access can
be granted/denied based on previous consumer decision. In
case access is granted, the Smart Meter encrypts the resolution
key using the entities public key and sends it to the entity.
In a second step, the entity sends a load data request to the
Smart Meter. The Smart Meter returns a stream containing the
encrypted wavelet coefficients, as shown in Figure 5. There is
no additional authentication process needed, as the stream is
worthless without the resolution key obtained in step one. By
decrypting the wavelet coefficients and performing an inverse
wavelet transform, the entity can now restore load data up to
the resolution, to which access was granted. Load data can

Res. 0

Key0

H1

Key1

H2

Key2

H3

Key3

Fig. 5. All wavelet coefficients needed for the inverse transformation are
encrypted with different keys and transmitted as a single stream.

User Smart Meter Entity

request resolution key
(resolution, certificate)

ask user

request load data1..n

encrypted stream

if entity
unknown

grant/deny
access result (grant/deny)

enc<resolution key>
if access
granted

if entity
known

once/day

Fig. 6. To access load data, the entity has to request the resolution key for
the desired resolution. The user has to decide, if access is granted or denied.
After receiving a valid resolution key, the entity can request load data as long
as the resolution key is valid. To guarantee content security, the resolution
key is encrypted using the entity’s public key.

be obtained as long as the issued resolution key is valid. To
ensure content security, the resolution key is encrypted using
the requesting entity’s public key. As only the entity knows
it’s private key, the resolution key cannot be decrypted by the
Grid Operator working as a proxy.

V. CONCLUSION

Secure communication plays an important role within the
Smart Grid. It is essential to ensure authentication, autho-
rization and integrity to prevent unauthorized parties from
eavesdropping or altering communication. As consumer re-
lated data is collected and transferred, privacy protection is
another important issue to address.

In this paper, a secure way of communication, suitable to be
used within a Smart Grid Infrastructure, has been introduced.
The approach uses a PKI to ensure a secure communication
between Smart Meters, the Grid Operator and third party
entities. For communication between third party entities and
Smart Meters, the Grid Operator acts as a proxy. Hence, the
Grid Operator protects the Smart Grid Infrastructure from
possible attacks.

To preserve privacy, load data is represented in multiple
resolutions. The consumer can decide which entity can access
data and at which specific resolution. For multi-resolution
representation, the wavelet transform is used, as it adds just a
small computational overhead and the transformation process
is lossless. Each resolution is encrypted using a different reso-
lution key. Key management efforts are reduced by introducing
a hierarchical key management using one-way hash functions
for key derivation.

The proposed scheme offers a secure way of communication
within the Smart Grid. Methods are used to preserve con-
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sumer’s privacy. A new degree of consumer freedom is added,
as the consumer can decide to whom and at what level his or
her personal data can be provided.
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Abstract—Demand response (DR) is a crucial and necessary 

aspect of the smart grid, particularly when considering the 

optimization of both, power consumption and generation. While 

many benefits of DR are currently under study, an issue of 

particular concern is optimizing end-users’ power consumption 

profiles at various levels. This study proposes a fundamental, 

game theoretic software framework for DR simulation that is 

capable of investigating the effect of optimizing multiple electric 

appliances by utilizing game theoretic algorithms. Initial results 

show that by shifting the switch-on time of three household 

appliances provides a savings of up to 6%. 

I. INTRODUCTION 

With the increasing pervasiveness of renewable energy new 

challenges have arisen: Energy is no longer exclusively 

produced in large power plants, but also in the homes of 

ordinary people. Eventually, this development will lead to a 

paradigm shift, away from the hierarchical top-down oriented 

system to a decentralized structure with volatile renewable 

energy sources, such as wind turbines, photovoltaic cells and 

plug in electric vehicles (PEV) [1,2]. 

By coordinating household appliances and PEVs, off-peak 

usage could result in cheaper electricity prices. With respect to 

coordination, demand response (DR) management could pose 

an ideal solution to this problem [3-5]. 

Within the vast amount of different approaches to simulate 

and model DR, game theory proves to be a capable method of 

modeling and describing complex interactions between 

different rational players. The goal of a game theoretic 

approach in DR management is to develop a model and proof 

that if every agent tries to maximize its own profit, an 

equilibrium point is found. By acting selfishly, players reach a 

global optimum [6]. Publications in this area range from load 

shifting approaches [7,8] to using storage devices such as PEVs 

in micro-grid storage games [9] to games that focus on utility 

companies [10,11]. 

This study proposes a new software framework – Okeanos
1
 

– that enables the simulation and study of these issues through 

the provision of an extensible, open source simulation platform 

that can both, model different types of loads and be configured 

                                                           
1
 The project is released as open source and can be accessed at 

https://github.com/wolfgang-lausenhammer/Okeanos 

to work with different game theoretic DR management 

approaches. By providing a very lightweight interface for users 

to plug in their own control algorithms, the framework also 

allows for new strategies to be tested. 

The remainder of the paper is structured as follows: An 

overview of related work in game theory in DR management, 

and software frameworks for DR management is presented in 

Section II; This is followed by introducing the novel DR 

simulation platform, Okeanos, and highlighting its key 

concepts in Section III; Initial results of using Okeanos are 

described in Section IV; and, finally, Section V concludes this 

work. 

II. LITERATURE REVIEW 

This section provides an overview of the state-of-the-art in 

game theory in DR management and software frameworks for 

DR management. 

A. Game Theory in Demand Response Management 

Game theory, in its essence, aims to help understand 

situations in which several decision-makers interact. Being a 

mathematical framework and analytical tool, game theory helps 

study the relationships and actions among rational players 

[6,12]. 

Saad and co-authors evaluate the available approaches for 

applying game theory to timely open and relevant smart grid 

related problems in [6]. They focus on three emerging areas, 

particularly: micro-grid systems, demand-side management, 

and communications. 

One way to reduce the peak-to-average-ratio (PAR) of an 

energy system is to change the schedule of shiftable household 

appliances. Traditionally, multi-objective functions [13] and 

non-linear models [14,15] are used to determine a (near) 

optimal, (near) real-time schedule. 

In contrast to that, Mohsenian-Rad and co-authors utilize 

game theory and propose an energy consumption game to 

optimize energy costs in [7]. Their aim is to change the daily 

schedule of shiftable household appliances. Although the 

schedule could be calculated centrally, calculation is done in a 

decentralized way. This is the preferable way, as it requires 

significantly less communication effort and does not provide a 

single point of failure [7]. 

166



 

Fig. 1.  Physical mapping of agents in Okeanos. 

Unlike the aforementioned load shifting approach, the 

authors of [9] propose a non-cooperative micro-energy-storage 

game. Here, users decide on a storage profile for their 

household devices to optimize a utility function reflecting the 

cost. That is, users decide on a point in time when they want to 

buy energy, ideally during low-cost periods, and when they 

want to use this energy to satisfy their demand. Several 

constraints, such as the maximum capacity, the storage 

efficiency and running costs are considered [9]. 

B. Software Frameworks for Demand Response 

Recent [16-20], as well as older publications [21-25], 

propose a multi-agent approach as appropriate to deal with the 

complex topic of demand-response optimization. 

PowerMatcher is a tool used for coordinating a large cluster 

of distributed energy resource devices within a smart grid in 

near real-time. Its focus is on end-consumers allowing them to 

use their appliances to actively participate in the energy market. 

Thus, by offering flexibility to the grid, customers get the 

possibility to reduce their energy bills. Appliances, represented 

by agents, coordinate consumption and production and 

calculate the market clearing price [16]. 

Similarly, in DEZENT, agents communicate their demand 

or supply to a balancing group manager (BGM) at their 

respective grid hierarchy level. It is the BGMs duty to match 

similar offers for demand and supply. Unmatched offers are 

handed over to the next higher level, where this matching starts 

over again [26]. 

Okeanos is fundamentally different to these approaches, as 

it plans consumption and production ahead of time and uses 

mathematically proved solutions for finding the optimal 

schedule for household appliances. Indeed, by using game 

theoretic approaches, it is guaranteed that if every user acts 

selfishly and optimizes his or her own costs, a global cost-

optimum is established. 

III. OKEANOS – A MULTI-AGENT GAME THEORETIC DEMAND 

RESPONSE MANAGEMENT SOFTWARE FRAMEWORK 

Okeanos is a novel Java-based multi-agent DR simulation 

platform with special focus on the compatibility to game 

theory. That is, not only one particular coordination mechanism 

as in [16], [17] or [26] is supported, but any mechanism, as 

long as it complies with the specified interface. 

The goal is to allow for a holistic approach to demand 

response management with a very extensible platform that can 

host all kind of appliances, as long as there is an appropriate 

driver available in the system. By defining a clear interface and 

basing the framework on OSGi, these drivers can be easily 

developed, deployed and removed from the system.  

A. Household appliances as the smallest active unit  

Okeanos combines several features of [16], [17] and [26]. 

That is, Okeanos utilizes the multi-agent paradigm to represent 

household appliances. Thus, every single appliance within a 

household taking over an active role in DR management is 

represented by an agent. This implies that every agent can 

decide on its own and can pursue a target. The target is 

specified by the currently plugged in game. Likewise, the 

capabilities are specified by the underlying household device 

and the corresponding driver, which are both explained later on 

in this section. 

To be able to focus on other aspects of the system, a 

feature-rich, modularized and easy to use framework is utilized 

for providing multi-agent features. A comparison between the 

Java-based multi-agent simulation platforms JADE, Janus, 

Jason and JIAC resulted in JIAC as the winner. Criteria 

included functionality, active development, ease of use and 

adoption throughout the software developer community. 

JIAC’s modern approach to use the Spring framework as 

the basis for the whole system is unique throughout all 

compared multi-agent frameworks. Additionally, the utilization 

of this framework assures the system to be future-proof 

according to the best of the authors' knowledge, thus making it 

first choice for implementing multi-agent systems in Java. 

Okeanos, a JIAC-based multi-agent system, is structured as 

shown in Fig. 2. That is, the application can consist of several 

agent nodes, agents and agent beans [27]. 

Agent nodes are distributed containers providing the necessary 

infrastructure for agents, such as a communication 

infrastructure or white and yellow pages services [27].  

Several agents, that is, household appliances, can be hosted 

within one agent node (see Fig. 1) and according to the service 

oriented architecture (SOA) architectural pattern, provide 

services to other agents. Moreover, as required by [27], every 

agent comprises several agent beans, which provide the actual 

functionality like persistent memory and usage of infrastructure 

services for inter-agent communication. As a consequence, 

functionality defined by Okeanos, such as weather service, 

pricing service or time service, are implemented as agent beans 

and OSGi bundles and plugged into the agents as such. 

B. Plug in support 

To be able to plug in different device drivers or games, 

flexible and powerful interfaces need to be developed. 

Furthermore, implementations of these interfaces need to be 

hooked into the system easily, in order to keep the threshold for 

developing modules as low as possible. For that reason, it is 

advantageous to modularize the system as much as possible. 
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Fig. 2.  Structure of a JIAC-based multi-agent system. Adapted from [27]. 

 

Fig. 3.  Okeanos Bundle structure with sample household devices and services 

With OSGi designed as a service oriented architecture, 

Okeanos features no monolithic core, but is a conglomerate of 

various bundles (see Fig. 3). According to the OSGi R5 

specification [28], it is best practice to keep the interfaces in a 

separate bundle, to also allow for optional bundles not being 

present in the OSGi container. Consider, for example, a logging 

service: The application does not necessarily need an 

implementation for a correct execution, however, at least the 

interface needs to be present, otherwise OSGi would not be 

able to resolve the dependencies of the bundle. 

As indicated by Fig. 3, every service in Okeanos is 

represented by its own module and, therefore, separated in its 

own bundle. Their respective interfaces are all consolidated in 

interface bundles corresponding to the actual layer the bundle 

is part of. Likewise, as it is possible to have no implementation 

present in an OSGi container, it is possible to have multiple 

implementations present. This is especially true for device 

drivers, as they all implement the same interface. Therefore, the 

service user needs to select from the list of available drivers. 

The service provider, that is the driver, can specify 

additional properties, such as year and brand of a household 

device, as key value pairs to supply the service user with some 

cues. 

C. Game theory in Okeanos 

As described in Section II, game theory can be used to 

understand the result of the dynamism in a game between 

several interacting players. Every player in such a game is 

represented by its own agent in Okeanos. By that, the 

prerequisite that players have to act rationally can be assured. 

There are a number of published game theoretic approaches 

to DR management [7-11]. Some take load shifting into 

consideration, some make use of available storage devices such 

as PEVs, and others formulate a game with multiple utility 

companies. 

Okeanos is designed to support any game that can be 

mapped to the specified interface. Therefore, it is crucial to 

define the interface as general as possible, while at the same 

time being specific enough that implementations of the 

interface have a useful basis for doing their optimization and 

calculation. 

Furthermore, it is possible that individual agents use 

different games. The meaningfulness of such a mixture is, 

however, questionable, as no guarantee of the existence of a 

Nash equilibrium can be given under such circumstances. 

As a first proof of concept, the game proposed by 

Mohsenian-Rad and co-authors [7] has been modelled with 

Okeanos. One of the reasons for this is that the authors 

formulate their algorithm in pseudo code, which allows for 

accurate adaptation. Moreover, by utilizing load shifting, 

potentially more devices can be integrated in the first place as it 

were possible with storage devices. 

The decentralized objective function of the game in [7] is 

given by (1) where 𝑥𝑛,𝑎
ℎ  represents a one hour energy 

consumption scheduled for appliance 𝑎 of user 𝑛 at hour ℎ. 

Additionally, the cost functions 𝐶ℎ are increasing and strictly 

convex. ℋ is the set of possible hours of the 24h time horizon 

[7]. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥{𝑛}∈𝒳𝑛

   ∑ 𝐶ℎ

𝐻

ℎ=1

( ∑ 𝑥𝑛,𝑎
ℎ

𝑎∈𝒜𝑛

+ ∑ 𝑙𝑚
ℎ

𝑚∈𝒩{𝑛}

) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑙𝑚
ℎ = ∑ 𝑥𝑚,𝑎

ℎ            

𝑎∈𝒜𝑛

                          ℎ ∈ ℋ 



The consumption of all other players 𝑙𝑚
ℎ , 𝑚 ∈ 𝒩 ∖ {𝑛} is 

static, therefore, only the schedule 𝑥𝑛,𝑎
ℎ  of the local appliances 

𝑎 of player 𝑛 at each hour ℎ needs to be calculated. That is, an 

optimal schedule with respect to the consumption patterns of 

the other players needs to be computed [7]. 

The algorithm to play this game is given in Algorithm 1. 

The initial consumption is initialized randomly, because the 

game guarantees to find the Nash equilibrium regardless of the 

initial configuration. After that, every appliance finds the best 

solution to the local optimization problem (1) at random 

instances, e.g., by using the Interior Point Method (IPM). This 

randomness is important to allow for another appliance being 

faster with finding a solution and sending an update of its 

consumption. If a different solution to the optimal consumption 

is found, it is broadcast to the other devices. This loop is 

repeated until no schedules are changed anymore. 

Randomly initialize 𝑙𝑛 and 𝑙−𝑛 

repeat 

    at random time instances do 

        Solve local problem (1) using IPM. 

        if 𝑥𝑛 changes compared to current schedule then 

            Update 𝑥𝑛 according to the new solution. 

            Broadcast a control message to announce 𝑙𝑛 to the other 

agents across the system. 

        end 

    end 

    if a control message is received then 

        Update 𝑙−𝑛 accordingly. 

    end 

until no agent announces any new schedule 

Algorithm 1: Energy consumption game, executed by each user 𝑛 ∈ 𝒩 [7]. 
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Mohsenian-Rad and co-authors use an hourly consumption 

schedule for all devices. In contrast, Okeanos uses a 15 minutes 

interval to allow for a more fine-grained control over faster 

devices. 

IV. INITIAL RESULTS 

Okeanos is evaluated to test its applicability to real world 

problems and use cases. Therefore, this section gives an initial 

insight into the capabilities of Okeanos. Test results are based 

on the devices listed in Table 1 in addition to a household load 

profile. The data for implementing drivers for clothes washer, 

clothes dryer and a dishwasher is taken from [29]. The 

household data is based on the H0 load profile provided by the 

Bundesverband der Energie- und Wasserwirtschaft (Federal 

Association of the Energy and Water Industry) [30]. The H0 

load profile is a standardized profile used to approximate the 

consumption of customers that cannot be measured otherwise. 

