
FREDOSAR: Towards a Security-aware Open System Architecture
Framework Supporting Model based Systems Engineering

Michael Fischinger, Christian Neureiter, Christoph Binder, Norbert Egger and Michael Renoth
Center for Secure Energy Informatics Salzburg, University of Applied Sciences, Urstein Süd 1, 5412 Puch/Salzburg, Austria

{michael.fischinger, christian.neureiter, christoph.binder, norbert.egger, michael.renoth}@fh-salzburg.ac.at

Keywords: Open Systems Architecture, Complex Systems, Security by Design, MBSE, Domain Specific SE, Smart Grid.

Abstract: The Smart Grid is the leading example when talking about complex and critical systems. Model Based Sys-
tems Engineering (MBSE) represents an appropriate approach for the mastery of this complexity. However,
achieving full traceability between the model of a system and the concrete implementation is still an open
issue. For this, Model Driven Development (MDD) is proposed. Hence, the development of a general middle-
ware framework, which comprises a well-defined, customized architecture and provides accurately elaborated
interfaces, would probably facilitate the Model Based Approach in a decisive manner. Thus, the present work
addresses the development of a versatile architecture framework, the FRee EDucational Open System ARchi-
tecture (FREDOSAR), which also includes an open source implementation. Due to the criticality of systems
like the Smart Grid, Security by Design is another central aspect of this architecture development process. For
evaluation, the applicability of the framework is finally verified by the implementation of several case studies
based on FREDOSAR, focusing on the quality attributes mentioned.

1 INTRODUCTION

In recent years, a transition of the original power grid
towards the so-called Smart Grid has become appar-
ent. This is encouraged by the expected reduction
of primary energy resources like fossil fuel or nu-
clear power. Furthermore, technological advances of-
fer new possibilities for the efficient use of more sus-
tainable and environmentally-friendly sources. This
leads to major changes concerning the unidirectional
energy flow from centralized facilities towards its cus-
tomers, resulting in a dynamic network containing
multiple producers and consumers. However, since
dealing with this complexity in the Smart Grid is a
difficult task, new methods for describing and devel-
oping current and future energy systems need to be
defined.

The first set of problems can be identified by us-
ing the classification proposed by Haberfellner et al.
(2015). In more detail, the authors distinguish types
of systems based on the attributes dynamic and alter-
ability as well as diversity, variety and scale. This re-
sults in the description of four different system types:
If it is only comprised of a few elements which are
statically interconnected, it is defined as a simple sys-
tem. However, a complicated system emerges by
adding a large number of elements and connections or

adding dynamical interaction behavior between those
elements. By including both of these characteristics,
the result is a complex system. By applying this clas-
sification scheme, the traditional power system can
be considered as a complicated system whereas the
Smart Grid is classified as a complex system. Go-
ing even further, the term System-of-Systems (SoS) is
suggested to be used in order to emphasize the au-
tonomous character of the system’s individual partic-
ipants (Maier, 1998).

According to these considerations, the Smart Grid
is specified to be a critical infrastructure, which needs
to address several requirements in order to integrate
functional safety. More specifically, the requirements
reliability, availability, maintainability, safety and se-
curity are summarized by the term RAMSS and are
used to describe the dependability of a technical sys-
tem (Avizienis et al., 2004). Since one effect result-
ing from the aforementioned technological advances
is the possibility to build powerful network devices on
the customer’s premises, a special need for consider-
ing privacy and security arises. However, the concepts
of Model Based Systems Engineering (MBSE) specif-
ically target issues such as dealing with the upcoming
complexity during the development of a SoS or de-
livering Privacy & Security by Design. Neureiter et
al. (2016) and Knirsch et al. (2015) provide several

examples on how those issues are addressed by apply-
ing the methods introduced by MBSE for developing
domain-specific system architectures. Furthermore,
the approach for Domain Specific System Engineering
(DSSE) (Neureiter, 2017) is a result of several years
of research and use in international projects. The re-
search mentioned introduced an Integration Toolchain
to illustrate the holistic workflow, which describes
an optimized development process for systems based
on the Smart Grid and inherits consistent supporting
methods for developing in different phases through-
out the whole life-cycle of a system.

