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Abstract: In a smart grid, data and information are transported, transmitted, stored, and processed with various stake-
holders having to cooperate effectively. Furthermore, personal data is the key to many smart grid applications
and therefore privacy impacts have to be taken into account. For an effective smart grid, well integrated solu-
tions are crucial and for achieving a high degree of customer acceptance, privacy should already be considered
at design time of the system. To assist system engineers in early design phase, frameworks for the automated
privacy evaluation of use cases are important. For evaluation, use cases for services and software architectures
need to be formally captured in a standardized and commonly understood manner. In order to ensure this com-
mon understanding for all kinds of stakeholders, reference models have recently been developed. In this paper
we present a model-driven approach for the automated assessment of such services and software architectures
in the smart grid that builds on the standardized reference models. The focus of qualitative and quantitative
evaluation is on privacy. For evaluation, the framework draws on use cases from the University of Southern
California microgrid.

1 INTRODUCTION

In a smart grid a number of stakeholders (actors) have
to cooperate effectively. Interoperability has to be as-
sured on many layers, ranging from high level busi-
ness cases to low level network communication. Data
and information is sent from one actor to another in
order to ensure effective communication. Further-
more, the exchange of vast amounts of data is crucial
for many smart grid applications, such as demand re-
sponse (DR) or electric vehicle charging (Cavoukian
et al., 2010), (Langer et al., 2013). However, this
data is also related to individuals and privacy issues
are an upcoming concern (McDaniel and McLaugh-
lin, 2009), (Simmhan et al., 2011a). Especially the
combination of data, e.g., meter values and prefer-
ences for DR can exploit serious privacy threats such
as the prediction of personal habits. In system engi-
neering, privacy is a cross-cutting concern that has to
be taken into account throughout the entire develop-
ment life-cycle, which is also referred to as privacy by
design (Cavoukian et al., 2010).

Model-driven privacy assessment is especially
useful when applied in software engineering. In
(Boehm, 2006), the author thoroughly investigates the
phases in software engineering and the expected costs

for error correction and change requests. Costs dou-
ble with every phase and once an application or a ser-
vice is delivered, the additional adding of crosscutting
concerns such as privacy is tied to enormous costs. As
a result, design time privacy assessment is preferred
in early phases of the software engineering process.
Therefore, a framework is needed to (i) model the
system, including high-level use cases and concrete
components and communication flows; and (ii) to as-
sess the system’s privacy impact using expert knowl-
edge from the domain. Related work in the domain
of automated assessments in the smart grid mainly
focuses on security aspects and is not primarily con-
cerned with privacy and the modeling in adherence to
reference architectures.

In this paper we address these issues and present
an approach for the model-driven assessment of pri-
vacy for smart grid applications. The framework pro-
posed in this paper is designed to assist system engi-
neers to evaluate use cases in the smart grid in an early
design phase. For evaluation only meta-information
is used and no concrete data is needed. We use Data
Flow Graphs (DFG) to formally define use cases ac-
cording to a standardized smart grid reference ar-
chitecture. The assessment is based on an ontology
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driven approach taking into account expert knowledge
from various domains, including customer views on
privacy as well as system engineering concerns. The
output is a set of threats and a quantitative analysis
of risks, i.e., a number indicating the strength of that
threat. To evaluate the system we draw on insights
from the University of Southern California microgrid.
The primary contributions of this paper are (i) the use
of DFGs to model use cases in the smart grid; (ii) the
usage of DFGs for a quantitative privacy assessment;
and (iii) the use of an ontology driven approach to
capture domain knowledge.

The remainder of this paper is structured as fol-
lows: In Section 2 related work in the area of smart
grid reference architectures, privacy evaluation and
automated assessment tools is presented. In Section
3 the architecture of the proposed framework and its
components are described. This includes the concept
of DFGs for modeling use cases in the smart grid, the
principal design of the ontology and the mapping of
data flow graphs to the ontology, the methodology for
defining threat patterns and finally, how these patterns
are matched to use cases. The framework is evalu-
ated with a set of representative use cases in Section
4. Section 5 summarizes this paper and gives an out-
look to further work in this area.

2 RELATED WORK

In this section related work in the field of smart grid
reference architectures, privacy evaluation and assess-
ment as well as automated assessment tools are pre-
sented. Often, privacy and security are used inter-
changeably. For the purpose of this paper we refer to
privacy as legally accessing data but not using it for
the intended purpose. Security, by contrast, would in-
volve the illegal acquisition of data. In both cases, the
well established and widely understood terminology
from security assessment is used, i.e., threat, attacker,
vulnerability and countermeasure.

