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Abstract—In a smart grid, data and information are trans-
ported, transmitted, stored, and processed with various stake-
holders having to cooperate effectively. Furthermore, personal
data is the key to many smart grid applications and therefore
privacy impacts have to be taken into account. For an effective
smart grid, well integrated solutions are crucial and for achieving
a high degree of customer acceptance, privacy should already
be considered at design time of the system. To assist system
engineers in early design phase, frameworks for the automated
privacy evaluation of use cases are important. For evaluation, use
cases for services and software architectures need to be formally
captured in a standardized and commonly understood manner.
In order to ensure this common understanding for all kinds of
stakeholders, reference models have recently been developed. In
this paper we present a model-driven approach for the automated
assessment of such services and software architectures in the
smart grid that builds on the standardized reference models. The
focus of qualitative and quantitative evaluation is on privacy. For
evaluation, the framework draws on use cases from the University
of Southern California microgrid.

I. INTRODUCTION

In a smart grid a number of stakeholders (actors) have
to cooperate effectively. Interoperability has to be assured
on many layers, ranging from high level business cases to
low level network communication. Data and information is
sent from one actor to another in order to ensure effective
communication. Furthermore, the exchange of vast amounts
of data is crucial for many smart grid applications, such
as demand response (DR) or electric vehicle charging [1],
[2]. However, this data is also related to individuals and
privacy issues are an upcoming concern [3], [4]. Especially
the combination of data, e.g., meter values and preferences for
DR can exploit serious privacy threats such as the prediction
of personal habits. In system engineering, privacy is a cross-
cutting concern that has to be taken into account throughout
the entire development life-cycle, which is also referred to as
privacy by design [1].

Model-driven privacy assessment is especially useful when
applied in software engineering. Boehm et al. [5] thoroughly
investigated the phases in software engineering and the ex-
pected costs for error correction and change requests. Costs
double with every phase and once an application or a service is
delivered, the additional adding of crosscutting concerns such
as privacy is tied to enormous costs. As a result, design time
privacy assessment is preferred in early phases of the software

engineering process. Therefore, a framework is needed to (i)
model the system, including high-level use cases and concrete
components and communication flows; and (ii) to assess the
system’s privacy impact using expert knowledge from the
domain. Related work in the domain of automated assessments
in the smart grid mainly focuses on security aspects and is
not primarily concerned with privacy and the modeling in
adherence to reference architectures.

In this paper we address these issues and present an ap-
proach for the model-driven assessment of privacy for smart
grid applications. The framework proposed in this paper is
designed to assist system engineers to evaluate use cases in
the smart grid in an early design phase. For evaluation only
meta-information is used and no concrete data is needed. We
use Data Flow Graphs (DFG) to formally define use cases
according to a standardized smart grid reference architecture.
The assessment is based on an ontology driven approach taking
into account expert knowledge from various domains, includ-
ing customer views on privacy as well as system engineering
concerns. The output is a set of threats and a quantitative
analysis of risks, i.e., a number indicating the strength of
that threat. To evaluate the system we draw on insights from
the University of Southern California microgrid. The primary
contributions of this paper are (i) the use of Data Flow Graphs
to model use cases in the smart grid; (ii) the usage of data flow
graphs for a quantitative privacy assessment; and (iii) the use
of an ontology driven approach to capture domain knowledge.

The remainder of this paper is structured as follows: In
Section II related work in the area of smart grid reference ar-
chitectures, privacy evaluation and automated assessment tools
is presented. In Section III the architecture of the proposed
framework and its components are described. This includes the
concept of DFGs for modeling use cases in the smart grid, the
principal design of the ontology and the mapping of data flow
graphs to the ontology, the methodology for defining threat
patterns and finally, how these patterns are matched to use
cases. The framework is evaluated with a set of representative
use cases in Section IV. Section V summarizes this paper and
gives an outlook to further work in this area.

II. RELATED WORK

In this section related work in the field of smart grid
reference architectures, privacy evaluation and assessment as



well as automated assessment tools are presented. Often,
privacy and security are used interchangeably. For the purpose
of this paper we refer to privacy as legally accessing data but
not using it for the intended purpose. Security, by contrast,
would involve the illegal acquisition of data. In both cases,
the well established and widely understood terminology from
security assessment is used, i.e., threat, attacker, vulnerability
and countermeasure.