Therefore, this paper introduces the conception
and development of an open systems architecture
framework that enables the application of complex
systems. By doing so, the special focus of the frame-
work is the seamless integration into the DSSE ap-
proach and to deliver security by design. Therefore,
the remainder of this contribution is structured as fol-
lows: In Section 2, an overview of already existing
frameworks with similar objectives and open aspects
in this area is given, before relevant features are ex-
tracted. Based on these features, in Section 3, the re-
quirements for the development are specified. After
that, the implementation details of the framework it-
self are stated in Section 4. However, to demonstrate
the applicability of the implemented architecture, a
PoC implementation is taken for evaluation in Sec-
tion 5. Finally, in Section 6 the paper is summarized
and then the conclusion is given.

2 RELATED WORK

This section gives an overview of the state-of-the-art
and the related work. Basically, the idea of establish-
ing generic software architecture frameworks is not
new. Hence, existing solutions and attempts for com-
parable problem formulations have been analyzed and
evaluated.

The AUTomotive Open System ARchitecture (AU-
TOSAR) (Fürst et al., 2009) is therefore the first ar-
chitecture (framework) to be mentioned. AUTOSAR
is a middleware platform for the automotive industry.
The standardization of base functionality, the scala-
bility of systems, the transferability of software to dif-
ferent control devices, the cooperation between vari-
ous manufacturers and the development of highly de-
pendable systems have been the major incentives for
founding an open systems architecture framework in
the automotive domain. There are obviously some
parallels within the given problem formulations. A
central aspect is therefore that the software com-
ponents of AUTOSAR are generated from software

models. Besides some of the non-functional require-
ments, this model based approach is a potential as-
pect, where the intended framework probably could
refer to the architecture of AUTOSAR.

Drawing the attention from the approaches of AU-
TOSAR in automotive engineering to the Smart Grid
and other domains leads to a number of frameworks
and architectures that could perhaps be taken as base
for further implementations. The most famous solu-
tion are probably OpenHAB and Eclipse SmartHome,
shortly described by Kreuzer (2014). Basically, they
address the IoT sector and Smart Home. The primary
goal is the consolidation of various technologies by
adding a framework that acts as an abstraction layer.
The implementation is based on OSGi1. The research
of Pichler et al. (2015) therefore additionally com-
pares potential OSGi based solutions for Customer
Energy Management Systems (CEMS). Especially for
security- and privacy-related requirements Pichler et
al. show, that there is still a great need to catch up.

Summing up the lessons learned from the state-
of-the-art analysis, it turns out that there are already
a couple of approaches and frameworks addressing
modular architectures for IoT. Nevertheless, there
are a number of missing features regarding to a
model based approach and the abovementioned
toolchain integration. Under these circumstances, it
makes sense to pursue the implementation of a new,
customized framework, the FRee EDucational Open
System ARchitecture (FREDOSAR). FREDOSAR for
the main part addresses the following features:

Feature Security by Design: The work of Pichler
et al. (2015) points out, that the most popular com-
parable frameworks primarily focus on operational
functionality. Topics like security and privacy are of-
ten disregarded or regarded marginally. For this very
reason, the present work also tries to draw its atten-
tion to applicable security-related research issues, to
make the framework also prepared for trustable envi-
ronments and applications.

Feature Model Based Approach: As FRE-
DOSAR is generally addressing applications in com-
plex, heterogeneous and distributed systems, the
framework should also be designed as a feasible tool
to obtain full traceability according to the stated ap-
proaches in MBSE. The architecture design is guided
by the systems engineering approach proposed by
Neureiter (2017). Model Driven Development (MDD)
in a well-defined environment could close the trace-
ability gap between the model of a system and the
concrete implementation.