The real-time pricing costs are taken from [31]. In order to 

draw a sound conclusion, the consecutively mentioned 

experiments were repeated at least 100 times and the reported 

results are average values. A single household with a 30 kWh 

load profile is used as a base case. 

Starting with multiple devices within one household, the 

interaction between the devices is tested. The devices search 

for the point in time which minimizes the electricity costs for 

that device. The impact of shifting the load profile of a 

household is depicted in Fig. 4. Devices in the first chart run 

daily, whereas devices in the second run every third day. 

Additionally, to make the simulation more realistic and to take 

the consumption patterns of different households into account, 

the H0 load profile is shifted 0, ±1h or ±3h. 

The major result of this simulation is that the more the 

regular households differ in their consumption patterns, the 

more the total load curve evens out. With all households using 

the standardized H0 load profile, several peaks are present, 

most notably those at 1 p.m. and 8 p.m. Naturally, considering 

the price per kWh, it is preferable to, especially at those hours, 

to reduce the energy consumption. 

The only difference between the charts in Fig. 4 is the peak 

in the morning, when all the load shifting devices are switched 

on. This difference is due to the fact that the devices run only 

every third day and, therefore, on average, the consumption at 

that point should only be one third of that when they are 

switched on every day. 

It can be seen in Table 2 that the effect of varying the load 

profile of households is negligible. This is valid throughout all 

compared categories. 

Table 1: Overview of drivers used for evaluation. Data from [29] and [30]. 

Appliance Model Rating 

Household Standard load profile Scaled to 30kWh 

Clothes washer LG WM2016CW 120V, 60Hz, 5A 

Clothes dryer LG DLE2516W 120V, 60Hz, 26A 

Dishwasher Kenmore 

665.13242K900 

120V, 60Hz, 9.6A 

 

Table 2: Comparison of costs per month per household with load shifting in 

relation to shifted household load profiles. 

 
Regular 

30kWh 

household 

28kWh household with 2kWh 

load shifted devices 

Run daily Run every 

third day 

0h shifting $85.80 
$82.25 

(4.14%) 

$80.71 

(5,93%) 

±1h shifting $85.72 
$82.17 

(4,14%) 

$80.66 

(5,90%) 

±3h shifting $85.10 
$81.60 

(4,11%) 

$80.11 

(5,86%) 

Actual savings, according to the outcomes (see Table 2), 

can be noticed between a regular 30kWh household and when 

load shifting is in place. The average savings is around 4.14% 

if load shifting is in place. 

Naturally, the savings of a household with its devices 

running only every third day needs to be higher compared to a 

household where the devices run every day. The savings com-

pared to a regular household with no load shifting are 5.9%. 

V. CONCLUSION 

In this paper, we proposed Okeanos, a novel multi-agent 

demand response simulation platform that is capable of 

evaluating game theoretic approaches. Due to its extensibility, 

Okeanos can support a wide range of different household 

appliances. Moreover, because the system is based on OSGi, 

exchanging specific implementations is very easy, as long as it 

implements the same interfaces. 

Initial results show that by optimizing three household 

appliances of one household, Okeanos can save up to 5.9% of 

energy costs per month. Future work will focus on studying the 

impact of more households, as well as integrating plug in 

electric vehicles in the simulation. 

 
Fig. 4.  Optimizing the schedule of one 28kWh/day household. Devices run 

every day in the first chart, every third day in the second chart. 
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Abstract—Privacy in Smart Metering has been discussed exten-
sively, as have privacy enhancing technologies (PETs). However,
neither of these items has been put into the perspective of the
actual use cases at hand. This perspective is crucial to (i) map
the correct PETs to each use case and to (ii) identify gaps,
i.e., use cases which are privacy-relevant, but not yet covered
by a PET. Beside the construction of such a set of privacy-
relevant smart metering use cases, some open research questions
have been found. Most importantly, the Smart Metering systems
must be described in more detail in order to facilitate a sound
development of PETs.

I. INTRODUCTION

Smart Metering, as part of the Smart Grid, is a step towards
modernizing our electrical grids. However, the discussion of
how to achieve optimal roll-outs of smart meter technology
has been accompanied by a – sometimes ferocious – debate
on privacy concerns. Numerous contributions have pointed
out that the load consumption data produced by a household
is privacy-sensitive data, as it allows to deduce behavioral
patterns of its inhabitants (e.g., [1], [2], [3]).

Privacy enhancing technologies (PETs) have been proposed
to strike a balance between the functional requirements of
Smart Metering and the requirement of preserving individual
privacy. This paper focuses on methods that are applied near to
the customer and that aim at providing the minimum amount of
information needed to external parties. An excellent overview
of PETs in Smart Metering [4] shows that PETs typically focus
on either one of two use cases: billing and aggregation (Table
I).

PET Billing Aggregation
Anonymization - X
Cryptographic Computation - X
Perturbation - X
Verifiable Computation X -
Trusted Computation X X

TABLE I
MATCHING OF PETS AND USE CASES [4]

The goal of the billing use case is a rather infrequent
calculation of the bill for a single customer using the con-
sumption values and the tariff as input. Verifiable computing
(VC) methods are cryptographic methods that enable the
computation of a function by another, untrusted party. The
output consists of the result and a zero knowledge proof (ZKP)
that the calculation has been done properly. In the Smart
Metering case the bill could be computed at the customer’s site

as a function of the consumption of the customer and the tariff
provided by the energy provider [5]. Since the consumption
does not leave the customer’s site, privacy is preserved. On
the other hand, the energy provider can be sure that the bill
has been calculated correctly.

The aggregation use case aims at a frequent calculation
of consumption values that are averaged over either space,
typically a neighborhood, or time. Average consumption is
believed to be sufficient for use cases concerning the network
operator (NO) like load monitoring and prediction. Crypto-
graphic computation methods typically employ homomorphic
encryption methods, which have the special property that the
product of the encrypted load values yields, after decryption,
the sum of the load values. This property is exploited for the
calculation of the average value [6], [7], [8]. Cryptographic
methods can be combined with perturbation methods that add
a well defined amount of noise to each single measurement
in a distributed way such that the sum of these noise values
is just sufficient for reaching differential privacy [9], [10],
[11]. Differential privacy is a guarantee that the value of a
single customer cannot influence the sum too much. As a
consequence the sum cannot provide information about single
customers.

In the PET literature, other use cases occur as evaluation of
practical properties of the presented PET solution. To give an
example, it has been studied that some PETs need extensive
communication between smart meters and a communication
structure that is organized as a tree. The high amount of
connections needed in turn affects e.g. the resistance to failure
of synchronization or failures of single smart meters [4].
On the other side, there are extensive collections of Smart
Metering use cases [12], [13], [14], [15] that contain much
more than two use cases. This observation motivates the
question: are the use cases billing and aggregation enough
or do other Smart Metering use cases need to be considered?

To best of the authors’ knowledge no collection of use
cases exists that is accurate enough to be used as a basis for
the development of PET’s. One contribution of this paper is
a first step to the composition of a consistent set of Smart
Metering use cases which is formulated in a way that is
suitable for the development of privacy enhancing technologies
for Smart Metering. During the composition of this set of
Smart Metering use cases several topics remain open, which
is another contribution.

The rest of this paper is organized as follows: Section II
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shows how the use case collection was derived from existing
use case collections. The resulting use case collection is
described in section III. Section IV contains a first attempt
to estimate the privacy relevance of use cases, and thus also
their relevance for PETs, based on the data items that are
transferred. Finally, Section V concludes the paper.

II. METHOD

The approach here is to gather and combine as much
information about Smart Metering use cases as possible from
already existing documents [12], [13], [14], [15]. In section IV
the privacy-sensitive use cases will then identified for further
investigation.

A. Combination of Existing Use Cases

The resulting set of use cases should satisfy three main
criteria. First, the set of use cases should be as complete as
possible. This criterion is aimed to be fulfilled by combination
of a number of different use case collections for Smart
Metering. The use cases of the European Smart Metering
Industry Group (ESMIG, [12]) is the most extensive set of use
case collections and is therefore used as a starting point. Since
it focuses on the business part ending at the Head End System
(HES) as domain boundary, these use cases were enriched
or specified in more detail by use cases from other use case
collections that focus more on the customer site [13], [14].

B. Simplification of Involved Actors

As a second criterion, the use case description should be
suitable for providing a quick overview over the use cases to
people working on PETs. From a privacy point of view it is
most important whether the user gives her data away or not.
Together with the fact that this paper’s focus lies in PETs
that are applied near the customer’s premise, this motivates
the decision not to distinguish different parties outside the
customer’s premise. Thus, only two parties, called “customer”
and “service provider/utility”, respectively, occur. Note that the
description of the billing and aggregation use cases for PETs
each also only involve only a single service provider.

For privacy and security purposes a (trusted) third party
(TTP) is typically needed. Such a third party could be an actor
that distributes keys or acts as the trusted third party for trusted
computation (TC) methods. Since the way a TTP comes into
play and interacts with customers and the utility is resulting
from the chosen privacy and security method employed and
not directly from the use case, the TTP is omitted for the
description of the use cases.

This rather crude simplification has two benefits. On one
hand it considerably simplifies the description of the resulting
use cases. On the other hand differences in architectures
occurring for different use case collections vanish. This in turn
enables a focus on a more concrete description of use cases. In
fact, strictly speaking both the billing and the aggregation use
cases are not use cases but even more specific functions that
must be computed by the system. As a drawback, regarding
all actors outside the household as equally trustworthy, PETs

that describe how data are distributed outside the customer’s
premise cannot be treated.

C. Addition of Data Items

As a third criterion, the use case description should be
detailed enough to enable a privacy analysis. This criterion
especially implies a description of the collected data items.
Since the data that need to be transmitted are not specified
in detail and instead modeled by placeholders called, e.g.,
MeterData, data items needed were gathered from addi-
tional sources [16] containing so-called baseline data required
for the delivery of benefits for network operators.

D. Visualization and Clustering

In order to consider possible dependencies between use
cases, a single use case is visualized as a rectangle. If a use
case leads to the call of a second use case, an arrow is drawn
from the first to the second use case leading to a graph that
has to be visualized and brought into an adequate layout: The
inner use cases occurring inside the household were placed
in the middle and separated from the others by a big, dashed
rectangle (Figure 1). Then, the outer use cases were manually
regrouped around the inner use cases such that the intersection
of the use case arrows is minimized. It turned out that this
worked particularly well, if use cases were clustered using
clusters and sub-clusters similar to the ones described in [14].
These clusters were added leftmost and rightmost, respectively
(Figure 1).

E. General Changes of Use Cases

In the aforementioned use case collections, the instal-
lation process is not described in detail, thus the cor-
responding use cases are mainly listed here. Although
the Asset-monitoring & error handling module
could have been sorted to the Monitoring sub-cluster, too, it
remained at the Maintenance cluster due to its different scope.
Here, the focus lies in detection of failures in assets, i.e., either
in failures of meters, the communication line or the other
endpoint, which is called Meter Data Management (MDM)
for simplicity. Customer move-in/out and Supplier
Change are use cases that are likely to call other use cases.

Many of the use cases need to change the configuration
of the meter, for this reason a corresponding module Meter
configuration is introduced and placed within the house-
hold. Similarly, many use cases need to inform the user via
a Customer information module. Since the use cases
(Dis)connect energy supply and (Dis)connect
devices act at the household, they are also placed inside
the household area. Energy consumption behavior can only
change due to the tariff, if an additional module exists inside
the household that changes the consumption behavior. The
new Local energy control module represents either
the inhabitant of the household or an automatic Customer
Energy Management System (CEMS).
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Fig. 1. Description of use cases. Dashed line: boundary of the household

F. Privacy-Related Adaptions

In the last step it was tried to make the use cases more
concrete in order to incorporate privacy-relevant behavior. For
this purpose, some additional rectangles or modules were
introduced.

ESMIG’s original use case Obtain Meter Reading
was renamed into Transfer of Meter Reading. This
name better describes the original intention of this use case
which is the distribution of the data to the different actors
outside, including the specification which actor gets which
granularity of the data. It also includes issues such as storage,
re-use, deletion and correction of data and linkage to other data
sets which is of special importance. Note that this use case has
no connections to other use cases which can be explained by
the fact that it describes topics that cannot be treated due to
the simplifications of actors (Section II-B).

Three additional processes, with thicker outer boundaries
emphasizing their importance for privacy, were introduced in
order to explicitly describe the flow of data from inside the
household to an external actor. The first is called Meter
sends consumption and describes the highly privacy-
relevant process where the meter sends its consumption data
outside the household. In order to emphasize the flow of
consumption data, the arrows point outwards the household.
The meter also sends power quality events, which are gen-

erally viewed as not privacy relevant. The third rectangle is
describing the sending of all other events.

In order to emphasize the necessity to perform crypto-
graphic computations, an additional rectangle Sign and
encrypt messages was introduced which offers the pos-
sibility to sign and encrypt messages.

The use case Key exchange could be seen as part of the
use case Communication setup, however due to the high
relevance for privacy and security it was held outside.

The use cases of the NO are only coarsely described in
[12]. The original use case “network operation optimization”
is seen here as a third sub-cluster because it is likely that it will
contain use cases like Load prediction or Determine
energy balance which are based on consumption data.
Although in [12] the use case Tampering detection
is described to be based on metering events only, it could
be possible that also for this use case some form of energy
balance based on consumption data is calculated. The same
holds for Outage Detection. Therefore arrows coming
from Determine energy balance are pointing to these
use cases.

Since both of the two original use cases Billing and
Prepayment need a tariff, the handling of the tariff was
introduced as a new use case since it will likely be treated
as a single Tariff module. As a second benefit, such a
module shows more clearly how demand response can be
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achieved by changing the tariff. The original two use cases
were named Bill Calculation and Credit Module.
While most of the smaller billing and prepayment sub-use
cases happen outside the household, the original sub-use case
Request credit is triggered from within the household
and was thus modeled by a Local credit module. Here,
the information about the credit is modeled to be flowing
via the use cases Meter configuration and Customer
information to the Local credit module.

III. DISCUSSION OF THE USE CASE DESCRIPTION

The resulting description of use cases is shown in Figure
1. The use cases are aligned along the 3 columns in the
middle. The big, dashed box denotes the outer boundary of
the household, the middle column represents the respective
use cases or modules inside the customer’s premise. The
modules corresponding to use cases running primarily outside
the household are the two columns to the left and right of the
dashed household boundary.

The figure gives a good impression about the high number
of use cases, a PET must be compatible with. Especially
the Installation and Maintenance use cases can
turn out to be critical. If timestamps are used for crypto-
graphic protocols, Clock Synchronization turns out to
be a critical issue. The use case Asset Monitoring &
Error-handling includes detection of failures (of meters,
communication, data receiver) and remedies such as firmware
updates, which, as Key Exchange is highly important for
privacy due to its security relevance.

The figure immediately shows which use cases (the ones
with thicker outer boundaries) lead to a flow of data items
outside the household. As it is planned by ESMIG’s use
cases, here the calculation of the bill is performed outside
the household via the module Bill Calculation. Thus,
there is a need to send the consumption data outside the house-
hold. However, using verifiable computing methods, the Bill
Calculation module could be placed inside the household
which immediately removes the need to send consumption data
outside. Instead of the consumption data, which would in this
case even need to be attributable to a household, only the
computed price and the corresponding zero knowledge proof
would need to be sent outside.

Note that the description of the use cases shows data
items that are transmitted outside but it does not indicate a
specification in which form e.g. consumption data are sent. In
order to study the impact of PETs such as aggregation using
homomorphic encryption the data items need to be specified
in more detail.