A. Reference Models

Stakeholders in the smart grid come from historically differ-
ent areas, including electrical engineering, computer science
and economics. To ensure interoperability and to foster a com-
mon understanding, standardization organizations are rolling
out reference models and road maps. In the US the NIST
Framework and Roadmap for Smart Grid Interoperability Stan-
dards [6] and in the EU the Smart Grid Reference Architecture
[7] were published. The European Smart Grid Architecture
Model (SGAM) is based on the NIST Framework, but extends
the model to better meet European requirements, such as
distributed energy resources. In this paper we investigate use
cases from the US. Investigations have, however, shown that
for the purpose of this project all use cases from the US can
be directly mapped to the European SGAM without the loss
of information. Therefore we propose the utilization of the
SGAM for two reasons: (i) the SGAM builds on the NIST
model and allows to capture both, use cases from the US
and the EU; and (ii) with the SGAM Toolbox Dänekas et
al. [8] present a framework for modeling use cases based on
the SGAM; in that way formally modeled use cases are the
input for the evaluation.

B. Privacy

Privacy (and security) issues in the smart grid are addressed
by standards in the US [9] and the EU [10]. Privacy, in specific,
has no clear definition. According to a thorough analysis by
Wicker and Schrader [11], privacy can be defined as the
right of an individual’s control over personal information.
More formally this is defined by Barker et al. [12] in a four
dimensional privacy taxonomy. The dimensions are purpose,
visibility, granularity and retention. The purpose dimension
refers to the intended use of data, i.e., what personal informa-
tion is released for. The purpose ranges from single, a specific
use only, to any. Visibility refers to who has permitted access.
The range is from owner to all/world. Granularity describes to
what extent information is detailed. The retention dimension
finally is the period for storage of data. In any case, privacy
is assured if all these dimensions are communicated clearly
and fully disclosed to data owners and the compliance to the
principles is governed. Hence, data is collected and processed
for the intended purpose only, and the degree of visibility,
granularity and retention is at the necessary minimum.

C. Assessment Tools

To measure the degree to which systems adhere to privacy
requirements, approaches for automated qualitative assess-
ments (resulting in statements of possible privacy impacts due
to privacy critical actions or relationships) and quantitative

assessments (resulting in a numeric value that determines the
risk of privacy impacts) exist.

In [13], Ahmed et al. present an approach towards ontology
based risk assessment. The authors propose three ontologies,
the user environment ontology capturing where users are
working, i.e., software and hardware, the project ontology
capturing concepts of project management, i.e., work packages
and tasks and the attack ontology capturing possible attacks,
e.g., non-authorized data access, virus distribution or spam
emails. For a risk assessment, attacks (defined in the attack
ontology) are matched with information available from the
other ontologies. For a quantitative assessment, the annual
loss expectancy is calculated by combining a set of harmful
outcomes and the expected impact of such an outcome with the
frequency of that outcome. The approach presented by Ahmed
et al. is designed for security issues and does not explicitly
cover privacy assessments.

In [14] and [15] an ontology driven approach for privacy
evaluation is presented. The aim of these papers is to integrate
privacy in the design process. High-level privacy statements
are matched to system specifications and implementation
details. The proposed privacy by design process includes
the following phases: identification of high-level privacy re-
quirements, translation of abstract privacy requirements to
formal privacy descriptions, realization of the requirements
and modeling of the system and analyzing the system by
matching formal privacy requirements to the formal system
model. Contrary to our work this approach is not focused
on use cases in the smart grid and therefore does not model
systems based on a standardized reference architecture.

A workflow oriented security assessment is presented by
Chen et al. in [16]. This approach is not based on ontologies
but on argument graphs. The presented framework uses se-
curity goal, workflow and system description, attacker model
and evidence as an input. This information is aggregated in a
discriminative set of argument graphs, each taking into account
additional input. Nodes in the graph are aggregated using
boolean expressions and the output is a quantitative assessment
of the system. Instead of focusing on workflow analysis using
graphs, we model systems as a whole in adherence to the
standardized reference architecture using an ontology driven
approach to integrate expert knowledge.