1https://www.osgi.org/

How to Address Security by Design?

A central architecture decision regarding the security
concept is to follow a layered architecture including
appropriate security levels. Thus, there are differing
permissions and restrictions which are bound to the
FREDOSAR layers Core, Management, Service and
Application. Another aspect of the security concept is
a proper integration of common security practices in
regard to integrity and confidentiality as well as mak-
ing use of encryption mechanisms and protocols.

How to Address the Model Based Approach?

Due to the absence of an adequate implementation
platform Neureiter (2017) describes the model based
source code generation as ”rather visionary”. Based
on the SGAM Toolbox and the related toolchain inte-
gration, it is described as one of the research issues
to be further attended to. For that very reason a part
of the toolchain is particularly emphasized in Figure
1. The goal of the depicted Model Based Approach
therefore is the transfer from a detailed functional de-
scription in an architecture model to concrete exe-
cutable software. Regarding this key challenge, the
framework’s architecture has to be designed in a mod-
ular and precisely defined manner, offering clearly
structured interfaces, that can later be traced to de-
tailed architecture model descriptions across the lay-
ers of SGAM.

SGAM Toolbox

Smart Grid Subsystem

FREDOSAR Base SW

Core Services Security …

FREDOSAR Application SW

FREDOSAR Application
8

Figure 1: Toolchain Integration.

Basically, the Model Based Approach and
the link to the toolchain is an attempt to enhance
the general awareness concerning the relevance of
MBSE, especially for SoS. Hence, the approach
is applicable for various domains. Applications in
other domains follow the same procedure using other
domain specific languages and toolboxes like the
RAMI 4.0 Toolbox (described by Binder et al. (2019))
for industrial purposes.

After formulating the most relevant features Sec-
tion 3 pays attention to the requirements engineer-
ing, followed by the concrete implementation of FRE-
DOSAR in Section 4.

3 REQUIREMENTS

The requirements engineering process as well as the
concrete elaborated requirements are based on the in-
tended features. The requirements engineering pro-
cess included software architects, software develop-
ers, domain experts and stakeholders as well as users.

3.1 Non-functional Requirements

The non-functional requirements have been selected
from a number of common quality attributes. The ex-
tracted requirements are listed in Table 1. Finally,
these requirements have been considered as highly
relevant to address the chosen features.

Table 1: Non-Functional System Requirements.

No. Requirement
1.1 Modularity: Separation of Concerns and

Loose Coupling should be fulfilled by imple-
menting well-defined interfaces.

1.2 Extensibility: The software should provide
the ability to be simply extended without in-
fluencing the running system.

1.3 Autonomy: The software components on the
application layer should be kept completely
stand-alone according to dependencies be-
tween each other.

1.4 Updatability: The framework should pro-
vide the ability to update any of the systems
software components on the fly.

1.5 Dependability: The software should be kept
reliable and stable and should automatically
react to failures (e.g. by restarting).

1.6 Configurability: The system should provide
an interface to centrally configure applica-
tions and/or services.

3.2 Security-related Requirements

This section addresses security-related requirements
that are relevant for service-oriented architectures
(SOA) in critical domains. Based on Hafner et al.
(2008), Confidentiality and Integrity have been taken
as hypernym for a chosen set of security require-
ments. The specified security-related requirements
that have for now been estimated for FREDOSAR are
listed in table 2. As a basic principle, the systems
architecture should strive towards a secure solution.
Thus, the chosen process for (architecture) develop-
ment includes an ongoing security requirements engi-
neering, approaching upcoming changes regarding to
technology, security or privacy aspects.

Table 2: Non-Functional Security-related Requirements.

No. Requirement
2.1 Integrity: The framework should provide

the ability to verify the integrity of any ap-
plication to be executed.