IV. PRIVACY RELEVANCE OF DATA ITEMS AND USE
CASES

In this paper use cases are considered as privacy-relevant,
if privacy-relevant data of customers would be transferred
outside the household if no PETs are employed. In this section,
it is attempted to estimate the privacy relevance of use cases.
Since there is a gap between the information needed and the

Data Item Privacy relevance

Active energy per household [s] high
Active energy per household [30min] medium
Active energy per household [day] low
Active energy per household [year] negligible
Reactive energy [s] medium (?)
Generated energy low
Consumption data per household [s] high
Consumption per household high
Tariff low
Credit high (?)
Billing data high
Mean voltage no
Voltage sags and swells no
Voltage alarms no
Power quality data no
Voltage events no
Incoming supply failure detected/restored no
Maximum demand in 30min > Threshold low/medium (?)
Average energy > Threshold low/medium (?)
Reactive average power > Threshold low (?)
Energy consumption returned below limit low/medium (?)
Meter events low/medium (?)
Supply disabled/restored low/high (?)
Device enabled/disabled (external) low
(Device enabled/disabled (home automation)) (high)
Operating conditions low/high (?)
Contracted power/flow low
Meter status no
Meter access log no (?)
Device information low
DER parameters no
Keys no
Configuration parameters low (?)

TABLE II
PRIVACY RELEVANCE OF DATA ITEMS WITHOUT PETS APPLIED.

(?): FURTHER INVESTIGATIONS NEEDED

information available in the use case collections, the result can
only be regarded as a first estimation.

A. Privacy Relevance of Data Items

Due to its definition the privacy-relevance of use cases is
based on the estimation of the privacy-relevance of data which
is the topic of this subsection. The so-called baseline data of
[16] are the basis for the list of data items. Meter configuration
data were extended by items that are obviously necessary for
use cases like e.g. cryptographic keys.

The classification of data items with respect to their privacy
relevance is not a trivial task. For example, personal behavior
and current circumstances determine activities in the house-
hold which in turn can lead to the use of appliances whose
summed consumption is measured by smart meters. Thus,
inferring personal behavior from consumption is not simple.
However, several studies suggest that active energy data are
highly privacy relevant [17], [18], [19]. The information gained
from consumption data highly depends on the granularity of
the measurements in time. This fact is reflected by the presence
of several entries for active energy in Table II. The estimation
of the privacy relevance for different measurement intervals is
based on results of [20].

For reactive energy the situation is not so clear because
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in typical non-intrusive appliance load monitoring studies
reactive energy is used together with active energy but not
alone. Since motors have a reactive component [21], reactive
energy could be used to identify a subset of appliances such
as the garage door opener or the water pump. Since the garage
door opener could deliver valuable information about leaving
and arrival times, privacy relevance could be considered as
medium. Generated energy has low privacy impact because it
mainly depends on external factors like the weather.

Data items arising from billing scenarios are clearly per-
sonal and have therefore high potential of getting sensitive.
Since the current tariff is more influenced by the service
provider than by the customer, it is likely to have low privacy
impact. However, the current credit could be considered as
highly sensitive: the fact that the credit is zero could indicate
that the customer is bankrupt. Dependent on the kind of tariff
and on the frequency of its calculation, the bill itself could
provide indirect information about the consumption.

Power Quality Data consist of mean voltage values, voltage
sags and swells or voltage alarms. Since voltage does not
depend on the household, all these data items are not privacy-
relevant.

The privacy-relevance of meter events is likely to be low.
However, this is not really clear for all data items. Data items
that are not influenced by the customer such as incoming
supply failure detected are not privacy-relevant. Many events
are created when a physical quantity is compared with a
threshold value. A comparison of a quantity like power with
many different thresholds can be viewed as a quantization.
The number and values of the threshold levels determine the
information contained. As an example, a single comparison
of the active power with the value of 1 kW can provide
information about the usage of ohmic high-power appliances
which are typically used for cooking. Through the timestamps
of the events, the on/off pattern can be measured which could
be used to determine the appliance more precisely.

Another class of data items are operating conditions. The
status “disabled” or “restored” could indicate a consumer
move-in, a consumer move-out, network control operations or
a lack of credit in the prepayment scenario (Figure 1). Together
with a credit zero information, the information about supply
disablement could get very sensitive. Enablement or disable-
ment of devices during device control is a direct information
about appliances and highly privacy-relevant. If a device is
automatically controlled from outside, as it is envisioned in
Figure 1, privacy relevance could be considered as low since
the usage of the appliances is not triggered by concrete actions
of persons living in the household. However, this is not the
case, if devices are controlled from within the household
(home automation). Since home automation via smart metering
is unlikely to happen it is not considered here.

Finally, meter configuration data are generally likely to be
of low privacy relevance since they typically do not depend
on the persons living in the household.

The results of the discussion above are also summarized
in Table II where the privacy relevance of the data class is

Use case PET method

Bill calculation VC, TC
Load prediction (?) Aggregation (?)
Determine energy balance (?) Aggregation (?)
Tampering Detection (?) Aggregation (?)
Outage Detection (?) Aggregation (?)
Prepayment (Credit Modules) (?)

Transfer of Meter Reading (?)
Home Automation Locality
Electric Vehicles (?)

TABLE III
HIGHLY PRIVACY-RELEVANT USE CASES.

(?): USE CASE OR DATA ITEMS NEED TO BE SPECIFIED IN MORE DETAIL

Use case

Communication setup
Key exchange
Sign and encrypt messages
Clock synchronization
Asset Monitoring (failures)

TABLE IV
USE CASES THAT MUST BE COMPATIBLE WITH THE PET

set as the maximum privacy relevance over its data items.
Summarizing, consumption data and billing data are highly
privacy-relevant. Power quality data and configuration param-
eters are rather privacy-safe, Meter events are likely to be of
low or medium privacy relevance. By themselves, operating
conditions have rather low privacy-relevance. However, in
combination with credit information they could turn out to
be a useful side-information. These results should be seen as
a first, preliminary assessment of privacy-relevance needing
further investigations.

B. Privacy Relevance of Use Cases

In principle, the combination of the results of sections III
and IV-A leads to the privacy-relevance of use cases in a
straightforward manner (left column of Table III). Note that
in Figure 1 no PETs like Verifiable Computing are applied.

However, remaining uncertainties input lead to uncertainties
in the classification. Here, a conservative approach is taken
assuming supply disablement as highly privacy relevant and
assuming that the data used for the calculation of the energy
balance is also used for tampering and outage detection.

Therefore, as long as the precise intended treatment is un-
clear, the use cases for energy net monitoring and optimization
remain privacy-relevant with a question mark. The uncertainty
about the use case also leads to a question mark for the PET
method: if the use cases can be handled using aggregated
consumption data, then homomorphic aggregation would be
a PET that could be applied. For Tampering detection,
in the case of fraud alarm, it could still be necessary to check
single consumption profiles, too.

Since privacy and some PETs such as homomorphic encryp-
tion rely on security the corresponding use cases must also
be considered in the sense of constraints on the PET method
(Table IV). Furthermore, for protocols that employ timestamps
[8], proper clock synchronization is a constraint.

There are three use cases that are out of focus of this
paper but clearly privacy-relevant. The use case Transfer
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Data Item Privacy relevance

Aggregated active energy [s], N≤5 high (?)
Aggregated active energy [s], N≥1000 low (?)

Monthly Bill and ZKP (with PET) low

TABLE V
PRIVACY RELEVANCE OF DATA ITEMS WITH PETS APPLIED.

(?): FURTHER INVESTIGATIONS NEEDED

of Meter Reading Data handles all topics arising af-
ter data have been collected. If locally controlled Home
Automation data get outside, privacy is likely to be de-
creased. It is likely that through charging and the credit module
the use cases concerning Electric Vehicles will be
connected with the Smart Metering use cases considered here
introducing information about the location of a person.

C. Tentative Application of PETs

Privacy impact of active energy not only depends on gran-
ularity in time but also depends on the spatial granularity,
i.e. whether the data are available for each household or
whether they are aggregated over households. There, the
privacy relevance depends on the size of the aggregation set
(Table V). In order to compute such aggregates, PETs need to
be applied. If verifiable computing is used for the calculation
of the bill, only the bill needs to be transferred instead of the
consumption per household (Table V).

Privacy enhancing technologies are available for most of
the use cases. The use case Home Automation can most
easily be handled by locality which means that is likely that
all tasks of this use case can be performed locally, based on
parameters set from outside. Some of the use cases above have
no privacy-preserving method assigned which does not mean
that no methods exist. It rather seems plausible that methods
from other fields such as the banking or the social network
domains can be adapted.

V. CONCLUSION AND OUTLOOK

In the literature about privacy enhancing technologies for
Smart Metering the two use cases billing and aggregation are
considered. This paper constitutes a first step in answering
the question if other use cases need to be considered, too.
By combining and reorganizing use cases of existing use case
collections a set of privacy relevant use cases was found. This
set must be supplemented by another set of primarily security-
relevant use cases.

While the results of the paper answered some questions,
even more, new topics arised. There is a gap between the
accuracy of the description of the use cases and the accuracy
needed for the development of PETs. This holds especially for
the data items that are transferred during the execution of use
cases. It seems most important that this gap is bridged by the
provision of more concrete systems and functions instead of
use cases. An interesting topic for future research are possible
privacy implications occurring for either new data items like
e.g. the knowledge that the consumption is above or below a
threshold or combinations of data items like e.g. the current
credit together with the status of supply. A third topic for

future research could be a generalization of the way the use
cases were combined to general domains.
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Abstract. The smart grid paves the way to a number of novel applica-
tions that benefit a variety of stakeholders including network operators,
utilities and customers as well as third party developers such as electric
vehicle manufacturers. In order to roll out an integrated and connected
grid that combines energy and information flows and that fosters bidi-
rectional communications, data and information needs to exchanged and
aggregated. However, collecting, transmitting and combining information
from different sources has some severe privacy impacts on customers.
Furthermore, customer acceptance and participation is the key to many
smart grid applications such as demand response. In this paper we present
(i) an approach for the model-based assessment of privacy in the smart
grid that draws on a formal use case description (data flow graphs) and
allows to asses the privacy impact of such use cases at early design time;
and (ii) based on that assessment we introduce a recommender system for
smart grid applications that allows users and vendors to make informed
decisions on the deployment, use and active participation in smart grid
use cases with respect to their individual privacy.

1 Introduction

In a smart grid a number of stakeholders (actors) have to cooperate effectively.
Interoperability has to be assured on many layers, ranging from high level business
cases to low level network communication. Data and information is sent from
one actor to another in order to ensure effective communication. Furthermore,
the exchange of vast amounts of data is crucial for many smart grid applications,
such as demand response (DR) or electric vehicle charging [Cavoukian et al.,
2010], [Langer et al., 2013]. However, this data is also related to individuals
and privacy issues are an upcoming concern [McDaniel and McLaughlin, 2009],
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[Simmhan et al., 2011a]. Especially the combination of data, e.g., meter values
and preferences for DR can exploit serious privacy threats such as the prediction
of personal habits. In system engineering, privacy is a cross-cutting concern that
has to be taken into account throughout the entire development life-cycle, which
is also referred to as privacy by design [Cavoukian et al., 2010].

Model-driven privacy assessment is especially useful when applied in software
engineering. In [Boehm, 2006], the author thoroughly investigates the phases
in software engineering and the expected costs for error correction and change
requests. Costs double with every phase and once an application or a service is
delivered, the additional adding of crosscutting concerns such as privacy is tied to
enormous costs. As a result, design time privacy assessment is preferred in early
phases of the software engineering process. Therefore, a framework is needed to
(i) model the system, including high-level use cases and concrete components
and communication flows; and (ii) to assess the system’s privacy impact using
expert knowledge from the domain. Related work in the domain of automated
assessments in the smart grid mainly focuses on security aspects and is not
primarily concerned with privacy and the modeling in adherence to reference
architectures.

In this paper we address these issues and present an approach for the model-
driven assessment of privacy for smart grid applications. The framework proposed
in this paper is designed to assist system engineers to evaluate use cases in the
smart grid in an early design phase. For evaluation only meta-information is used
and no concrete data is needed. We use Data Flow Graphs (DFG) to formally
define use cases according to a standardized smart grid reference architecture.
The assessment is based on an ontology driven approach taking into account
expert knowledge from various domains, including customer views on privacy
as well as system engineering concerns. The output is a set of threats and a
quantitative analysis of risks, i.e., a number indicating the strength of that threat.
To evaluate the system we draw on insights from the University of Southern
California microgrid. The primary contributions of this paper are (i) the use
of DFGs to model use cases in the smart grid; (ii) the usage of DFGs for a
quantitative privacy assessment; and (iii) the use of an ontology driven approach
to capture domain knowledge.

The remainder of this paper is structured as follows: In Section 2 related
work in the area of smart grid reference architectures, privacy evaluation and
automated assessment tools is presented. In Section 3 the architecture of the
proposed framework and its components are described. This includes the concept
of DFGs for modeling use cases in the smart grid, the principal design of the
ontology and the mapping of data flow graphs to the ontology, the methodology
for defining threat patterns and finally, how these patterns are matched to use
cases. The framework is evaluated with a set of representative use cases in
Section 4. Section 5 shows a practical application for the proposed framework as
a recommender system for the potential privacy impact when using applications
and services in the smart grid. Section 6 summarizes this paper and gives an
outlook to further work in this area.
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2 Related Work

In this section related work in the field of smart grid reference architectures,
privacy evaluation and assessment as well as automated assessment tools are
presented. Often, privacy and security are used interchangeably. For the purpose
of this paper we refer to privacy as legally accessing data but not using it for the
intended purpose. Security, by contrast, would involve the illegal acquisition of
data. In both cases, the well established and widely understood terminology from
security assessment is used, i.e., threat, attacker, vulnerability and countermeasure.

2.1 Reference Models

Stakeholders in the smart grid come from historically different areas, including
electrical engineering, computer science and economics. To ensure interoperabil-
ity and to foster a common understanding, standardization organizations are
rolling out reference models and road maps. In the US the NIST Framework
and Roadmap for Smart Grid Interoperability Standards [National Institute
of Standards and Technology, 2012] and in the EU the Smart Grid Reference
Architecture [CEN, Cenelec and ETSI, 2012b] were published. The European
Smart Grid Architecture Model (SGAM) is based on the NIST Framework, but
extends the model to better meet European requirements, such as distributed
energy resources. In this paper we investigate use cases from the US. In particular
we are focusing on use cases from the University of Southern California microgrid
and we thoroughly discuss a typical DR use case. Investigations have, however,
shown that for the purpose of this project all use cases from the US can be directly
mapped to the European SGAM without the loss of information. Therefore we
propose the utilization of the SGAM for two reasons: (i) the SGAM builds on
the NIST model and allows to capture both, use cases from the US and the EU;
and (ii) with the SGAM Toolbox [Dänekas et al., 2014] present a framework for
modeling use cases based on the SGAM; in that way formally modeled use cases
are the input for the evaluation.

2.2 Privacy

Privacy (and security) issues in the smart grid are addressed by standards in
the US [National Institute of Standards and Technology, 2010] and the EU
[CEN, Cenelec and ETSI, 2012a]. Privacy, in specific, has no clear definition.
According to a thorough analysis in [Wicker and Schrader, 2011], privacy can be
defined as the right of an individual’s control over personal information. More
formally this is defined by [Barker et al., 2009] in a four dimensional privacy
taxonomy. The dimensions are purpose, visibility, granularity and retention.
The purpose dimension refers to the intended use of data, i.e., what personal
information is released for. The purpose ranges from single, a specific use only,
to any. Visibility refers to who has permitted access. The range is from owner
to all/world. Granularity describes to what extent information is detailed. The
retention dimension finally is the period for storage of data. In any case, privacy
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is assured if all these dimensions are communicated clearly and fully disclosed
to data owners and the compliance to the principles is governed. Hence, data is
collected and processed for the intended purpose only, and the degree of visibility,
granularity and retention is at the necessary minimum.

2.3 Assessment Tools

To measure the degree to which systems adhere to privacy requirements, ap-
proaches for automated qualitative assessments (resulting in statements of possible
privacy impacts due to privacy critical actions or relationships) and quantitative
assessments (resulting in a numeric value that determines the risk of privacy
impacts) exist.

In [Ahmed et al., 2007], the authors present an approach towards ontology
based risk assessment. The authors propose three ontologies, the user environment
ontology capturing where users are working, i.e., software and hardware, the
project ontology capturing concepts of project management, i.e., work packages
and tasks and the attack ontology capturing possible attacks, e.g., non-authorized
data access, virus distribution or spam emails. For a risk assessment, attacks
(defined in the attack ontology) are matched with information available from the
other ontologies. For a quantitative assessment, the annual loss expectancy is
calculated by combining a set of harmful outcomes and the expected impact of
such an outcome with the frequency of that outcome. The approach presented by
Ahmed et al. is designed for security issues and does not explicitly cover privacy
assessments.