III. ARCHITECTURE

This section is dedicated to an architectural overview as
well as a detailed discussion of the components. Figure 1
shows the principal components of the proposed architecture,
including input and output. For a privacy assessment, the
framework accepts two inputs, a use case UC modeled as
a DFG in adherence to the SGAM and a set of threat patterns
T . In order to qualitatively analyze this input the use case
is mapped to individuals – i.e., instances of classes – of an
ontology (sometimes referred to as the assertion box, ABox
[17]). The corresponding class model (sometimes referred
to as the terminological box, TBox [17]) is based on the
SGAM. This qualitative analysis provides explicit and implicit
information about the elements from the DFG: actors, compo-
nents, information objects and their interrelation. The results
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Fig. 1. Architecture overview showing input, output, components and
principal information flows of the framework.

of the qualitative assessment are the input for the subsequent
quantitative analysis. The output of that analysis is finally a
class c from a set of classes C that the use case is assigned to.
Threat patterns are used to describe potential threats t ∈ T and
a class represents a subset of threats T ∗. A class c describes
how threat patterns and the qualitative results are combined,
which is presented as a threat matrix as an output. Formally,
the classifier is defined as Assign UC to ci if t ∈ T ∗i ,∀t ∈
T, 1 ≤ i ≤ {C}. A threat exploits a set of vulnerabilities
and is mitigated by a set of countermeasures. Each threat
pattern can be evaluated for itself or multiple patterns are
combined to classes of threats. A vulnerability is any kind of
privacy impact for any kind of stakeholder or actor. Threats
are evaluated using the attack vector model which is adapted
from security analysis and defined in detail later in this paper.
In general, an attack is feasible, if given (i) an attacker; (ii)
a privacy asset; and (iii) the resources to perform the attack.
Hence, a receiver or collector of privacy critical data items
is potentially able to access these assets and to use them in a
way not corresponding to the original purpose. This is formally
represented as 〈data access, privacy asset, attack resources〉.

A. Data Flow Graphs
In order to qualitatively and quantitatively assess the privacy

impact of a use case a formalization is crucial. In this section
we introduce the concept of Data Flow Graphs (DFG) for the
smart grid based on a model-driven design approach originally
presented in [8], [18]. DFGs formally capture all aspects
of use cases in the smart grid in adherence to the SGAM.
They contain high-level business cases as well as detailed
views of a system’s characteristics such as encryption and
protocols. DFGs are a powerful tool as they allow both, easy
modeling and full adherence to the reference architecture.
Furthermore, in the graph relationships between actors, as
well as the transported information objects (IO) are modeled.
Nodes in a graph represent business actors, system actors or
components and edges represent data flows annotated with

IOs. In accordance to the standard [7], DFGs consist of the
following five layers:

1) Business Layer. In a DFG this layer is a high level
description of the business case. Business actors, their
common business goal and their business requirements
are modeled.

2) Function Layer. The function layer details the business
case by mapping business actors to system actors and
by dividing the high level business goals in use cases
and steps.

3) Information Layer. This layer describes information
flows in detail. System actors communicate to each
other through IOs. IOs are characterized by describing
information attributes on a meta-level. An IO is one of
the key data used for classification and is discussed in
greater detail below.

4) Communication Layer. The communication layer is a
more detailed view on communication taking into ac-
count network and protocol specifications.

5) Component Layer. In a DFG this layer contains concrete
components. Therefore system actors are mapped to
components and devices.

Each layer is a directed graph. Both, nodes and edges
can have attributes. The semantics, however, are varying. For
instance, where attributed edges in the business layer describe
a business case, in the information layer concrete meta-data
of communication flows are captured. Even though implicitly
covered in the model presented above, for automated evalu-
ation we introduce two additional layers: Between business
and function layer we include the Business Actor to System
Actor Mapping and between communication and component
layer the System Actor to Component Mapping. This allows to
capture the complexity of use cases on different levels while
still maintaining the cross-layer relationship between high-
level business actors and their representation as components.
These layers are directed graphs as well, with edges indicating
the mapping. The mapping defines a one to many relationship
from business actors to system actors and from system actors
to components. In the European Smart Grid Reference Archi-
tecture with the SGAM Methodology an approach for mapping
use cases to the reference model is suggested. DFGs build on
this methodology focusing on actors and their interrelation.
An implementation for modeling DFGs in UML is available
as the SGAM Toolbox1. Data Flow Graphs contain explicit
information (what is modeled) and implicit information (what
can be concluded). Conclusions are drawn using ontology
reasoning. Furthermore the framework allows to be extended
with an arbitrary number of attributes to meet individual
requirements.