2.2 Confidentiality: The framework should re-
strict the access to internal communication
channels to a minimum. Each software com-
ponent should only be able to receive content
that directly concerns it.

2.3 Access Control: The framework should con-
fine the service access of applications to a
minimum, considering their defined rights.

2.4 Standard Encryption Protocols Support:
The framework should support the standard
encryption protocols HTTPS and TLS.

3.3 Functional Requirements

In the course of an extensive functional requirements
analysis, it turned out that keeping the functional re-
quirements in the framework’s base software as gen-
eral and clear as possible is necessary to achieve a
comprehensive, well-defined architecture. The more
use case specific requirements will therefore be dedi-
cated to the corresponding application software. The
finally elaborated functional requirements are stated
in Table 3. The clarity and abstraction of the chosen
requirements is a fundamental concept to support the
Model Based Approach.

Table 3: General Functional Requirements.

No. Requirement
3.1 Internal Communication Interface: The

software should provide a simple interface
for internal communication between applica-
tions and/or other system components.

3.2 Defined Communication Service Inter-
faces: The software should provide a general
and simple interface to implement any exter-
nal technology or service (I/O) considering
the concomitant communication protocol.

3.3 Defined Communication Data Structures:
The software should define well-formed data
structures for communication between inter-
nal components or applications as well as
communication to external services.

3.4 Technology- and Address Management:
The system should offer the functionality for
centrally managing multiple communication
technologies and the associated address data.

4 FREDOSAR

This section gives an overview of the concrete archi-
tecture of FREDOSAR as well as an insight into some
implementation details. The results shown are selec-
tive aspects of the associated development. As the
progressing work for FREDOSAR does not only in-
clude the architecture development but also an Open
Source implementation2, this paper also comprises
the most relevant implementation details and technol-
ogy decisions. Based on incentives from the state-
of-the-art for middleware platforms, a SOA has been
chosen, using Java and OSGi for implementation.
Apache Felix3 in version 5.4.0 and higher is sug-
gested for execution.

4.1 The Core System

Figure 2 illustrates the component model of the ar-
chitecture. FREDOSAR comprises a layer for Core,
Management and Service components in the basic
software and a layer for Application components in
the application layer.

The major and most important part of FRE-
DOSAR is called the Core system. In short, the Core
defines all relevant interfaces, the management of ser-
vices, communication, typical data structures and fur-
ther central functionality. A visualization of the Core
can be seen in the green area of Figure 2. It will be
described below.

Interfaces and Types Definition

In the FREDOSAR core the standard interfaces for
all further components or services are defined and
provided by the Interfaces bundle. For standard
data structures the Types bundle has been established.
It centrally handles and provides previously defined
Data Transfer Objects (DTO). This architectural de-
cision is a crucial step to reach the maximum level
of autonomy. According to the external package de-
pendencies, all other components are therefore only
dependent on these two bundles.

The FREDOSAR Whiteboard Pattern

One of the used patterns for FREDOSAR is a slightly
modified implementation of the Whiteboard Pattern
(OSGi Alliance, 2004). In the FREDOSAR imple-
mentation, two OSGi Service Trackers have been cou-
pled. This concept guarantees control over service

2https://www.fredosar.org
3http://felix.apache.org/

cmp Component Model

FREDOSAR Basic Software

FREDOSAR Application Layer

Core Management Service

System

OSGi

System

OSGi

«IO»

EnOcean

«IO»

XMPP

«Mgmt»

User Interface

«Mgmt»

Configuration

«Mgmt»

Module

Management

Webserver HTTP

Interface

Authorization and

Authentication

Communication Console Logger

Cryptography

Mapping

Data Storage Interfaces

Messaging

Security

Type Definitions

«Application»

Demand Side Management (DSM)

«Application»

Electric Vehicle Charching (EVC)

«Application»

...

«interface»

...