In [Kost et al., 2011] and [Kost and Freytag, 2012] an ontology driven ap-
proach for privacy evaluation is presented. The aim of these papers is to integrate
privacy in the design process. High-level privacy statements are matched to
system specifications and implementation details. The proposed privacy by design
process includes the following phases: identification of high-level privacy require-
ments, translation of abstract privacy requirements to formal privacy descriptions,
realization of the requirements and modeling of the system and analyzing the
system by matching formal privacy requirements to the formal system model.
Contrary to our work this approach is not focused on use cases in the smart
grid and therefore does not model systems based on a standardized reference
architecture.

A workflow oriented security assessment is presented in [Chen et al., 2013].
This approach is not based on ontologies but on argument graphs. The presented
framework uses security goal, workflow and system description, attacker model
and evidence as an input. This information is aggregated in a discriminative
set of argument graphs, each taking into account additional input. Nodes in the
graph are aggregated using boolean expressions and the output is a quantitative
assessment of the system. Instead of focusing on workflow analysis using graphs, we
model systems as a whole in adherence to the standardized reference architecture
using an ontology driven approach to integrate expert knowledge.

A considerably broader approach for an assessment tool that incorporates both,
the balancing of privacy requirements and operational capabilities is presented in
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[Knirsch et al., 2015]. This work presents a graph based approach that allows the
modeling of systems with respect to the operational requirements of certain nodes
(e.g. metering at a certain frequency) and the impact of privacy restrictions on
subsequent nodes. The authors further present an optimum balancing algorithm,
i.e. to what extent restrictions gained from privacy enhancing technologies and
the necessary operational requirements can be combined. However, this needs
sufficient information on how privacy is impacted by certain use cases which is
provided by this work.

3 Architecture

This section is dedicated to an architectural overview as well as a detailed
discussion of the components. Figure 1 shows the principal components of the
proposed architecture, including input and output. For a privacy assessment, the
framework accepts two inputs, a use case UC modeled as a DFG in adherence to
the SGAM and a set of threat patterns T . In order to qualitatively analyze this
input the use case is mapped to individuals – i.e., instances of classes – of an
ontology (sometimes referred to as the assertion box, ABox [Shearer et al., 2008]).
The corresponding class model (sometimes referred to as the terminological box,
TBox [Shearer et al., 2008]) is based on the SGAM. This qualitative analysis
provides explicit and implicit information about the elements from the DFG:
actors, components, information objects and their interrelation. The results of the
qualitative assessment are the input for the subsequent quantitative analysis. The
output of that analysis is finally a class c from a set of classes C that the use case
is assigned to. A threat pattern t is used to describe potential threats, where t ∈ T
and a class c represents a subset of threats T ∗. A class c describes how threat
patterns and the qualitative results are combined, which is presented as a threat
matrix as an output. Note that the terminology threat matrix is borrowed from
security analysis and that the output is not a matrix in the mathematical sense.
A threat matrix compares a set of threats and the risk for these threats. Formally,
the classifier is defined as Assign UC to ci if t ∈ T ∗i ,∀t ∈ T, 1 ≤ i ≤ {C}. A
threat exploits a set of vulnerabilities and is mitigated by a set of countermeasures.
Each threat pattern can be evaluated for itself or multiple patterns are combined
to classes of threats. A vulnerability is any kind of privacy impact for any kind of
stakeholder or actor. Threats are evaluated using the attack vector model which
is adapted from security analysis and defined in detail later in this paper. In
general, an attack is feasible, if given (i) an attacker; (ii) a privacy asset; and
(iii) the resources to perform the attack. Hence, a receiver or collector of privacy
critical data items is potentially able to access these assets and to use them in a
way not corresponding to the original purpose. This is formally represented as
〈data access,privacy asset, attack resources〉.

3.1 Data Flow Graphs

In order to qualitatively and quantitatively assess the privacy impact of a use
case a formalization is crucial. In this section we introduce the concept of Data
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Smart Grid Architecture 
Model (SGAM)

«Input»
Data Flow Graph (DFG)

Ontology TBox Ontology ABox

Qualitative Analysis

«Input»
Threat Patterns

Pattern Matching Quantitative Analysis

«Output»
Threat Matrix

Fig. 1. Architecture overview showing input, output, components and principal infor-
mation flows of the framework.

Flow Graphs (DFG) for the smart grid based on a model-driven design approach
originally presented in [Dänekas et al., 2014] and [Neureiter et al., 2013]. DFGs
formally capture all aspects of use cases in the smart grid in adherence to the
SGAM. They contain high-level business cases as well as detailed views of a
system’s characteristics such as encryption and protocols. DFGs are a powerful
tool as they allow both, easy modeling and full adherence to the reference
architecture. Furthermore, in the graph relationships between actors, as well as
the transported information objects (IO) are modeled. Nodes in a graph represent
business actors, system actors or components and edges represent data flows
annotated with IOs. In accordance to the standard [CEN, Cenelec and ETSI,
2012b], DFGs consist of the following five layers:

1. Business Layer. In a DFG this layer is a high level description of the busi-
ness case. Business actors, their common business goal and their business
requirements are modeled.

2. Function Layer. The function layer details the business case by mapping
business actors to system actors and by dividing the high level business goals
in use cases and steps.

3. Information Layer. This layer describes information flows in detail. System
actors communicate to each other through IOs. IOs are characterized by
describing information attributes on a meta-level. An IO is one of the key
data used for classification and is discussed in greater detail below.

4. Communication Layer. The communication layer is a more detailed view on
communication taking into account network and protocol specifications.

5. Component Layer. In a DFG this layer contains concrete components. There-
fore system actors are mapped to components and devices.
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Each layer is a directed graph. Both, nodes and edges can have attributes.
The semantics, however, are varying. For instance, where attributed edges in the
business layer describe a business case, in the information layer concrete meta-
data of communication flows are captured. Even though implicitly covered in the
model presented above, for automated evaluation we introduce two additional
layers: Between business and function layer we include the Business Actor to
System Actor Mapping and between communication and component layer the
System Actor to Component Mapping. This allows to capture the complexity of
use cases on different levels while still maintaining the cross-layer relationship
between high-level business actors and their representation as components. These
layers are directed graphs as well, with edges indicating the mapping. The
mapping defines a one to many relationship from business actors to system actors
and from system actors to components. In the European Smart Grid Reference
Architecture with the SGAM Methodology an approach for mapping use cases to
the reference model is suggested. DFGs build on this methodology focusing on
actors and their interrelation. An implementation for modeling DFGs in UML is
available as the SGAM Toolbox 3. Data Flow Graphs contain explicit information
(what is modeled) and implicit information (what can be concluded). Conclusions
are drawn using ontology reasoning.

3.2 Ontology Design

The ontology driven approach for classification has been chosen for two main
reasons: (i) ontologies are powerful for capturing domain knowledge explicitly;
and (ii) through logic reasoning [Shearer et al., 2008] ontologies are a source
for implicit knowledge. The power of ontologies to formally capture knowledge
and how to draw conclusions is discussed in [Guarino et al., 2009]. The power of
reasoning for gaining additional, implicit knowledge can easily be outlined with
two examples: In a DFG, information objects may be sent from an actor A to
an actor B and from there to another actor C. This is explicitly modeled in the
DFG. A reasoner in an appropriate ontology, however, may conclude directly the
transitivity, hence that actor A in fact sends information to actor C. Another
example is concerned with compositions of data. An information object I1 may
contain sensitive data and it may be used by an actor D to compose another
information object I2 that is sent to a collecting actor E. It is not explicitly
modeled in the DFG, but it can be concluded by the reasoner, that E receives an
information object which is of type sensitive data since I2 is a composition of I1.
The ontology we propose here is designed to capture all aspects of a DFG. The
ontology is modeled in OWL4 and class expressions are stated in Manchester
Syntax5. Therefore, all components available for modeling DFGs are represented
either directly or as an abstraction in the ontology (referred to as the TBox ).
The DFG is represented in the ontology as a set of individuals (referred to as the

3 http://www.en-trust.at/downloads/sgam-toolbox/
4 http://www.w3.org/TR/owl-features/
5 http://www.w3.org/TR/owl2-manchester-syntax/
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+isCompositionOf

+hasBusinessCase

+isSubjectTo

Fig. 2. Principal components of the ontology, showing a subset of the relationships
between actor and data.

ABox ). Figure 2 depicts the principal classes and relationships of the ontology
and therefore the most relevant concepts for mapping a DFG to the ontology.
This view shows the main classes and relationships for illustration purposes only;
our current ontology comprises more than 60 classes, data properties and object
properties. Crucial concepts represented immediately, include which actor sends
or receives which data and IO and how these IOs are composed. Furthermore, a
set of pre-classifiers is defined to determine implicit knowledge.

These classifiers are OWL classes using an equivalent class expression in
Manchester Syntax. For instance, to determine if some aggregation consists of di-
rect personal data, the following expression is used: Data and isAggregationOf

some DirectPersonalData. To determine the multiplicity of the sending actor
and if the data is a composition sent by many of such actors, more elaborate ex-
pressions can be phrased: Data and isSentBy some Actor and Multiplicity

value "n" and isCompositionOfMany some Data.

3.3 Threat Patterns

In this paper we evaluate the privacy impact on customers, thus we identified the
following list of typical high-level threats based on literature reviews [Cavoukian
et al., 2010], [Langer et al., 2013], [Simmhan et al., 2011a]. These threats have
been modified in order to be more representative for the use cases from the
University of Southern California microgrid that are investigated in this paper.
Subsequently, IOs that may cause these threats are determined.
Customer presence at home. This privacy concern is discussed in [Cavoukian
et al., 2010]. To potentially determine a person’s presence at home, some device in
the customer premises is needed. This device collects data at a certain frequency,
high enough to have a resolution that allows to draw conclusions on the energy
usage of specific devices. Furthermore, data collected from that device needs to
be sent to another actor (i.e., a utility). At the utility an individual or a system
needs to have access to the data in an appropriate resolution. Since we always
assume that data is accessed legally, we do not focus on unallowed data access.
Additionally, the total delay of the data transmission is of relevance. If data
is collected and transmitted in almost real time the presence at home can be
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determined immediately. If data is available with a delay only, the analysis of
past events and predictions might be possible. If this information is published,
an attacker might exploit this vulnerability in order to break in the house.
Tracking customer position. This threat is especially interesting for electric
vehicle charging. Assuming the customer has some identification towards the
charging station, at least the location, a timestamp and the amount of energy
consumed will be recorded for billing. Depending on the design of the infrastruc-
ture only little information will be sent to the operator or a very detailed profile
of the customer is maintained. Here, the multiplicity of the actors is crucial and
the fact that different actors have access to the same data. Attacks for this threat
are described in [Langer et al., 2013], e.g., using information for targeted ads, for
tracking movements to certain places or to infer the income based on recharges.

3.4 Pattern Matching

Actual classification is done in the pattern matching process. For each actor in
the DFG and the ontology, respectively, the attack vector is determined, i.e., to
which resources does an actor have access and what is the effort. If that shows
feasible matching this is seen as a threat. It can be retrieved immediately from
the ontology if an actor has access to a certain IO. This is done by evaluating
actor and data object properties and by incorporating information from the
pre-classifiers. Furthermore, relationships on the business layer and data proper-
ties such as encryption are taken into account. The following, discriminative set
of classifiers is used to determine potential threats: first, for each information
object the data provider and the data collector are determined (according to the
terminology defined in [Barker et al., 2009]) and it is assessed who has access to
the data. This yields a list of three-tuples in the form 〈information object (IO),
data provider (DP), data collector (DC)〉. Then it is determined if an informa-
tion object either contains sensitive or direct personal data (according to the
terminology defined in [The European Parliament and the Council, 1995]). This
yields another three-tuple in the form 〈information object (IO), sensitive (S),
direct personal (DP)〉. Finally it is determined if the attacker has actual data
access, yielding one more three-tuples in the form 〈information object (IO),
data collector (DC), access (A)〉. Data access depends on the relationship of
actors, on data resolution, retention and encryption. Matching these tuples to
each other results in the components of the attack vector, recalling 〈data access,
privacy asset, attack resources〉 yields 〈〈IO,DP,DC〉, 〈IO,S,DP〉, 〈IO,DC,A〉〉.
An exemplary attack vector for a DR use case where DR preferences are sent
to the utility is 〈〈DR preferences, customer,utility〉, 〈DR preferences, false, false〉,
〈DR preferences,utility, true〉〉. This already provides thorough qualitative anal-
ysis. It is possible to determine which actor can potentially threaten the privacy
of another actor. It is even possible to conclude how and where this might hap-
pen. However, for a quantitative assessment the risk for a particular threat is
calculated. While a qualitative assessment is useful in supporting detailed system
design decisions and evaluation, for a very first outline of the overall system
characteristics, a quantitative value is much more expressive. Further, providing
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a numeric value for the system’s privacy impact helps to easily compare and
contrast proposed designs.

Risk is calculated as the product of the probability of occurrence (PO) and
the expected loss (EL). For the set T ∗ a number of patterns tv,1 . . . tv,N and
tc,1 . . . tc,M , respectively is defined. A pattern therefore contains a set of condi-
tions for vulnerabilities tv,i and countermeasures tc,i. Conditions are SPARQL
ASK queries6 that return either true or false if the pattern applies or not. For
brevity, t′v denotes the number of vulnerabilities that apply, t′c the number of
countermeasures that apply and tv and tc denote the total number of vulnerabili-
ties and countermeasures, respectively. In this paper we propose the following
approach for determining values for the probability of occurrence PO(t′v, t

′
c) and

the expected loss EL(t′v, t
′
c): PO(t′v, t

′
c) is determined by defining a plane that sat-

isfies the following conditions: PO(t′v = tv, t
′
c = 0) = 1, PO(t′v = 0, t′c = tc) = 0

and PO(t′v = 0, t′c = 0) = 1
2 . This yields PO(t′v, t

′
c) = 1

2 (
t′v
tv
− t′c

tc
+ 1). A linear

model is chosen due to its simplicity and might be extended by more complex
approaches in future. A condition that is of type vulnerability increases EL(t′v, t

′
c),

a condition of type countermeasure decreases EL(t′v, t
′
c). The value of EL(t′v, t

′
c)

is defined in the pattern. Risk R is finally defined by R = PO(t′v, t
′
c)EL(t′v, t

′
c).

To feed in the results gained from the qualitative analysis, certain variables
in the query can be bound to instances. For example, given the following fraction
of a query (where usc denotes the namespace prefix for actors and IOs in the
University of Southern California microgrid)

$io usc:isSentBy ?systemactor . $io usc:isReceivedBy ?systemactor .

?systemactor usc:isRealizationOf ?businessactor .

?businessactor a usc:BusinessActor

to determine if some information object is sent by some business actor. It
is now possible to bind the variable $io to a concrete value as determined
in the qualitative assessment, e.g., $io ← InformationObject.CustomerName.
This allows to assess a particular impact on a particular information object or
component/actor based on the previously calculated attack vectors.

We developed generic patterns for typical threats, i.e., such as the ones
mentioned above. The framework is, however, not limited to this set of patterns
and allows the definition of an arbitrary number of additional patterns to meet
the individual needs of the application scenario. The output of the framework is
a threat matrix contrasting the results from the qualitative analysis and from
the quantitative risk assessment. For a UC, a threat matrix contains the attack
vector and the assigned risk for the determined class c.

For illustrative purposes, the following listing shows an example pattern for
customer presence at home. This includes the vulnerability device in customer

6 http://www.w3.org/TR/sparql11-query/

189



premises (exemplary assigned an EL of 4) and the countermeasure aggregation
of data from multiple customers (exemplary assigned an EL of -6).

<Pattern name="customer presence at home">

<Vulnerability

name="device in customer premises">

<EL>4</EL>

<Condition>

?device x:isRealizationOf $ba .

$ba a x:BusinessActor .

?device x:Zone

"Customer Premises"^^xsd:string

</Condition>

</Vulnerability>

<Countermeasure

name="aggregation of data from multiple

customers">

<EL>-6</EL>

<Condition>

$io x:manyAreAggregatedBy ?io2 .

?io2 x:isReceivedBy ?ba1 .