B. Ontology Design
The ontology driven approach for classification has been

chosen for two main reasons: (i) ontologies are powerful for
capturing domain knowledge explicitly; and (ii) through logic
reasoning [17] ontologies are a source for implicit knowledge.
The power of ontologies to formally capture knowledge and

1http://www.en-trust.at/downloads/sgam-toolbox/
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Fig. 2. Principal components of the ontology, showing a subset of the
relationships between actor and data.

how to draw conclusions is discussed by Guarino et al. in
[19]. The power of reasoning for gaining additional, implicit
knowledge can easily be outlined with two examples: In a
DFG, information objects may be sent from an actor A to an
actor B and from there to another actor C. This is explicitly
modeled in the DFG. A reasoner in an appropriate ontology,
however, may conclude directly the transitivity, hence that
actor A in fact sends information to actor C. Another example
is concerned with compositions of data. An information object
I1 may contain sensitive data and it may be used by an
actor D to compose another information object I2 that is sent
to a collecting actor E. It is not explicitly modeled in the
DFG, but it can be concluded by the reasoner, that E receives
an information object which is of type sensitive data since
I2 is a composition of I1. The ontology we propose here
is designed to capture all aspects of a DFG. The ontology
is modeled in OWL2 and class expressions are stated in
Manchester Syntax3 . Therefore, all components available
for modeling DFGs are represented either directly or as an
abstraction in the ontology (referred to as the TBox). The
DFG is represented in the ontology as a set of individuals
(referred to as the ABox). Figure 2 depicts the principal classes
and relationships of the ontology and therefore the most
relevant concepts for mapping a DFG to the ontology. This
view shows the main classes and relationships for illustration
purposes only; our current ontology comprises more than 60
classes, data properties and object properties. Crucial con-
cepts represented immediately, include which actor sends or
receives which data and IO and how these IOs are composed.
Furthermore, a set of pre-classifiers is defined to determine
implicit knowledge. These classifiers are OWL classes using
an equivalent class expression in Manchester Syntax. For
instance, to determine if some aggregation consists of direct
personal data, the following expression is used: Data and
isAggregationOf some DirectPersonalData. To
determine the multiplicity of the sending actor and if
the data is a composition sent by many of such actors,
more elaborate expressions can be phrased: Data and
isSentBy some Actor and Multiplicity value
"n" and isCompositionOfMany some Data.

2http://www.w3.org/TR/owl-features/
3http://www.w3.org/TR/owl2-manchester-syntax/

C. Threat Patterns

In this paper we evaluate the privacy impact on customers,
thus we identified the following list of typical high-level
threats based on literature reviews [1], [2], [4]. These threats
have been modified in order to be more representative for the
use cases from the University of Southern California microgrid
that are investigated in this paper. Subsequently, IOs that may
cause these threats are determined.

Customer presence at home. This privacy concern is
discussed by Cavoukian et al. in [1]. To potentially determine
a person’s presence at home, some device in the customer
premises is needed. This device collects data at a certain
frequency, high enough to have a resolution that allows to
draw conclusions on the energy usage of specific devices.
Furthermore, data collected from that device needs to be sent
to another actor (i.e., a utility). At the utility an individual or a
system needs to have access to the data in an appropriate res-
olution. Since we always assume that data is accessed legally,
we do not focus on unallowed data access. Additionally, the
total delay of the data transmission is of relevance. If data is
collected and transmitted in almost real time the presence at
home can be determined immediately. If data is available with
a delay only, the analysis of past events and predictions might
be possible. If this information is published, an attacker might
exploit this vulnerability in order to break in the house.