Figure 2: FREDOSAR Layered Architecture Model.

restrictions during the service injection. The white-
board pattern of FREDOSAR further comprises a spe-
cial convention. If a service or application wants
to access any of the core services, it has to imple-
ment the corresponding aware interface. All in all the
whiteboard pattern has been customized to meet the
needs and requirements of FREDOSAR. This means,
that regardless of whether using service injection or
extending the framework’s functionality with further
services, this pattern must be applied to meet the
FREDOSAR convention.

Internal Communication

The component for internal communication or Inter
Process Communication (IPC) is realized in the Mes-
saging bundle, which is a central unit of the core sys-
tem. The bundle comprises two essential service in-
terfaces. The first, the MessageConsumer provides
the ability for applications or other bundles to register
for specific Topics, which is comparable with a queue
or a channel. The implemented patterns also imply a
solution for a messaging topic restriction for incom-
ing messages. To send an internal message to another
application or component, the second service inter-
face, the MessagingService, can be applied. Having
regard to the restriction for outgoing messages, the
sending applications rights according to the outgoing
topic have to be checked before sending the message.
This is done by the OSGi Service Tracker using a
Proxy Pattern for the management of the individual
rights of applications.

External Communication

The interfaces for external communication have been
realized in the Communication bundle. The services

for the technologies are made available via service
injection and are delivered in a map, including all
permitted service implementations. They can be ac-
cessed by making an application bundle Communica-
tionServiceAware. Each of the supplied services com-
prises a method for sending messages, which has to be
implemented individually for any declared Communi-
cationService. The sending method of the interface
expects a specific data structure according to the mes-
sage to be sent (EventDTO) as well as a data transfer
object including the receiver information (Address-
DTO). In this respect address management is also part
of the Communication bundle. It is implemented as
AddressService and can be accessed via AddressSer-
viceAware. The service includes functionality for
managing addresses and the associated technologies.

As most external communication services are in
fact bidirectional, a topic for incoming messages has
to be established. Therefore, the internal messag-
ing service is consulted. Each external communica-
tion service in consequence implements the Messag-
ingServiceAware interface and possesses a fixed topic
for incoming messages, which is a reserved string
based on the underlying technology. This pattern has
to be complied with any new external communication
service implementation.

Besides to the above in detail described function-
ality, patterns and services, further implemented gen-
eral core services have to be mentioned in short. In
particular, FREDOSAR also includes a Console Log-
ger, a Web Server implementation, a Data Store ser-
vice interface offering data storage solutions and a
Mapping service for the mapping of Java objects to
defined strings and vice versa. Further aspects to be
discussed are the management an the service layer.

4.2 The Management Layer

The Management layer comprises extension function-
ality for the FREDOSAR Core. More precisely it of-
fers services for configuration, observation and mod-
ule management. Therefore, the management layer as
a whole addresses the configurability.

The Module Management bundle monitors the life
cycles of all FREDOSAR bundles and provides fur-
ther services or applications to be downloaded from
a central repository. To furthermore achieve an ad-
equate solution for bundle configuration, the OSGi
ConfigAdmin service has been extended in the Con-
figuration bundle. As a result, any service or appli-
cation bundle can simply be extended with the Con-
figuredService interface. In combination with the
ManagedService from OSGi it can be used for pre-
configuring service properties as well es updating ser-
vice properties during runtime.

4.3 The Service Layer

The Service layer of FREDOSAR primarily applies
to extensibility and autonomy. From the architecture
viewpoint, the service layer follows a well-defined
process for service extension. As a result, new ser-
vices always have to implement existing core inter-
faces to reach autonomy. This is the major concept of
FREDOSAR services.

The current implementation includes services for
I/O, DataStore, Mapping and Messaging, which can
be seen as extensions and/or alternatives to existing
core services. As FREDOSAR is declared as an open
systems architecture, adding new technology-specific
services is also a major part of the ongoing implemen-
tation process. At this point of time the service layer
already contains I/O services for RabbitMQ, XMPP,
EnOcean, OPC UA, Serial, P2P, KNX, GPIO, Blue-
tooth and HTTP, DataStore services for JSONFile and
MySQL, a GSON Mapping service and a Messaging
service based on RabbitMQ.