$io x:isRecevivedBy ?ba2

FILTER (?ba1 != ?ba2)

</Condition>

</Countermeasure>

</Pattern>

4 Evaluation

For evaluating the framework new, previously unused use cases are applied. The
set of threat patterns and their impact on privacy is based on the aforementioned
literature reviews. We are therefore using a representative set of use cases describ-
ing typical applications in the smart grid. This includes, but is not limited to,
smart metering, electric vehicle charging and DR. In this section a real-life use
case from the University of Southern California microgrid, and a real-life use case
from the Salzburg Smart Grid Model Region are evaluated as an example. These
use cases have been chosen as they are (i) simple enough to verify results based
on literature reviews; and (ii) complex enough to have an interesting combination
of actors and information flows. Evaluation is performed with a prototypical
implementation that uses DFGs and threat patterns as an input and produces a
threat matrix as an output.

4.1 Smart Metering

For the Salzburg Smart Grid Model Region use case we investigate a typical
smart metering scenario as shown in Figure 3. Smart metering is the basis for
many advanced applications in the smart grid and therefore considered as a key
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Fig. 3. Outline of the smart netering use case that is discussed for evaluation.

enabling technology [Arnold, 2011]. Today, smart metering is typically applied
for network monitoring and billing. The use case is outlined as follows: once
a smart meter is installed in a residential building meter values are collected
at a fixed frequency. Due to regulatory provisions in this is (e.g., in Austria
and Germany) limited to one value each 15 minutes and 96 values per day,
respectively. Data for one day is summarized in the smart meter and forwarded
to the utility on the previous day. Multiple smart meters are connected in a
mash-like topology and data is sent to a data concentrator that (i) relays data
from power line communication to IP; and (ii) collect data from the attached
meter. Smart meter data is finally stored in a head-end system. For billing, meter
data (energy consumption) is linked to additional data from the billing system,
such as contract details, name, address and past payment behavior.

Actors. Business actors are the user and the utility. The user is mapped to
the system actor smart meter. The utility is represented as data concentrator,
head-end system, billing system and processing system. The latter is the component
linking the data from the billing system to the data from the head-end system.

Information Objects. Meter values are sent at a fixed rate from the cus-
tomer premises to the utility. The utility stores these values in the head end-system
and the processing system finally combines both, data from the head-end system
and data from the billing system.

Customer Presence at Home. When metering is done on a regular basis,
it is easily detectable if a customer is present at home. The qualitative analysis
shows that meter values are sent from the smart meter to the data concentrator
and further to the head-end system. Storing in the head-end system is privacy
critical, since data metered at a certain frequency is persisted. For this threat four
vulnerabilities (device in customer premises, collecting data at a certain frequency,
receiver has access to data, data retention is unlimited) and one countermeasure
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(aggregation of data from multiple customers) are identified, resulting in a PO
of 0.9, and EL of 11.5 and a risk value of 10.35.

Identification of Customer Habits. While the intended use case for per-
sisting meter data is billing, such data can be used to identify customer behavior,
e.g., by running statistics and predicting future actions. For this threat eight
vulnerabilities (device in customer premises, collecting data at a certain frequency,
receiver has access to data, data retention is unlimited, composition of location
and timestamp, different actors have access to the same data, location information
with unlimited retention) and two countermeasures (aggregation of data from
multiple customers, retention is for processing only) are identified, resulting in a
PO of 0.75, an EL of 11.5 and a risk value of 8.63.

The model-driven assessment of the smart metering use case has shown
that the risk of identifying customer habits is less than the risk of determining
customer presence at home. This is due to the fact that determining presence is
a yes/no decision whereas determining and predicting habits requires way more
data and information.

4.2 Demand Response

For the University of Southern California microgrid use case, we are focusing
on a DR scenario similar to the one described in [Simmhan et al., 2011b]. This
scenario is outlined in Figure 4. A customer interested in DR creates an online
profile stating on which DR actions the customer is interested to participate (e.g.,
turning down air condition). When the utilities want to curtail load with DR, a
customer whose profile fits the current requirements is sent a text message to, e.g.,
turn down the air condition. This message is acknowledged by the customer and
the utility further reads the meter values to track actual power reduction. Besides
the data flows mentioned, this further involves the storing of the profile and the
past behavior of the customer for a more accurate prediction. For modeling this
use case as a DFG, the following actors and IOs are identified.
Actors. Business actors are the user and the utility. The user is mapped to the
system actors smart meter, device and portal. DR requests are sent to the user
device (e.g., a cell phone) and the user’s DR preferences are set in the portal
(e.g., a web service). The smart meter is used to measure actual curtailment.
The utility is mapped to a DR repository, containing preferences for each user
and past behavior, to a prediction unit predicting DR requests based on the
preferences and a control unit to meter user feedback and actual curtailment.
Information Objects. Cross-domain/zone information flows include user pref-
erences sent to the utilities, DR requests sent to the user from the utility and
both, the user acknowledge/decline and the meter values sent back to the utility.
Information flows within the utilities’ premises are from the DR repository to
the prediction unit and from the control unit to the DR repository. Given the
threat patterns introduced in Section 3, we use our framework to determine the
privacy impact of this use case which provides the following results.
Customer presence at home. The qualitative analysis shows that in the DR
repository of the utility information about both, past customer behavior and
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Fig. 4. Outline of the DR use case that is discussed for evaluation.

customer data is brought together, i.e., direct personal data is composed with
a detailed history of a person’s actions. Furthermore, the customer’s acknowl-
edge/decline and the measured curtailment reveal if a customer (i) responded
to the DR request; and (ii) actually participated in DR; both is a indication for
the presence at home. For this threat we identified four vulnerabilities (device
in customer premises, collecting data at a certain frequency, receiver has access
to data, data retention is unlimited) and one countermeasure (aggregation of
data from multiple customers), resulting in a PO of 0.9, an EL of 11.5 and a
risk value of 10.35.

Tracking customer position. In our case, this threat might apply in two
different scenarios: First, this threat is immediate if the acknowledge/decline
response to DR requests contains the customer position (e.g., if sent by a cell
phone or other mobile device). This does not only show the customers past and
present position, but also if the customer is able to remotely control devices in his
premises. Second, when the customer is represented by an additional component
electric vehicle charging station. Assuming that DR requests are also sent with
respect to the charging behavior. Based on the amount of energy the customer is
willing to DR it might be possible to estimate the consumption of the electric
vehicle and subsequently the traveled distance. For this threat we identified two
vulnerabilities (composition of location and timestamp, different actors have
access to the same data) and one countermeasure (aggregation of data from
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multiple customers), resulting in a PO of 0.66, an EL of 5 and a risk value of
3.33.

The mode-driven assessment of the DR use case has shown that the risk of
tracking customer position is low compared to the risk of determining customer
presence at home. This result stems from the fact that there apply a number
of vulnerabilities with high expected loss value, hence a device in the customer
premises, data collected at a certain frequency, receiver has access to data and
unlimited data retention. For the risk of detecting the customer presence at home,
the same value applies as for the smart metering itself. This is due to the fact
that smart meter data is used as a basis for demand response.

5 Recommender System

Having a framework for assessing the privacy impact of a use case in the smart
grid is a powerful foundation for building a recommender system. The objective
of such a recommender system is to provide users with the ability to decide on the
usage of certain application and services in the smart grid based on the privacy
impact of these applications and services. We therefore adapt the policy decision
point (PDP) and policy enforcement point (PEP) patterns for a recommender
system as originally presented in [Knirsch, 2014]. This is primarily targeting users
in order to allow them having full control over information flows, but also the
utilities and the vendors of third party applications.

The principal PDP-PEP architecture is standardized as Extensible Access
Control Markup Language (XACML) in [Rissanen, 2013]. This architecture has
already been applied to the smart grid by Jung et al. in [Jung et al., 2012]. The
recommender system we present here enhances this approach by enabling an
automated assessment of applications and use cases, respectively.

In general, a PDP is a component that evaluates access requests and issues
some authorization. The PDP therefore provides some mechanisms to authenticate
users, usually by prompting credentials such as username and password. The PDP
then checks in a repository (policy store) if a certain user is granted access to a
certain resource. The assessment framework presented in the previous sections is
used as a PDP in order to allow privacy-aware data retrieval in the smart grid.
The scenario at hand is as follows: a user wants to access a new application or
service in the smart grid. This application or service has a certain privacy impact
that has been assessed with this framework upon registration (Registration of
Application). Additionally, the application or service is governed by a PEP. The
PEP redirects the user to a PDP that displays to the user a list of privacy
implications associated with this particular application or service. The user is
then requested to confirm the intention to use the application or service. If the
user accepts, the PEP grants access (Accessing Applications). For this system,
we propose a traffic light-styled display of privacy implications (red: high risk,
yellow: medium risk, green: no or low risk) with the option to show the full,
detailed analysis.
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Registration of Application:

1. A vendor submits a formal application description (DFG) to the recommender
system.

2. The recommender system performs the model-based privacy assessment; this
yields a set of qualitative metrics (attack vectors) that are stored in the PDP.

Accessing Applications:

1. A user request access to a new application registered at the recommender
system.

2. The PEP of this application checks if the user has already allowed access.
3. If no, the user is redirected to the PDP and the qualitative assessment is

performed based on the user’s role (i.e., which business actor corresponds
the user to for variably binding and business actor and information object)
and the user allows or denies access.

4. If yes, the user is forwarded to the application.

In our prototypical implementation as presented in [Knirsch, 2014], Java 1.7
Servlets running on Apache Tomcat 7 represent PDP and PEP, respectively. A
user request for an application is guarded by a PEP and forwarded to the PDP,
including information about the intended application and the sending party. The
PDP performs an ontology driven privacy assessment for the particular use case
with a predefined set of threat patterns and displays the result to the user. The
result shown includes (i) a summary for the overall privacy impact (traffic light:
high, medium, no or low) in appropriate colors for immediate recognizability;
and (ii) an optional detailed view showing the full threat matrix. The user is
requested to either continue and allow access or cancel. If the user decides to
continue, the browser is forwarded to the application. In case the user cancels,
one is directed back to the PEP which displays that access will not be granted.
For the prototypical implementation, the set of applications is given by the use
cases defined above. As the focus is on demonstrating the PDP-PEP pattern
for ontology-driven privacy assessment there is no actual implementation of the
use cases, i.e., no application that actually performs demand response or the
like. In practical use the formal use case description will be provided by either
third-parties or the providers of the application themselves.

6 Conclusion and Future Work

In this paper we introduced both, a framework for the model-driven privacy
assessment in the smart grid and an advanced recommender system based on that
framework. The framework itself builds on an ontology driven approach matching
threat patterns to use cases that are modeled in adherence to standardized
reference architectures. The approach presented here builds on meta-information
and high-level data flows. It has been shown how to utilize this framework to
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successfully assess the privacy impact on use cases in early design time. Exemplary
threats and exemplary use cases draw on insights from the University of Southern
California microgrid. Further we proposed a recommender system based on the
PDP-PEP pattern. This system utilizes our privacy assessment framework in
order to provide users the option to allow or deny access to applications and
services based on their privacy impact. Future work will include the rolling out
of our recommender system to a real-world setting.
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Abstract—The smart grid changes the way energy is produced
and distributed. In addition both, energy and information is
exchanged bidirectionally among participating parties. Therefore
heterogeneous systems have to cooperate effectively in order to
achieve a common high-level use case, such as smart metering for
billing or demand response for load curtailment. Furthermore, a
substantial amount of personal data is often needed for achieving
that goal. Capturing and processing personal data in the smart
grid increases customer concerns about privacy and in addition,
certain statutory and operational requirements regarding privacy
aware data processing and storage have to be met. An increase
of privacy constraints, however, often limits the operational
capabilities of the system. In this paper, we present an approach
that automates the process of finding an optimal balance between
privacy requirements and operational requirements in a smart
grid use case and application scenario. This is achieved by
formally describing use cases in an abstract model and by finding
an algorithm that determines the optimum balance by forward
mapping privacy and operational impacts. For this optimal
balancing algorithm both, a numeric approximation and – if
feasible – an analytic assessment are presented and investigated.
The system is evaluated by applying the tool to a real-world use
case from the University of Southern California (USC) microgrid.

I. INTRODUCTION

In a smart grid a number of systems have to cooperate
effectively. For instance, in a demand response (DR) use case,
data is captured by a smart meter, stored in a database and
finally used by a prediction unit to forecast customer energy
usage. Data is captured, exchanged and processed in order to
achieve this high-level use case. Other examples of such use
cases include smart metering for billing or automated electric
vehicle charging. As these use cases rely to a great extent
on personal data, security and privacy are current issues and
subject to ongoing research [1], [2], [3]. Privacy aware data
retrieval and processing is therefore crucial in order to meet
statutory and customer requirements. However, when adding
to many privacy constraints, the system’s ability to perform
the intended task may degrade. In this paper, use cases are
investigated that need an optimum trade-off between privacy
and operational capabilities. There are use cases where both,
privacy and operational capabilities can be achieved fully at
the same time, this is, however, not subject of this paper.

As a motivating example, imagine a simple demand re-
sponse use case where future energy consumption of a par-
ticular customer at a certain point in the day (e.g., around
noon) is predicted based on past behavior. This requires to
have smart meter data from that customer in a sufficient
resolution (e.g., one meter value each fifteen minutes). On
the other hand, when providing data in such a granularity the
customer might be subject to privacy threats, such as predicting
when the customer is present at home or the intended or
inadvertent release of fine grained meter data to the public.
One of the challenges in system engineering in the smart
grid is thus to find a good trade-off between protecting an
individual’s privacy and being able to provide useful services.
In Section II work is presented that performs privacy and
security assessments based on an operational description of the
system. There is, however, currently no approach that focuses
on the evaluation of entire systems in the smart grid in order
to find the optimum balance between privacy requirements
and operational capabilities. This paper therefore contributes
(i) a model that formally describes use cases in the smart
grid; (ii) an algorithm to find the optimum balance between
privacy and operational capabilities based on that model; and
(iii) an approach to assess the impact of privacy constraints
on the system. The algorithm presented in this paper involves
the analytic solving of an equation. If this is not feasible,
a numeric approximation can be applied. For evaluation a
specific real-world DR use case drawing on insights from the
USC microgrid is investigated closely.

The remainder of this paper is structured as follows: Section
II provides an overview of related work in the domain of data
flow analysis for security and privacy assessments. Further,
state of the art assessment tools are discussed and it is shown
how this work extends these tools with a holistic approach
for optimization. Section III presents the abstract model for
describing data flows and system dependencies by using
graphs, transition functions and merging operators. Section
IV discusses the two approaches for the optimal balancing
algorithm, hence the analytic assessment and the numeric
approximation. In Section V both approaches are evaluated
by applying the tool to a real-world use case. Section VI
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summarizes this work and provides an outlook to future work.

II. RELATED WORK

This section presents related work in the domain of data
flow analysis and state of the art assessment tools. A workflow-
oriented security assessment tool using graphs is presented in
[4]. The framework proposed by the authors is based on the
evaluation of argument graphs. The system’s input are security
goal, workflow description, system description, attacker model
and evidence. The assessment itself applies a discriminative set
of graphs, containing the workflow goal, the actors involved
and the messages exchanged. The result of the assessment
process is quantitatively presented as an availability score
and a confidentiality score. Both are plugged into the system
by the evidence, which is based on (statistical) data about
the devices. This tool is comprehensive for security analysis,
however does not deal with the impact of security constraints
on the operational capabilities. In the domain of the smart grid,
McKenna et al. [5] discuss the issue of finding the optimum
trade-off for smart metering frequencies between customer
privacy and application feasibility. The authors illustrate some
of the privacy impacts that are becoming evident with certain
frequency intervals and investigate typical use cases, such as
DR, and the need of data for the successful operation of
these systems. The issue of balancing privacy requirements and
operational capabilities is also addressed in other fields apart
from the smart grid: Oliveira and Zaiane [6] present algorithms
for balancing privacy constraints in data mining applications.
Massaguer et al. [7] discuss a middleware for pervasive spaces.
Their focus is on finding the trade-off between privacy and
utility of such a middleware. While these approaches deal
with balancing for data retrieval and processing, they do not
propose a mathematical model to formally address the issue
of balancing privacy and operational requirements.