Tracking customer position. This threat is especially in-
teresting for electric vehicle charging. Assuming the customer
has some identification towards the charging station, at least
the location, a timestamp and the amount of energy consumed
will be recorded for billing. Depending on the design of the
infrastructure only little information will be sent to the oper-
ator or a very detailed profile of the customer is maintained.
Here, the multiplicity of the actors is crucial and the fact
that different actors have access to the same data. Attacks
for this threat are described by Langer et al. in [2], e.g., using
information for targeted ads, for tracking movements to certain
places or to infer the income based on recharges.

D. Pattern Matching

Actual classification is done in the pattern matching
process. For each actor in the DFG and the ontology,
respectively, the attack vector is determined, i.e., to which
resources does an actor have access and what is the effort.
If that shows feasible matching this is seen as a threat. It
can be retrieved immediately from the ontology if an actor
has access to a certain IO. This is done by evaluating actor
and data object properties and by incorporating information
from the pre-classifiers. Furthermore, relationships on the
business layer and data properties such as encryption are
taken into account. The following, discriminative set of
classifiers is used to determine potential threats: first, for each
information object the data provider and the data collector
are determined (according to the terminology defined in [12])
and it is assessed who has access to the data. This yields a
list of three-tuples in the form 〈information object (IO),
data provider (DP), data collector (DC)〉. Then it is
determined if an information object either contains sensitive



or direct personal data (according to the terminology
defined in [20]). This yields another three-tuple in the form
〈information object (IO), sensitive (S), direct personal (DP)〉.
Finally it is determined if the attacker has actual data
access, yielding one more three-tuples in the form
〈information object (IO), data collector (DC), access (A)〉.
Data access depends on the relationship of actors, on data
resolution, retention and encryption. Matching these tuples
to each other results in the components of the attack vector,
recalling 〈data access, privacy asset, attack resources〉 yields
〈〈IO,DP,DC〉, 〈IO,S,DP〉, 〈IO,DC,A〉〉. An exemplary
attack vector for a DR use case where DR preferences are
sent to the utility is 〈〈DR preferences, customer, utility〉,
〈DR preferences, false, false〉, 〈DR preferences, utility, true〉〉.
This already provides thorough qualitative analysis. It is
possible to determine which actor can potentially threaten the
privacy of another actor. It is even possible to conclude how
and where this might happen. However, for a quantitative
assessment the risk for a particular threat is calculated. While
a qualitative assessment is useful in supporting detailed
system design decisions and evaluation, for a very first
outline of the overall system characteristics, a quantitative
value is much more expressive. Further, providing a numeric
value for the system’s privacy impact helps to easily compare
and contrast proposed designs. For the set T ∗ a number of
patterns is defined. A pattern contains a set of conditions for
vulnerabilities and countermeasures. Conditions are SPARQL
ASK queries4 that return either true or false if the pattern
applies or not. t′v denotes the number of vulnerabilities that
apply, t′c the number of countermeasures that apply and
tv and tc denote the total number of vulnerabilities and
countermeasures, respectively. In this paper we propose the
following approach for determining values for P (t′v, t

′
c) and

L(t′v, t
′
c): P (t′v, t

′
c) is determined by defining a plane that

satisfies the following conditions: P (t′v = tv, t
′
c = 0) = 1,

P (t′v = 0, t′c = tc) = 0 and P (t′v = 0, t′c = 0) = 1
2 .

This yields P (t′v, t
′
c) = 1

2 (
t′v
tv
− t′c

tc
+ 1). A condition that

is of type vulnerability increases L(t′v, t
′
c), a condition

of type countermeasure decreases L(t′v, t
′
c). The value

of L(t′v, t
′
c) is defined in the pattern. Risk R is finally

defined by R =
∑

t∈T∗ P (t′v, t
′
c)L(t

′
v, t
′
c). To feed in

the results gained from the qualitative analysis, certain
variables in the query can be bound to instances. For
example, given the following fraction of a query (where
usc denotes the namespace prefix for actors and IOs
in the University of Southern California microgrid) $io
usc:isSentBy ?systemactor . ?systemactor
usc:isRealizationOf ?businessactor .
?businessactor a usc:BusinessActor to
determine if some information object is sent by some business
actor. It is now possible to bind the variable $io to a concrete
value as determined in the qualitative assessment, e.g., $io
← InformationObject.CustomerName. This allows
to assess a particular impact on a particular information object
or component/actor based on the previously calculated attack

4http://www.w3.org/TR/sparql11-query/

vectors. We developed generic patterns for typical threats,
i.e., such as the ones mentioned above. The framework is,
however, not limited to this set of patterns and allows the
definition of an arbitrary number of additional patterns to
meet the individual needs of the application scenario. The
output of the framework is a threat matrix contrasting the
results from the qualitative analysis and from the quantitative
risk assessment. For a UC, a threat matrix contains the attack
vector and the assigned risk for the determined class c.