4.4 Security-related Concepts

Regarding the Security by Design feature and the re-
lated requirements, the FREDOSAR core system has
been designed with a complying architecture, cover-
ing several pivotal concepts and services, including
authentication and authorization, a bundle signing and
verifying procedure, a component for general service
restriction management, a concept for FREDOSAR
communication service and channel or topic restric-
tion, and finally a service dealing with basic crypto-
graphic issues.

Bundle Signing and Verification

The bundle signing and verification process is a cen-
tral aspect of the FREDOSAR security concept. Basi-
cally OSGi provides a Conditional Permission Admin
(CPA). It is applied within the FREDOSAR core Se-
curity bundle and provides the ability to define Rules
for any service or application bundle in the OSGi ex-
ecution environment. As a concrete example, the Se-
curity bundle of FREDOSAR implements a Rule for
Core bundles. It grants comprehensive access rights
for bundles that have been signed by the FREDOSAR
core certificate. This can be done for any layer or ap-
plication.

The fundamental element of this approach is the
OSGi Delegation Model shown in figure 3. In this ap-
proach the platform Operator assigns specific rights
to a chosen Enterprise. The rights can be bound to a
certificate. As a result, the Developer is able to use
all services that are needed for a certain development
proposal, still having restrictions to services that are
not required.

Figure 3: OSGi Delegation Model (OSGi Alliance, 2018).

To accomplish the integrity check, FREDOSAR
performs a signature check by default. For this rea-
son, a Certification Authority (CA) has been estab-
lished at the highest level of a Chain of Trust. The CA
is able to sign underlying certificates, to finally prove
full integrity for a service in a specific FREDOSAR
layer or for applications of any enterprise.

Authentication and Authorization

Based on the framework’s deep focus on security, a
dedicated bundle for authentication and authorization
has been implemented. A service for both is part of
the Auth bundle. Authentication for now has been ap-
plied for basic user authentication in the HTTP web
server implementation. However, the user authentica-
tion and authorization service is designed to be sim-
ple and straightforward. Hence, it can be used for
any user interaction purpose and simply be extended
to a token based authentication approach for external
service interaction. Regarding the internal commu-
nication restrictions, the service also implements an
interface for module authorization.

Communication Service and Topic Restriction

As already mentioned above, FREDOSAR follows
a strictly defined layered architecture with layer-
specific security restrictions. Thus, no application has
access rights to do a direct service injection. The in-
jection is handled by means of the Whiteboard Pattern
explained earlier. This is where the ModuleAutho-
rizationService can be integrated to the ServiceAware-
Tracker of the chosen service to be finally able to
restrain the service injection if needed. This ap-
proach has been implemented for communication ser-
vice restriction in FREDOSAR. In the concrete im-
plementation, the ModuleAuthorizationService holds
a list of authorized applications and the correspond-
ing communication service permissions. To eventu-
ally achieve the rights to use the requested commu-
nication service, the user has to approve the applica-
tions request via the user interface. This is where the
application will be authorized for service injection.

The same procedure in a slightly modified way is
applied for the internal messaging topic restriction.
Thereby, the consuming application requests a spe-
cific topic to read from and/or to write to. The ap-
proval for the requested topics is again done by the
user. With the aid of the ModuleAuthorizationService,
the core Messaging service then handles the permis-
sions of all applications and services. If an application
is not permitted to access a topic, the affected message
will not be further processed or forwarded.