III. DATA FLOW MODEL

An approach towards the modeling of use cases in the
smart grid based on the European Smart Grid Reference
Architecture [8] are Data Flow Graphs (DFG). Neureiter et
al. [3], Dänekas et al. [9] and Knirsch et al. [10] thoroughly
discuss the application of such directed graphs to privacy
assessments in the smart grid. DFGs provide a detailed view of
a system on multiple layers, ranging from high-level business
goals to low level interactions of components. DFGs capture
actors and information objects and support a wide range of
attributes. These graphs provide a holistic view of a use case
and are a powerful tool for interdisciplinary communication
and detailed assessments. Based on the concept of representing
data flows in the smart grid as directed graphs, we propose an
abstraction of DFGs to a simplified Data Flow Model that
only consists of nodes and directed edges and a minimum
set of attributes, hence transition functions and a privacy
requirements/operational requirement for each node. Reduced
complexity makes numeric and analytic calculations feasible
to be performed on this model.

Each use case is characterized by a set of actors, i.e.,
units (smart meter, DR prediction unit, . . . ), and by a set of
information flows from one actor to another, i.e., data items.
The model presented here is not limited to physical units,
but also allows to be applied to more high-level concepts
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Fig. 1. Abstract data flow graph describing the model with nodes and edges.

such as goals, e.g., effective DR prediction. In an abstract
notation this can be represented as a directed graph with
a set of nodes N representing units or goals and a set of
transitions T representing flows from a source node to a target
node. A node Nk is described by a value pk that defines
the privacy requirement for that node and by a value ok
that defines the operational requirements for that node, so
that αpk + (1 − α)ok = 1 and therefore α ∈ [0, 1]. Thus
requirements are represented as a numeric value in the range
0 to 1. The higher the value the more the requirement weighs.
The above condition is introduced for normalization purposes.

An edge is described by a transition function T and a
merging operator Θ, described in detail in Section III-A and
Section III-B, respectively. The model for describing systems
and information flows is in its simplest form as shown in
Figure 1 (a). An edge connects a source node Ni with a target
node Nj by (pj , oj) = tij = T i

j (pi, oi); hence a function that
maps the privacy and operational requirements of the source
to the target. The other, general, case where a target node
has more than one incoming edge is shown in Figure1 (b). In
addition to the transition function a merge operation needs to
be defined and the general form of an edge is given in Equation
1. The merging operator Θ maps a set of one or more input
values pk (the transition vector), each in the domain [0,1], from
parent nodes Nk with k = 1 . . .K to one single output value
in the same range. Note that this notation can be simplified in
practice as the sum of privacy requirements and operational
requirements in each node is defined to be 1 and thus only one
of the parameters (either p or o) needs to be passed. Therefore,
in the following only p is taken into account. For the sake of
simplicity, recursive edges are not defined in the data flow
model. Recursive edges would represent a system that sends
data to itself and for the transition only the identity function
would be feasible, since such a system has no practical privacy
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pi = Θi

(
t1i = T 1

i (p1), . . . , t
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(1)

or operational impact on itself.

A. Transition Function
The transition function T is crucial as it immediately defines

to what extent the destination system is able to perform its
operations. The transition function is a case specific function
that needs to satisfy the condition T : [0, 1] → [0, 1], so
that the sum of the privacy requirements and operational
requirements is one; and hence must not have a singularity in
that interval, so that the model is not running in an undefined
state. The transition function can be determined by practical
observations or models, depending on the particular use case.

As an example for determining the transition function a
(sub-)graph with two nodes is given, smart meter (Na) and DR
prediction unit (Nb). The transition function should represent
the fact that the accuracy of DR prediction degrades if (for the
particular use case) only data in low resolution is available,
e.g., if DR prediction is used to forecast customer energy
consumption on a hourly basis, one meter value per day is not
sufficient. If we are further assuming that accuracy is following
exponential behavior, the following transition function could
be used: pb = T a

b (pa) =
epa−1
e−1 . The more the privacy is tuned

up (thus lower frequency for metering), the less capable (thus
less accurate) is the prediction unit.

B. Merging Operator
The merging operator Θ maps the transition vector which

described incoming transitions to one single output value in
the range 0 to 1. This operator can be determined by practical
observations or models, depending on the particular use case
or a generic approach can be found that equally incorporates
each input value, e.g., by calculating the arithmetic mean.

C. Interpreting Results
Once proper values for p and o for the node of interest

are found, these results must be interpreted accordingly to be
applied to the system’s characteristics in reality. The objective
of interpreting results is therefore to map these normalized
values to a property that impacts the privacy awareness or the
operational capability of the system. This mapping is heavily
dependent on individual characteristics and generic approaches
provide only limited applicability. In our motivating example
we discussed the impact of metering frequency on privacy
and operation for subsequent systems. Hence, here we need
to find a mapping from pi with Ni = “Smart Meter” to the
meter frequency fs. In the evaluation we discuss this issue
thoroughly and we present such a mapping for the DR use case
and in particular for the metering frequency in that scenario.

IV. OPTIMAL BALANCING

Once the model is constructed and all nodes and edges
including the transition functions and the merging operators
are defined, it is possible to calculate the optimal balancing
between privacy and operational requirements. The optimal
balancing is given by the solution of an equation. If solving

p̄ =

N∑

i=1

pi (2)

p1 = p̄N −
N∑

i=2

pi (3)

this equation is not feasible, a numeric approach for approxi-
mating the result can be applied. This section discussed both
approaches in detail. The objective of the optimal balancing is
to perform the following: (i) automatically find the best trade-
off between privacy requirements and operational capabilities
for a system that is under development; or (ii) assess to what
extent an existing system meets given privacy or operational
requirements.

A. Analytic Assessment

The optimal balancing algorithm is performed on the entire
system. The analytic assessment thus involves the solving of
Equation 3, given an arbitrary p̄ in the interval [0, 1], e.g.,
1
2 for the optimal balance. Again, the equality condition can
be replaced by a greater equal or less equal condition. The
equation yields a solution for each pi for each node. In practice
it is sufficient to specify the solution for p1 or, in case each
function T and each operator Θ has a well defined inverse
function, to find the solution for an arbitrary pi and then
apply the given functions or the inverse functions in order to
calculate the values for the node of interest. By doing so the
model can be used to assess the impact of privacy/operational
requirements in a particular node for other nodes. For complex
systems consisting of many nodes, transitions and merging
operations, solving the equation might not be possible or
feasible. In the following section we therefore present a
numeric algorithm.

B. Numeric Approximation

For approximating the result, a numeric approach can be
applied. The algorithm for this approach is given as follows:
(1) vary the values for p1 and o1, respectively, in the very
first node and in the allowed interval, hence from 0 to 1 in a
given step size Δ (e.g., 0.01); (2) compute T and Θ for each
subsequent transition to get according values for each node;
(3) for each variation, summarize and normalize the values
for p and o for each node by p̄ = 1

N

∑N
i=1 pi where N is

the total number of nodes; and (4) find the variation where
p̄ = 1

2 . It can be shown that the variation that satisfies the
above condition yields the optimal balance between privacy
requirements and operational requirements for the system as
a whole.

If not a balanced system is intended, but a system that is
either privacy aware to a certain extend or able to perform
operations to a certain extent, the equality condition in p̄ = 1

2
can be replaced by a more general condition involving a
threshold s, such as p̄ ≥ s or p̄ ≤ s. The remaining
variations that satisfy this condition may then be subject to
closer investigation.
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Fig. 2. Data flow model of the demand response use case.

V. EVALUATION

For evaluating the system we apply privacy constraints and
operational capabilities to a real-world use case that draws on
insights from the USC microgrid1. First, a data flow graph for
this use case is defined and all transition functions and merge
operations are set in accordance to practical experiences.
Second, we compare the results of the numeric approximation
and the analytic assessment in order to find an optimal balance
for that use case. The resulting value is finally validated with
experiences for that use case gained in practical applications.

A. Use Case Outline

The system that is modeled as a data flow graph is a
typical DR use case as described by Simmhan et al. in [11].
The purpose of DR is to curtail load during peak periods
by requesting customers to reduce their energy demand for
a certain period of time of a certain amount, e.g., by turning
off or adjusting the HVAC units. In order to determine which
action at which customer is most effective, a prediction model
based on current and past energy usage is applied. This model,
however, needs meter data of a customers’ energy usage at
a certain frequency, high enough for accurate predictions.
Currently data granularity is one value each fifteen minutes,
however, if necessary resolutions up to one value each minute
are feasible. In practice the former is used in order to avoid
fluctuations in data.

This setting implies two major privacy issues for customers,
also addressed by Wicker and Schrader in [12]: (i) if the
metering frequency is to high, information about the customer
is revealed in (almost) real-time, e.g., if the customer presence
at home can be predicted with high accuracy or even which
devices are turned on; and (ii) metered data is stored in
a database and it is therefore possible to maintain detailed
profiles over time. Such information can be released to the
public and may immediately affect the customer.

A graph representing this use case is depicted in Figure
2. N1 represents a smart meter capturing data at a certain
frequency, N2 represents a database storing that data, N3

represents a DR prediction unit and N4 represents the goal
effective load curtailment. The transitions and merging oper-
ations are defined as follows:

1http://smartgrid.usc.edu/

p̄ =
1

4

(
2p1 +

ep1 − 1

e − 1
+

1

2

((
ep1 − 1

e − 1

)3

+ p1

))
(4)

• T 1
2 , the metering frequency has no operational impact for

data storage in the data base. We are assuming a scalable
database which can handle an arbitrary number of streams
from meters at any frequency. This transition is therefore
the identity function p2 = T 1

2 (p1) = p1.
• T 1

3 , effective DR prediction heavily relies on a metering
frequency that is close to real-time. A low frequency
therefore reduces the operational capabilities of the pre-
diction unit. This transition is therefore defined as p3 =
T 1
3 (p1) =

ep1−1
e−1 .

• T 2
4 , there are no operational impacts for the overall

goal of load curtailment on this path. This transition is
therefore again the identity function t24 = T 2

4 (p2) = p2.
• T 3

4 ; if the operational capabilities of the DR prediction
unit are low, the goal of load curtailment can not be
achieved sufficiently. This transition therefore reduces the
operational capabilities or increases the privacy: t34 =
T 3
4 (p3) = (p3)

3.
• Θ21,2,3, for the sake of simplicity the merging operation is

defined as the arithmetic mean by Θ4(T
2
4 , T

3
4 ) =

1
2 (T

2
4 +

T 3
4 ).

All functions are bound in the interval [0, 1], hence any
value lower than 0 is mapped to 0 and any value greater 1 is
mapped to 1.

B. Assessment

For the analytic assessment Equation 3 is applied to the
above definitions. This yields Equation 4. Solving this equation
for p1 gives p1 ≈ 0.59.

Fig. 3 shows the results for the numeric approximation.
Evaluation is performed with a step size Δ = 0.01 for p̄ ≥ 1

2
and implemented in Matlab R2010b. The top plot shows the
sum of the privacy requirements for each step, the middle plot
shows the sum of the operational requirements for each step
and the bottom plot shows the overlap of figures, indicating
the intersection of the curves where the condition for S is first
met. The greater equal condition is preferred over an equality
condition in order to deal with numeric inaccuracies (the exact
value of p̄ might not be reached). Values for p1 where the
condition is met are indicated with a dotted line. The condition
is first met at p1 ≈ 0.59 and therefore identical to the expected
analytic result.

C. Interpretation

Once the assessment is performed, the resulting value, hence
p1 ≈ 0.4, needs to be mapped to practical meaning. While this
is heavily depending on the use case at hand, we propose the
following approach for this scenario.

Electricity usage is continuous and digital (smart) metering
is sampling that continuous signal at a certain frequency fs.
Following the Nyquist-Shannon sampling theorem [13], fs
needs to be at least twice as high as the highest frequency fmax

in the signal in order to keep all the information of the original
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Fig. 3. Plot of the results of the numeric approximation for the use case
applied for evaluation.

signal and to restore it losslessly. In practice a metering signal
will consist of high frequencies due to peaks in the time
domain, e.g., when switching on the light. Full operational
capability is therefore given with fs close to infinity and hence
not feasible. If fs approaches zero, by contrast, privacy is
at its maximum. In practice, the upper bound for a meter
frequency is given by physical limitations in data capturing
and processing by e.g., fs = 1

5 , hence one value each five
seconds.

By describing this with a linear function yielding the privacy
impact dependent on the frequency, with p1 = −5x + 1 the
intended outcome is achieved. Solving this equation for fs and
by replacing p1 with 0.59 we get 0.59−1

−5 = 0.082 and thus a
meter value approximately every 12.2 seconds. This metering
frequency is the one – that based on the model – describes
the optimum trade-off between the privacy requirements of
the user and the designated goal effective DR prediction.
Optionally, for a given metering frequency the impact on the
goal can be determined, e.g., if fs is given by 1

10 , this yields
p1 = 0.5 and by applying the transition functions and the
merging operation p4 ≈ 0.27.

VI. CONCLUSION AND FUTURE WORK

In this paper an approach has been presented that allows
to assess the trade-off between privacy requirements and
operational capabilities. Therefore a use case in the smart grid
is modeled as a directed graph with nodes and edges. For
edges transition functions and merging operations are defined.
Based on that graph, an algorithm can be applied for finding
the optimum balancing. This can be achieved by either solving
an equation or – if this is not feasible – by using a numeric
approximation. Finally, we proposed a mapping of the result-
ing values back to real-world applicability. For evaluation,

a demand response use case from the USC microgrid was
assessed and discussed.

Future work will focus on integrating this model into
existing privacy assessment tools. This allows such systems
to provide a more holistic assessment also taking into account
the operational capabilities.

ACKNOWLEDGMENT

The financial support of the Josef Ressel Center by the
Austrian Federal Ministry of Economy, Family and Youth and
the Austrian National Foundation for Research, Technology
and Development is gratefully acknowledged. Funding by
the Austrian Marshall Plan Foundation is gratefully acknowl-
edged. This material is based upon work supported by the
United States Department of Energy under Award Number
number DE-OE0000192, and the Los Angeles Department of
Water and Power (LA DWP). The views and opinions of
authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof,
the LA DWP, nor any of their employees.

REFERENCES

[1] P. McDaniel and S. McLaughlin, “Security and privacy challenges in
the smart grid,” Security Privacy, IEEE, vol. 7, no. 3, pp. 75–77, May
2009.

[2] A. Cavoukian, J. Polonetsky, and C. Wolf, “Smartprivacy for the smart
grid: embedding privacy into the design of electricity conservation,”
Identity in the Information Society, vol. 3, no. 2, pp. 275–294, 2010.

[3] C. Neureiter, G. Eibl, A. Veichtlbauer, and D. Engel, “Towards a
framework for engineering smart-grid-speficic privacy requirements,”
in Proc. IEEE IECON 2013, Special Session on Energy Informatics.
Vienna, Austria: IEEE, November 2013.

[4] B. Chen, Z. Kalbarczyk, D. Nicol, W. Sanders, R. Tan, W. Temple,
N. Tippenhauer, A. Vu, and D. Yau, “Go with the flow: Toward
workflow-oriented security assessment,” in Proceedings of New Security
Paradigm Workshop (NSPW), Banff, Canada, September 2013.

[5] E. McKenna, I. Richardson, and M. Thomson, “Smart meter data:
Balancing consumer privacy concerns with legitimate applications,”
Energy Policy, vol. 41, pp. 807–814, 2012, modeling Transport (Energy)
Demand and Policies.

[6] S. Oliveira and O. Zaiane, “Algorithms for balancing privacy and knowl-
edge discovery in association rule mining,” in Database Engineering and
Applications Symposium, 2003. Proceedings. Seventh International, July
2003, pp. 54–63.

[7] D. Massaguer, B. Hore, M. Diallo, S. Mehrotra, and N. Venkatasubrama-
nian, “Middleware for pervasive spaces: Balancing privacy and utility,”
in Middleware 2009, ser. Lecture Notes in Computer Science, J. Bacon
and B. Cooper, Eds. Springer Berlin Heidelberg, 2009, vol. 5896, pp.
247–267.