IV. EVALUATION

For evaluating the framework new, previously unused use
cases are applied and the result is compared to state of the art
assessments discussed in literature. We are therefore using a
representative set of use cases describing typical applications
in the smart grid. This includes, but is not limited to, smart
metering, electric vehicle charging and DR. In this section a
real-life use case from the University of Southern California
microgrid is evaluated as an example. This use case has been
chosen as it is (i) simple enough to verify results based on
literature reviews; and (ii) complex enough to have an inter-
esting combination of actors and information flows. We are
focusing on a DR scenario similar to the one described in [21].
A customer interested in DR creates an online profile stating
on which DR actions the customer is interested to participate
(e.g., turning down air condition). When the utilities want to
curtail load with DR, a customer whose profile fits the current
requirements is sent a text message to, e.g., turn down the
air condition. This message is acknowledged by the customer
and the utility further reads the meter values to track actual
power reduction. Besides the data flows mentioned, this further
involves the storing of the profile and the past behavior of the
customer for a more accurate prediction. For modeling this use
case as a DFG, the following actors and IOs are identified.

Actors. Business actors are the user and the utility. The user
is mapped to the system actors smart meter, device and portal.
DR requests are sent to the user device (e.g., a cell phone)
and the user’s DR preferences are set in the portal (e.g., a
web service). The smart meter is used to measure actual cur-
tailment. The utility is mapped to a DR repository, containing
preferences for each user and past behavior, to a prediction
unit predicting DR requests based on the preferences and a
control unit to meter user feedback and actual curtailment.

Information Objects. Cross-domain/zone information
flows include user preferences sent to the utilities, DR re-
quests sent to the user from the utility and both, the user
acknowledge/decline and the meter values sent back to the
utility. Information flows within the utilities’ premises are from
the DR repository to the prediction unit and from the control
unit to the DR repository. Given the threat patterns introduced
in Section III, we use our framework to determine the privacy
impact of this use case which provides the following results.

Customer presence at home. The qualitative analysis
shows that in the DR repository of the utility information about
both, past customer behavior and customer data is brought
together, i.e., direct personal data is composed with a detailed
history of a person’s actions. Furthermore, the customer’s
acknowledge/decline and the measured curtailment reveal if



a customer (i) responded to the DR request; and (ii) actually
participated in DR; both is a indication for the presence at
home. For this threat we identified four vulnerabilities and
one countermeasure, resulting in a PO of 0.9, an EL of 11.5
and a risk value of 10.35.

Tracking customer position. In our case, this threat might
apply in two different scenarios: First, this threat is immediate
if the acknowledge/decline response to DR requests contains
the customer position (e.g., if sent by a cell phone or other
mobile device). This does not only show the customers past
and present position, but also if the customer is able to
remotely control devices in his premises. Second, when the
customer is represented by an additional component electric
vehicle charging station. Assuming that DR requests are also
sent with respect to the charging behavior. Based on the
amount of energy the customer is willing to DR it might be
possible to estimate the consumption of the electric vehicle and
subsequently the traveled distance. For this threat we identified
two vulnerabilities and one countermeasure, resulting in a PO
of 0.66, an EL of 5 and a risk value of 3.3.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced a framework for the model-
driven privacy assessment in the smart grid. The framework
builds on an ontology driven approach matching threat patterns
to use cases that are modeled in adherence to standardized
reference architectures. The approach presented here builds on
meta-information and high-level data flows. It has been shown
how to utilize this framework to successfully assess the privacy
impact on use cases in early design time. Exemplary threats
and exemplary use cases draw on insights from the University
of Southern California microgrid. Future work will include
an evaluation of the systems ability to generalize to arbitrary
kinds of threats in the smart grid. Furthermore the system will
be extended to serve as a policy decision point for system
developers and customers in a smart grid IT infrastructure.
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