Cryptography

The CryptoService is a core service that provides stan-
dard cryptographic methods and security-related pro-
cedures like certificate and key store handling. To ful-
fill the standard encryption protocols, the Cryptogra-
phy bundle also manages secure sessions for HTTPS
and TLS. Furthermore, it offers hashing functionality
as well as RSA and AES encryption with appropriate
key lengths and algorithms. The CryptoService API
is generally designed with clear and simple interfaces,
making the Cryptography bundle a powerful core ser-
vice for security- and privacy-aware applications.

5 DEMAND SIDE MANAGEMENT

For evaluation, the present work refers to a general as-
sessment approach based on a case study and the con-
sequential appraisal of architects, developers, stake-
holders and users. During the development process
of FREDOSAR, various case studies have been estab-
lished and implemented as PoC FREDOSAR applica-

tions (FRAPPS4). Smarthome, Ambient Assisted Liv-
ing, Smart Metering, Demand Side Management and
Electric Vehicle Charging are some of the energy do-
main related FRAPPS. For the framework (architec-
ture) evaluation, Demand Side Management (DSM)
has been taken into consideration.

One of the major problems of Smart Grids is the
unpredictability of the generated energy from renew-
able energy systems. The goal of DSM therefore is to
achieve power grid stability by controlling huge elec-
trical loads (e.g. heat pumps). DSM has been im-
plemented as a PoC FRAPP, including a number of
”real” consumers in a demo world model.

The primary focus during the DSM development
was the verification of the general functional require-
ments of FREDOSAR. Therefore, requirement 3.2
has been tested by making use of two external Com-
municationServices, GPIO for LEDs simulating the
electrical loads and RabbitMQ for the communication
between the Distribution System Operator (DSO) and
the CEMS. External communication in FREDOSAR
is usually accompanied by technology- and address
management (requirement 3.4). Therefore, the Ad-
dressService has been implemented and tested. An-
other aspect of DSM is the individual load control. In
this context the DSO sends control commands to the
CEMS concerned. This is where the internal Messag-
ing has been deployed and requirement 3.1 has been
verified. The whole communication procedure has to
be built upon clear data structures (requirement 3.3).
Hence, a DTO for the control commands has been
constructed and tested regarding its simplicity of inte-
gration. A final issue was that the Web Server service
was used to run a RESTful JSON API for the front-
end. The whole execution was automatically logged
by the Logging module.

Another important aspect about the DSM devel-
opment was the verification of security-related re-
quirements. The goal was to develop DSM in a
security-aware manner using the given functionality
and the suggested practice of FREDOSAR. Follow-
ing the OSGi delegation model, a certificate of the
enterprise DSM was signed by the FREDOSAR CA,
giving DSM related applications access to the needed
services and allowing them to be executed in the FRE-
DOSAR execution environment. Both, the integrity
check (requirement 2.1) and the system function re-
striction (requirement 2.3) turned out to be fulfilled,
as the execution was denied in cases where the ap-
plication tried to circumvent one of the restrictions.
The requirements 2.2 and 2.3 furthermore are a fun-
damental demand for any FREDOSAR application.
Thus, the entitlement to confidentiality has been im-

4https://ressel.fh-salzburg.ac.at/FREDOSAR-Frapps

plemented using pre-defined, dedicated communica-
tion topics for DSM applications (requirement 2.2).
Besides, the communication service restriction (re-
quirement 2.3) has been added to the DSM applica-
tion as prescribed by the FREDOSAR convention. In
terms of requirement 2.4 and the standard encryp-
tion protocols support, the abovementioned RESTful
JSON API fulfills the conditions of HTTPS, and the
RabbitMQ communication implemented meets the re-
quirements of TLS. Hence, the whole range of the
security-related requirements has been implemented,
verified and validated regarding its applicability.

Regarding the evaluation process carried out, it
turned out that Security by Design led to a quite com-
plex system architecture and a sophisticated imple-
mentation. Even though most of the security mech-
anisms have been simplified as effectively as possi-
ble, the additional complexity could act as a deterrent
for potential developers, especially in cases where se-
curity plays a secondary role. However, because of
the general criticality of applications in the energy do-
main, security and privacy will definitely remain rel-
evant for FREDOSAR and its further research topics.