[8] CEN, Cenelec, and ETSI, “Smart Grid Reference Architecture,”
CEN/Cenelec/ETSI Smart Grid Coordination Group Std., Tech. Rep.,
November 2012.
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ABSTRACT
Decreasing time resolution is the simplest possible privacy
enhancing technique for energy consumption data. However,
its impact on privacy analyses of load signals has never been
studied systematically. Non-intrusive appliance load moni-
toring algorithms (NIALM) have originally been designed
for energy disaggregation for subsequent energy feedback.
However, the information on appliance use may also be mis-
used for the extraction of personal information. In this work,
the effect of decreasing the time resolution in the usual first
step, namely edge detection, is studied. It is shown that
event values can be estimated rather reliably, but the de-
tection rate of events significantly decreases with increasing
measurement time interval.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Design Methodology—Pattern
analysis

General Terms
Privacy

Keywords
Privacy enhancement; smart metering; data representation;
load disaggregation; edge detection

1. INTRODUCTION
There is a lot of public concern and discussions on the

privacy impact of smart metering. However, the discussion
is led without knowing the extent of personal information
that can be read out of smart meter load profiles. Even more
so, there is nearly a complete lack of knowledge about how
the amount of personal information relates to the measured
time interval. For example, in many European countries, it
is planned, that people can opt-in for delivering their load
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IHMMSEC 2014 Salzburg, Austria
Copyright 2014 ACM 978-1-4503-2647-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600918.2600920.

data in 15 minute time intervals. To our knowledge, no one
has tried to assess the amount of personal information that
can be extracted on 15 minute time interval load profiles.

Note that the decrease in time resolution can be viewed
as the most straightforward and simplest privacy enhancing
technology (PET), cf. [3]. The goal of this work is making a
first step towards the study of its actual impact. This work
is a first step, because we focus on determining appliances.
The main reasoning behind this approach is that activities of
persons in the house trigger appliances that sum up to the
total load. The activities themselves are already personal
information of which some general habits could be deduced.
However, such an analysis of general habits is out of scope
of this work.

Information on the appliances are usually extracted from
the load profiles by means of so-called ‘non-intrusive appli-
ance load monitoring analysis” (NIALM). There is a lot of
literature on NIALM algorithms ([5, 15, 2, 1, 14, 8, 6, 13]).
The goal of these algorithms is the disaggregation of the to-
tal load into the individual appliances loads, e.g., for sake
of providing energy feedback to the end-user. From the pri-
vacy viewpoint, such NIALM analyses can be seen as a first
step of attacking methods, which aim at the unauthorized
extraction of personal information.

There are only a few papers treating the technical details
of privacy implications of smart metering. In [9], load data
were recorded with parallel video data which were processed
into activity logs. A NIALM analysis was done yielding
the input for subsequent behavior-extraction routines. Ex-
tracted behaviors include, e.g., presence, sleep cycles or meal
times. In [12] the load profile is divided into so-called power
segments using a density based clustering technique. These
power segments are described by features such as start time,
average power and duration. It is illustrated how such power
events could be used for answering several privacy questions.
In [4], it is shown that under ideal conditions load curves can
be used to identify the currently viewed TV-program.

In this work, the impact of reducing the time granular-
ity on the first part of typical low-frequency NIALM algo-
rithms, namely edge detection ([5, 9, 1, 2, 8, 13]) is studied.
In Section 2.1, event detection is described as part of low
frequency NIALM analyses. In Section 2.2 the investigated
edge detection methods are reviewed. After describing the
experimental setup in Section 3, the performance of different
edge detection methods is compared in Section 4.1. The core
Section 4.2 of this work describes the effect of the time reso-
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Table 1: Time Granularities of low-frequency
NIALM-studies

lution on the detection of events. Finally, Section 5 contains
conclusion and outlook.

2. EVENT DETECTION METHODS
Event detection methods are the typical first analysis step

in low frequency NIALM algorithms. Decreasing the per-
formance of event detection is a countermeasure against a
possible NIALM-privacy-attack and increase privacy. After
discussing why event detection is such a useful first step of
NIALM analysis, the event detection methods that are in-
vestigated in the experimental part are described.

2.1 Event Detection as Part of NIALM
NIALM approaches are divided broadly into two kinds of

methods: high frequency methods look at the waveform of
appliances or study transients or higher order harmonics.
While high-frequency methods usually need a sampling in
the range of kHz, low-frequency methods typically analyze
load profiles which are sampled using time intervals in the
order of seconds (see Table 1).
Since in this work the time granularity is decreased for pri-

vacy purposes, the focus is laid on low-frequency instead of
high frequency NIALM methods. Supervised low frequency
methods usually consist of several blocks: edge detection,
cluster analysis and finding pairs of on-and off clusters for
the determination of the duration of an appliance. Edges
are sharp increases or decreases of the load signal due to
turning on or off an appliance. More generally, edges arise
due to the change from one state to another state of an
appliance when modeled as a finite state machines (FSM).
NIALM algorithms commonly use edges instead of the ab-
solute values for two reasons: First, using absolute values in
the presence of unknown appliances, these unknown appli-
ances could be described as a combination of other known
appliances. Second, there are adverse cases where a small
change in the measured power would result in a big change
in the configuration of used appliances, which is an implausi-
ble result [5]. Since edge detection is a common first step of
a NIALM algorithm, if a decrease of time resolution is able
to negatively influence edge detection, the subsequent part
of the NIALM algorithm is expected to suffer significantly
as well. Considering a possible abuse of NIALM algorithms
the diminished disaggregation ability is beneficial from the
privacy perspective. For sake of completeness it is noted
that the use of edges is common but not mandatory, e.g., in
[12] shape features are used instead of edges.

2.2 Investigated Event Detection Methods
In this section event detection methods used in the ex-

perimental part are reviewed. A main assumption of this
work is the modeling of appliances as finite state machines
(FSMs) having different power values for different states. In
this work an event e = (te,∆Pe) is a transition between two
such states which is represented by its onset time te and

the difference between the two power levels of the states
∆Pe. Many appliances have only two states and can sim-
ply only be turned on or off. Correspondingly, events for
which the signal increases (∆P > 0) are called on-events
because they should typically arise from turning on such an
onoff-appliance. Analogously, events for which the signal
decreases are called off-events.

The most straightforward method detects an edge, if the
backward difference ∆Pi = Pi − Pi−1 between consecutive
points exceeds a threshold. Each detected edge is considered
to be an event e = (ti,∆Pi). This method can be classified
as one that focuses on the transition between two levels of
a signal [10]. If the transition needs several time intervals,
this method divides the transition between two levels in sev-
eral edges having smaller values than the transition which
is usually an unwanted behavior.

The drawback of the backward difference method can be
accommodated by merging of subsequent occurring edges
stemming from backward differences into a single event [1].
The value of the event is the sum of the individual edge
values which can be both positive and negative. The time
where the event occurs is defined as the onset time, i.e., the
time of the first edge contributing to the event.

Another method proposed in [5] is called ‘transient pass-
ing edge detection.” As its names suggests it is a method
focusing on the power levels of the two transition states in-
stead of the transition itself. A transition is defined as being
not steady. In the first step the method finds the steady sub-
sequences of the signal. This is done using a sliding window
approach where a point is considered part of a steady sub-
sequence, if the range of it and the next n − 1 does not
exceed a given threshold. The whole signal is thus divided
into consecutive steady parts st and transitions tr. For the
description of the event, all subsequences (sti, tri+1, sti+2)
are considered. The onset-time tei for the description of the
event is the last time point of the first steady part sti. The
transition value ∆Pi is the difference between the median
of the values of the first steady part sti and the median of
the values of the consecutive steady part sti+1. Taking the
median value over the whole steady part leads to a greater
robustness in the determination of the event value ∆Pi.

3. EXPERIMENTAL SETUP
The experiments were done using a so-called low frequency

dataset of the publicly available REDD-dataset [7]. This
dataset consists of measurements of the apparent power for
6 different houses. Measurements are available for the main
circuits mains1 and mains2, and for subcircuits like for ex-
ample kitchen outlets and measurements of individual ap-
pliances.

Although the decrease of the time granularity seems
straightforward (integrating over the period), it is in fact
not. There are several possibilities. First, considering a
time interval, different statistics could be computed for this
interval. The most straightforward statistic is the average
load value which should be enough for most practical solu-
tions such as normal billing or time-of-use billing. However,
for some reasons, e.g., pricing based on the maximum load
or for control reasons, the maximum load needed during the
time interval, could be another useful number. Other statis-
tics as for example the standard deviation of the load values,
are also possible but will not be considered further. Finally,
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there is still the possibility of simple sampling, i.e., taking
the load value at the specific point in time.
In the subsequent experiments, three variants are consid-

ered: (i) taking the average load in a time interval, (ii) taking
the maximum load in a time interval and (iii) sampling at
time points.
In order to account for noise, for all methods, events e

with a value ∆P smaller than a threshold of 20 Watt are
discarded. The same threshold was used for the detection
of the stable parts of transient edge detection. The minimal
required number of steady points n in transient passing was
set to 3 which has good detection properties at reasonable
stability.

4. RESULTS
In this section, different edge detection methods are com-

pared with respect to their ability to detect events in smart
meter load profiles. Then the effect of the decrease of time
resolution on the events found is described.

4.1 Event detection
Since the results are based on the events found, the per-

formance of the event detection methods is assessed for the
highest available time resolution of 3 seconds first. A value
of 20W was used as threshold for the removal of events oc-
curring due to noise. If the threshold is set too low, ad-
ditional edges can occur which tends to happen for high-
power devices. For low-power devices such as lighting, a
noise threshold that is in turn too high can lead to a loss of
events. Therefore, the tradeoff between noise removal and
the detection of events from low-power devices has to be
considered.
The form of the load consumption of appliances can be

quite complex. As an example, the load consumed for a
full run of the dishwasher is shown in Figure 1. Since the
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Figure 1: Dishwasher events, marked as “+”, de-
tected using transient detection at the highest time
resolution

dishwasher’s load profile has such a rich structure with long
and short on-durations at different power levels and power
levels that are decreasing, it was chosen for demonstration of
effects of different edge detection settings and of the change

of time granularity. Simpler devices for heating are usually
purely ohmic and show high power values. These are the
appliances whose load profiles have the highest similarity to
a rectangular profile.

As expected, the simple backward difference yields more,
but disturbing, events and can therefore not be recommend-
ed (compare Figures 1 and 2).
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Figure 2: Dishwasher events, marked as “+”, de-
tected using backward differences at the highest
time resolution. Too many events are detected
(compare with Figure 1).

Generally, in terms of detecting appliances, both tran-
sient passing and edge merging give good and very similar
results. There are also only tiny differences due to the use of
the different variants of decreasing the time resolution. The
correctness of the edges found was visually verified for all
appliances. Additionally, the edge values of all appliances
are shown in Figure 3. It can be seen that for all appli-
ances rather distinct edge values can be found. The expected
strong similarity of the absolute values of the on-events and
the off-events leads to the symmetric look of Figure 3. More
importantly, this figure suggests that some appliances such
as washerDryer3 should be easily distinguishable from oth-
ers. Other appliances such as kitchen outlets 2 and 4 are ex-
pected to be hardly distinguishable from others. For another
class of appliances such as the dishwasher only some levels
are distinguishable from the events of other appliances. The
fact that the result of edge detection enables to formulate
such an expected behavior shows the value of edge detection
for a possibly privacy invading analysis of load profiles.

4.2 Effect of Decrease of Time Resolution
In this section, the influence of time granularity ∆t on

the events found above is studied. First, transient passing
using the averaging statistic is studied. As can be seen in
Figure 4 with increasing the time interval fewer edges are
detected. Especially short-lived states cannot be detected
anymore. The edges that are still detected have surprisingly
stable heights ∆P .

Another remarkable point is that already with a time in-
terval of 5 minutes, nearly the whole finer structure can-
not be seen any more. These results can also be seen for
the mains signals which was calculated as the sum of the
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Figure 3: All events found at the highest time resolution, detected using transient detection. The symmetry
of the figure stems from the strong similarity of the absolute values of on-events and their corresponding
off-events.

mains1 and the mains2 signals. Using a 5 minute interval
mostly privacy-irrelevant refrigerator events remain.
Possible effects on the decrease in privacy due to the de-

crease in time resolution can already be estimated. Since
the edge heights are rather stable it seems reasonable that
the edges of different appliances can still be distinguished
at higher time intervals. However, the detection rate of ap-
pliances is diminished. In summary, the effect of a decrease
in time resolution means that single events cannot be de-
tected reliably. However, for the identification of habits, the
detection of each single event is not necessary.
Comparing the different edge detection and time decrease

variants, the following behavior could be seen: For high time
resolution, edge merging and transient passing lead to nearly
identical results, however, for lower time resolutions tran-
sient passing seems to better preserve the edge values. The
results of both transient passing and edge merging are quite
insensitive to the kind of statistic. Although still leading
worse results, it should be noted that the performance of
the backward difference method is better with taking the
max statistic or with sampling than with taking the average
statistic where extensive smearing of edge values occurs.

5. CONCLUSION AND OUTLOOK
The impact of decreasing the time resolution on privacy

analysis of load signals obtained from smart metering to date
has not been studied systematically. Based on the reasoning
that knowledge about appliance use can be used as a first
step in a privacy attack, the influence of the time interval
on edge detection methods has been studied.
Three edge detection methods were investigated: the tran-

sient passing method [5], merging of backward differences
and simple backward differences. Based on experiments with

the REDD-data [7] the simple backward difference cannot
be recommended as an edge detection tool in this setting
leading to too many edges.

The decrease of the measurement time interval as a pri-
vacy enhancing operation has the effect that edge detection
still works in the sense that edge heights can be detected in
a stable manner. Privacy is enhanced in a way that not ev-
ery edge is detected. The longer the time interval the fewer
edges can be detected. Already with 5 minute intervals, for
most of the appliances, the number of detected edges is sig-
nificantly decreased. A potential privacy consequence would
state that not every single event but rather regular habits
can be detected.

This work constitutes the first, descriptive assessment of
the effect of a decrease of data granularity on smart meter
privacy focusing on the detection of appliance use. Next
logical steps include the development of quantifiable per-
formance indicators, e.g., based on the result of subsequent
pattern recognition algorithms. Using these performance in-
dicators the difference of the effect on different appliances
should be described and visualized in a way that is also
understandable for non-experts. Furthermore, when appro-
priate datasets are available, personal information such as
activities or habits should be considered in addition to ap-
pliance usage.
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Figure 4: Dishwasher events, marked as “+”, de-
tected for ∆t =30s (top) and 5 minutes (bottom).
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Abstract A vast volume of data is generated through smart meter-
ing. Suitable compression mechanisms for this kind of data are highly
desirable to better utilize low-bandwidth links and to save costs and
energy. To date, the important factor of data resolution has been ne-
glected in the compression of smart meter data. In this paper, we review
and evaluate compression methods for smart metering in the context of
different resolutions. We show that state-of-the-art compression meth-
ods are well suited for high resolution, but not for low resolution data.
Furthermore, we elaborate on the compression performance differences
between appliance-level and household-level load data. We conclude that
the latter are practically incompressible at most resolutions.

1 Introduction

In smart grids, the volume of data to be processed, transmitted and stored is
considerable. In the distribution grid, smart meters are a source of high data
volume. Depending on the use case and regulatory restrictions, different mea-
surements are collected by a smart meter in different granularities, typically in
measurement intervals of 60 seconds up to 15 minutes (cf. Table 10 in [7]). Smart
meters are also capable of collecting measurements related to power quality. All
measurements can technically be done in smaller intervals (i.e., seconds).

It is evident that compressing the data generated in smart metering is highly
desirable. Smart meters are typically connected via low-bandwidth links, such as
PLC. Through compression, the bandwidth of these links can be utilized more
efficiently. The increase in efficiency, of course, depends on the measurement in-
terval and will increase with smaller intervals. Furthermore, transmitting data
in compressed form is more energy-efficient than transmitting data in uncom-
pressed form – given that an appropriately light-weight compression scheme is
used, the power needed for compression is significantly lower than the power
needed for transmission. Finally, at the receiving end, where the data needs to
be stored, compression can help to save costs.

It comes at no surprise that a number of proposals have been made for the
compression of smart metering data. However, none of these contribution explic-
itly addresses the issue of resolution and its impact on compression performance.
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While there are many benefits to compression, it has to be evaluated how well
the raw data is suited for compression at different measurement intervals, i.e.,
varying data granularity. An overview of standard compression methods ap-
plied to smart metering data is given by Ringwelski et al. [11]. Furthermore,
the authors propose their own method. Unterweger and Engel [13] propose a
compression method that allows resumability. Two contributions that implicitly
address resolution, because they both employ the wavelet transform for compres-
sion are Ning et al. [10] and Khan et al. [8]. However, neither takes the impact
of resolution of the source data into account.