6 CONCLUSION AND FUTURE
WORK

The present work has made it a goal to accomplish
a trustable, versatile OSGi-based open system archi-
tecture for application in complex systems and SoS.
Based on previous research in the fields of security
in Smart Grids and MBSE and the analysis of re-
lated work, a number of features and requirements
have been established for the architecture develop-
ment. The primary focus was on Security by Design
and the Model Based Approach. The results of the
architecture and some insights into the development
have been presented.

Basically, the continuing research will focus on
further attempts regarding MBSE and the correspond-
ing MDD process for the toolchain integration. In the
first step an automated process for code generation in
the style of a FREDOSAR application will be inte-
grated. Combined with a co-simulation approach for
complex systems, thereby a sustainable, automated
life-cycle management process for Smart Grid sys-
tems and other SoS should be achieved. Another
security-related aspect will be the integration of End-
to-End security for applications including a Hardware
Security Module (HSM) for encryption. FREDOSAR
therefore will finally serve as a base framework to do
these further steps.

ACKNOWLEDGEMENTS

The financial support by the Federal State of Salzburg
is gratefully acknowledged.

REFERENCES

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable
and secure computing. IEEE transactions on depend-
able and secure computing, 1(1):11–33.

Binder, C., Neureiter, C., Lastro, G., Uslar, M., and Lieber,
P. (2019). Towards a standards-based domain specific
language for industry 4.0 architectures. In Complex
Systems Design & Management, pages 44–55, Paris,
France. Springer International Publishing.

Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-
Biller, F., Heitkämper, P., Kinkelin, G., Nishikawa, K.,
and Lange, K. (2009). Autosar–a worldwide standard
is on the road. In 14th International VDI Congress
Electronic Systems for Vehicles, volume 62, Baden-
Baden, Germany.

Haberfellner, R., de Weck,, O., Fricke, E., and Vössner, S.
(2015). Systems Engineering - Grundlagen und An-
wendung. Orell Füssli, 13 edition.

Hafner, M. and Breu, R. (2008). Security engineering for
service-oriented architectures. Springer Science &
Business Media. Berlin Heidelberg, Germany.

Knirsch, F., Engel, D., Neureiter, C., Frincu, M., and
Prasanna, V. (2015). Model-driven privacy assessment
in the smart grid. In 2015 International Conference on
Information Systems Security and Privacy (ICISSP),
pages 173–181, Angers, France. SciTePress.

Kreuzer, K. (2014). openHAB 2.0 and Eclipse
SmartHome. http://kaikreuzer.blogspot.de/2014/06/
openhab-20-and-eclipse-smarthome.html.

Maier, M. W. (1998). Architecting principles for systems-
of-systems. Systems Engineering: The Journal of
the International Council on Systems Engineering,
1(4):267–284.

Neureiter, C. (2017). A Domain-Specific, Model Driven
Engineering Approach for Systems Engineering in the
Smart Grid. MBSE4U - Tim Weilkiens.

Neureiter, C., Eibl, G., Engel, D., Schlegel, S., and Uslar,
M. (2016). A concept for engineering smart grid se-
curity requirements based on sgam models. Computer
Science - Research and Development, 31(1):65–71.

OSGi Alliance (2004). Listener pattern considered harm-
ful: The whiteboard pattern. https://www.osgi.org/
wp-content/uploads/whiteboard1.pdf.

OSGi Alliance (2018). OSGi service platform, core specifi-
cation. https://osgi.org/specification/osgi.core/7.0.0/.

Pichler, M., Veichtlbauer, A., and Engel, D. (2015). Evalua-
tion of OSGi-based architectures for customer energy
management systems. In Proceedings of IEEE Inter-
national Conference on Industrial Technology (ICIT)
2015, pages 2455–2460, Seville, Spain. IEEE.