In general, there is little research that addresses the resolution of smart me-
tering data, mostly in the area of smart meter privacy. Eibl and Engel [5] give
an account on the influence of data granularity on privacy in smart metering.
Approaches for privacy-preserving smart metering are presented by Efthymious
and Kalogridis [4] and Engel [6]. Sankar et al. [12] introduce an information-
theoretic framework for smart meter privacy, which implicitly addresses data
resolution as part of the proposed privacy measure.

In this paper, we evaluate the compression algorithms proposed by Ringwelski
et al. [11] and Unterweger and Engel [13] in the context of source data resolution.
This is an important perspective, as different use cases in the smart grid will
require different measuring intervals and therefore different resolutions of load
data. An appraisal on how this resolution impacts compression performance gives
an important guideline on what amount of data needs to be transmitted for the
individual smart metering use cases.

This paper is structured as follows: In Section 2, we describe the compression
algorithms that we evaluate in Section 3. Section 4 concludes.

2 Compression algorithms

Several algorithms for compressing load data have been studied in the literature.
We focus on those algorithms which have been specifically designed for load
data in the context of smart metering, where resources are typically sparse, i.e.,
execution time and memory consumption have to be minimized.

For reference, we use two standardized encodings for load data which do not
compress the data. For our measurements in Section 3, we use two tailored com-
pression algorithms. All four approaches are described in the following sections.
Although some encodings specify the use of units (e.g., watts), we focus on the
value encoding only. Unit signaling can be amended if necessary, but is out of
scope of this work.

2.1 Reference algorithms

Two standards for transmitting load data are commonly used: IEC 62056-21 [3]
and IEC 61334-6 [2], also referred to as A-XDR. Both specify value encodings
which do not perform any compression whatsoever, minimizing computational
complexity. In the following, we describe both algorithms briefly since we use
them for reference measurements.
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IEC 62056-21 Values are encoded in their base 10 representation with a dec-
imal point and encoded as ASCII [1] bytes. The value 123.45, for example, is
encoded as 00110001 00110010 00110011 00101110 00110100 00110101, re-
quiring six bytes – five digits and the decimal point.

Since the length of each encoded value depends on its magnitude, an ad-
ditional delimiter between subsequent values is required so that they can be
separated during decoding. Without additional signaling information, an under-
score (ASCII character 137), for example, can be used as a delimiter. This way,
the values 123.45 and 123.56, for example, are concatenated to 123.45 123.56
before encoding, requiring a total of 6 + 1 + 6 = 13 bytes.

A-XDR Unsigned integer values are encoded in their base 2 representation
with a fixed length, e.g., 16 bits. The value 12345, for example, is encoded as
00110000 00111001, requiring 2 bytes. Although floating-point values are not
supported, multiplying the floating-point value by 10n, where n is the number
of decimal places after the decimal point, yields an integer value which can be
encoded using A-XDR.

Since the number of decimal places does typically not change within a load
data time series, no additional signaling for n is required. However, the number
of bits required for representation may have to be increased to accommodate
for the increased value range due to the multiplication by 10n. For example,
encoding the value 123.45 (as 12345, see above) requires at least 14 bits, as
opposed to the value 123, which only requires 7 bits.

As stated above, A-XDR coding uses a fixed bit length for representing values.
Thus, all values can be decoded without the need for any additional delimiters
as opposed to the IEC 62056-21 value coding described above.

2.2 DEGA coding

Unterweger and Engel [13] have proposed a compression algorithm for load data
which exploits the data characteristics of load profile data. Their encoding algo-
rithm, which we refer to as DEGA (Differential Exponential Golomb and Arith-
metic) coding due to its main elements, is illustrated in Fig. 1 and consists of
five steps (labeled A-E).

First, the floating-point input values are normalized (A) to make them inte-
ger, as explained for A-XDR in Section 2.1. Second, the differences between con-
secutive values are calculated (B), since they are typically smaller than the values
themselves. Third, the differences are encoded as Signed Exponential Golomb
code words of order zero (C) for variable-length coding. Fourth, the code words
are concatenated (D) and finally compressed using an adaptive binary arithmetic
coder (E).

During processing, the code word concatenation step (D) is usually implicitly
contained in the code word generation step (C). A detailed explanation of each
step as well as a description of the decoding process can be found in [13].
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Figure 1. Overview of DEGA coding [13]: Input values (1) are normalized and their
differences (3) are represented as Signed Exponential-Golomb code words (4) which
are concatenated (5) and arithmetically coded.

2.3 LZMH coding

Ringwelski et al. [11] have proposed a compression algorithm for load data with
low memory requirements. The algorithm is referred to as Lempel Ziv Markov
Chain Huffman (LZMH) coding and combines ideas of the Lempel Ziv Markov
Chain Algorithm (LZMA) and a variant of Adaptive Trimmed Huffman (AHT)
coding as described below and illustrated in Fig. 2. It is designed to process
ASCII-coded IEC 62056-21 data as described in Section 2.1 as input.

If at least three of the following characters are found in the history of the last
m characters, a reference to it is coded (LZMA-like), consisting of a byte offset
and the length, using an optimal prefix code. Conversely, when no sufficient
reference is found, it is encoded as a Huffman code word (AHT-like). This code
word originates from an adaptive Huffman tree which represents the symbol
probabilities that are updated for each encoded character.

To keep memory requirements low, a history buffer of m = 128 characters is
used and the size of the Huffman tree is limited to the size of the input alphabet
which may be reduced to the ten decimal digits and the decimal point. A more
detailed description of the algorithm can be found in [11].

3 Evaluation

We analyze the compression performance and execution times of A-XDR, DEGA
and LZMH coding for IEC 62056-21 input data. The used data sets are described
in detail in Section 3.1. As opposed to prior work, we study the effect of different
data granularity on the results.

We evaluate different data granularity levels by summing up c consecutive
input data values with inter-value temporal distance t, for example, 5 minute
(300 seconds) granularity for t = 3 (seconds) with c = 100. We use the same
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Figure 2. Overview of LZMH coding: Each input symbol is either encoded as a refer-
ence to an already processed symbol or as a Huffman code word based on its probability.

granularity levels as Eibl and Engel [5], i.e., 3 s, 9 s, 30 s, 1 min., 5 min., 15 min.
and 1 h, if available.

To achieve comparable results, we have reimplemented the A-XDR and DEGA
coding algorithms in the C programming language. LZMH is already imple-
mented in C and has only been modified slightly so that it uses the same in-
put/output functions. These changes do not affect its compression performance.

3.1 Load data sets

We use two load data sets for our evaluation: the low-frequency MIT REDD
data set [9] and a data set from a local energy provider, referred to as the SAG
data set henceforth. Both data sets are described briefly below.

REDD The low-frequency MIT REDD data set is a collection of load data
from between 11 and 26 channels of 6 different houses. In total, there are 116
channels. Each channel containing load data is available separately.

The load data values are average apparent power readings in Watts with two
decimal places, i.e., they are effectively stored with an accuracy of one hundredth
of a Watt. They have an inter-value temporal distance of t = 3 (seconds) for
all channels but the mains, which have t = 1. The values cover measurement
intervals of between 2.7 and 25.8 days.

SAG The SAG data set is a collection of load data from 508 households and
industrial plants. As opposed to the REDD data set, only the mains of each
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Figure 3. Compression performance of different algorithms compared to IEC 62056-21
value encoding for the REDD load data set at different data granularity levels.

household are available. They are summed up in one single value, i.e., they are
not available as separate channels.

The load data values are accumulated energy readings in kWh with three
decimal places, i.e., they are effectively stored with Wh accuracy. They have
an inter-value temporal distance of t = 300, i.e., 15 minutes. The values cover
measurement intervals of exactly one year.

3.2 Compression performance

Due to the different characteristics of the two load data sets described in Section
3.1, we analyze the compression performance for each data set separately. All
input data is encoded in the form of IEC 62056-21 values as described in Section
2.1, which we use as reference. The results are described in the following sections.

REDD data set Figure 3 shows an overview of the compression performance
of the A-XDR, DEGA and LZMH algorithms for the REDD data set. Each
channel is compressed separately and its compressed size is expressed relative
to the input data size as a ratio. A compression ratio of 5, for example, means
that the compressed data requires only 20% of the size of IEC 62056-21 value
encoding.

The compression ratio distribution for all channels is depicted as a box plot
with added mean compression ratios (filled circles with black borders) and out-
liers (gray circles without borders). The y axis is logarithmic and capped at 300.
Thus, four outliers representing all-zero valued channels are not depicted.
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Obviously, DEGA and LZMH exhibit significantly better compression per-
formance than A-XDR, which does not compress by design. Still, it achieves
compression ratios greater than 1 compared to IEC 62056-21 value encoding.
This is due to the fact that all input values are at least five bytes long (one
decimal digit before the decimal point, two thereafter and one delimiter), but
typically longer, whereas A-XDR values are always four bytes in size.

In general, LZMH outperforms DEGA at all granularity levels, where the
performance difference increases with data granularity. At the finest granularity
level (3 s, dark gray boxes), DEGA and LZMH achieve compression ratios of
18.59 and 35.48, respectively. They drop to 2.77 and 3.02, respectively, at the
coarsest granularity level (1 h, white boxes).

Compared to A-XDR coding with a median compression ratio of 1.94 at this
granularity level, it becomes clear that both, DEGA and LZMH, are practically
ineffective at compressing load data with high (1 h) inter-value temporal dis-
tances. A-XDR is expected to outperform both compression algorithms at even
coarser granularity levels, e.g., at inter-value temporal distances of 24 h.

In general, increased inter-value temporal distances yield larger input values,
i.e., they have more decimal digits and therefore yield longer IEC 62056-21 val-
ues. Since A-XDR values are of constant size, their compression ratio increases
relatively at coarser granularity levels, whereas DEGA and LZMH coding be-
come less efficient in terms of compression performance. This is mainly due to
the increased input entropy.

Coarser data granularity impacts compression performance due to the sum-
ming of values. Thus, the mains (channels 1 and 2) of all houses from the REDD
data set deserve special attention. They, too, are effectively sums of multiple
other channels and therefore likely to behave differently than the other chan-
nels. Figure 4 shows the compression performance of only the mains.

As expected, the compression performance of DEGA and LZMH coding for
the mains is significantly poorer than the respective performance for all channels
depicted in Figure 3. Although the best median compression ratio for fine-grain
data (3 s, dark gray in Figure 4) is 4.90, double-digit compression performance
is not achievable for the mains.

Interestingly, when compressing only the mains, DEGA outperforms LZMH
at all granularity levels. The reverse is true when looking at the compression
performance of all channels in Figure 3. Still, at medium granularity levels (1
min., medium gray in Figure 4), compression becomes ineffective when compared
to uncompressed A-XDR coding.

Even more surprisingly, at coarser granularity levels (15 min., light gray),
A-XDR actually outperforms DEGA coding with a median compression ratio of
2.39 vs. 2.25 despite the fact that A-XDR does not compress by design. This
means that the mains are effectively incompressible at this resolution.

SAG data set Figure 5 shows the compression results of the A-XDR, DEGA
and LZMH algorithms for the SAG load data set. Since the latter only has 15-
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Figure 4. Compression performance of different algorithms compared to IEC 62056-21
value encoding for only the mains from the REDD load data set.

minute resolution, finer granularity levels cannot be evaluated. The visualization
is identical to the one in Figure 3 for the REDD data set.

Since the SAG data set only contains measurements from the mains and not
from individual channels, the results are similar to the results of the mains from
the REDD data set illustrated in Figure 4. Again, DEGA outperforms LZMH
coding, but the compression ratios of both are higher when compared to A-XDR,
i.e., the data can be compressed to some extent, even at a temporal inter-value
distance of 1h.

The main reason for this, considering that the mains from the REDD data
set are incompressible as explained above, is the different accuracy of the data.
While the REDD mains data has an accuracy of one hundredth of a Watt, the
SAG data has an accuracy of only one Watt-hour. This significantly reduces the
entropy since the highly volatile least significant digits are missing.

Apart from the lower accuracy, the value range is also reduced, i.e., the kWh
readings (SAG) are significantly smaller than Watt readings (REDD). This also
explains the high number of outliers (gray circles without borders) in Figure 5
for DEGA and LZMH coding: Households with a lower power consumption yield
smaller values which can be more compressed more easily.

3.3 Execution time

The DEGA and LZMH compression algorithms reduce the data rate in a number
of cases as described above. However, they are computationally more complex
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Figure 5. Compression performance of different algorithms compared to IEC 62056-21
value encoding for the SAG load data set at different data granularity levels.

than uncompressed data transmission. Thus, the additional code execution time
has to be analyzed.

We measure the execution time similar to Unterweger and Engel [13]. Each
channel (REDD data set) or household (SAG data set) is processed, as a whole,
three times for cache warming and then five times for the actual time measure-
ments. The five time results are averaged and divided by the number of data
values in the processed channel/household to yield the average processing time
per data value.

Again, the REDD and SAG data sets are evaluated separately due to their
different data characteristics. A-XDR encoding is used as reference for uncom-
pressed processing. All results have been obtained on a virtualized 64-bit Ubuntu
14.04 machine with gcc 4.8.2 running on an Intel Xeon W3503 CPU.

REDD data set Figure 6 shows an overview of the execution time per data
value required by the A-XDR, DEGA and LZMH algorithms for the REDD data
set. Despite the powerful CPU used for benchmarking, the processing time is in
the microsecond range, i.e., most likely in the 10- or 100-microsecond range on
less powerful hardware, e.g., smart meters. This can be considered feasible.

LZMH coding is clearly faster than DEGA coding. Surprisingly, it is, in
the majority of cases, even faster than uncompressed A-XDR coding. This can
be explained by the fact that both algorithms process data on a per-character
basis, but A-XDR requires a conversion to floating point values which involves
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Figure 6. Execution times per value of different algorithms when compressing channels
of the REDD load data set at different data granularity levels.

expensive floating point operations. These require about as much time as the
whole compression step of LZMH coding, which is very compact.

Execution times increase at finer data granularity levels for all algorithms
due to the relative increase in size of the input data. Since the (summed) values
are larger in terms of magnitude, their IEC 62056-21 representations are longer.
This explains the increased slopes of the median execution times for A-XDR and
DEGA coding at coarser granularity levels. As LZMH coding does not convert
the representation of the values, its slope is not affected by their magnitude, but
by their redundancy, resulting in a smaller slope.

SAG data set Figure 7 shows an overview of the execution time per data value
required by the A-XDR, DEGA and LZMH algorithms for the SAG data set.
The visualization is identical to the one in Figure 6 for the REDD data set, with
the exception of the data granularity range due to the 15-minute inter-value
temporal distance of the original data.

The order of magnitude of the execution times is the same as for the REDD
data set. However, the absolute values are lower for all algorithms due to the
smaller (and therefore shorter) input values. Interestingly, also the differences
between 15 min. and 1 h granularity are significantly smaller for the SAG data
set than for the REDD data set. Again, this is due to the range (and therefore
the length) of the input values.

The slope between the 15 min. and 1 h granularity levels for the SAG data
set in Fig. 7 is comparable to the slope for 3 s to 5 min. granularity levels for the
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Figure 7. Execution times per value of different algorithms when compressing house-
holds of the SAG load data set at different data granularity levels.

REDD data set in Fig. 6. This shows that both, execution times and execution
time differences are highly dependent on the input data length.

In addition, the differences in terms of execution time between DEGA and
LZMH coding are smaller. This is due the lower compression efficiency of LZMH.
This also explains why, in contrast to the execution times for the REDD data
set (see Fig. 6), LZMH is slower than A-XDR coding for the SAG data set.

4 Conclusion

Load data from the evaluated data sets is compressible, but only at fine data
granularity levels, e.g., 3 second intervals. At coarser granularity levels, com-
pression becomes less effective or even futile, i.e., the reduction in data rate
is practically insignificant compared to uncompressed encoding. This effect is
stronger for the mains of a household than for per-room or per-device channels
which have lower entropy and are therefore easier to compress. When compress-
ing the tested load data sets, LZMH coding by Ringwelski et al. is recommended
for the latter type of channels at fine data granularity levels. For coarser granu-
larity levels as well as the mains, DEGA coding by Unterweger and Engel offers
higher compression ratios at the cost of longer execution time.
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