2.1 Reference Models

Stakeholders in the smart grid come from historically
different areas, including electrical engineering, com-
puter science and economics. To ensure interoperabil-
ity and to foster a common understanding, standard-
ization organizations are rolling out reference mod-
els and road maps. In the US the NIST Framework
and Roadmap for Smart Grid Interoperability Stan-
dards (National Institute of Standards and Technol-
ogy, 2012) and in the EU the Smart Grid Reference
Architecture (CEN, Cenelec and ETSI, 2012b) were

published. The European Smart Grid Architecture
Model (SGAM) is based on the NIST Framework, but
extends the model to better meet European require-
ments, such as distributed energy resources. In this
paper we investigate use cases from the US. In partic-
ular we are focusing on use cases from the University
of Southern California microgrid and we thoroughly
discuss a typical DR use case. Investigations have,
however, shown that for the purpose of this project
all use cases from the US can be directly mapped to
the European SGAM without the loss of information.
Therefore we propose the utilization of the SGAM for
two reasons: (i) the SGAM builds on the NIST model
and allows to capture both, use cases from the US and
the EU; and (ii) with the SGAM Toolbox (Dänekas
et al., 2014) present a framework for modeling use
cases based on the SGAM; in that way formally mod-
eled use cases are the input for the evaluation.

2.2 Privacy

Privacy (and security) issues in the smart grid are ad-
dressed by standards in the US (National Institute of
Standards and Technology, 2010) and the EU (CEN,
Cenelec and ETSI, 2012a). Privacy, in specific, has no
clear definition. According to a thorough analysis in
(Wicker and Schrader, 2011), privacy can be defined
as the right of an individual’s control over personal
information. More formally this is defined by (Barker
et al., 2009) in a four dimensional privacy taxonomy.
The dimensions are purpose, visibility, granularity
and retention. The purpose dimension refers to the
intended use of data, i.e., what personal information
is released for. The purpose ranges from single, a spe-
cific use only, to any. Visibility refers to who has per-
mitted access. The range is from owner to all/world.
Granularity describes to what extent information is
detailed. The retention dimension finally is the period
for storage of data. In any case, privacy is assured
if all these dimensions are communicated clearly and
fully disclosed to data owners and the compliance to
the principles is governed. Hence, data is collected
and processed for the intended purpose only, and the
degree of visibility, granularity and retention is at the
necessary minimum.

2.3 Assessment Tools

To measure the degree to which systems adhere to pri-
vacy requirements, approaches for automated qualita-
tive assessments (resulting in statements of possible
privacy impacts due to privacy critical actions or rela-
tionships) and quantitative assessments (resulting in a
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numeric value that determines the risk of privacy im-
pacts) exist.

In (Ahmed et al., 2007), the authors present an ap-
proach towards ontology based risk assessment. The
authors propose three ontologies, the user environ-
ment ontology capturing where users are working, i.e.,
software and hardware, the project ontology capturing
concepts of project management, i.e., work packages
and tasks and the attack ontology capturing possible
attacks, e.g., non-authorized data access, virus distri-
bution or spam emails. For a risk assessment, attacks
(defined in the attack ontology) are matched with in-
formation available from the other ontologies. For a
quantitative assessment, the annual loss expectancy is
calculated by combining a set of harmful outcomes
and the expected impact of such an outcome with the
frequency of that outcome. The approach presented
by Ahmed et al. is designed for security issues and
does not explicitly cover privacy assessments.

In (Kost et al., 2011) and (Kost and Freytag, 2012)
an ontology driven approach for privacy evaluation is
presented. The aim of these papers is to integrate pri-
vacy in the design process. High-level privacy state-
ments are matched to system specifications and im-
plementation details. The proposed privacy by design
process includes the following phases: identification
of high-level privacy requirements, translation of ab-
stract privacy requirements to formal privacy descrip-
tions, realization of the requirements and modeling
of the system and analyzing the system by match-
ing formal privacy requirements to the formal system
model. Contrary to our work this approach is not fo-
cused on use cases in the smart grid and therefore does
not model systems based on a standardized reference
architecture.

A workflow oriented security assessment is pre-
sented in (Chen et al., 2013). This approach is not
based on ontologies but on argument graphs. The pre-
sented framework uses security goal, workflow and
system description, attacker model and evidence as an
input. This information is aggregated in a discrimina-
tive set of argument graphs, each taking into account
additional input. Nodes in the graph are aggregated
using boolean expressions and the output is a quanti-
tative assessment of the system. Instead of focusing
on workflow analysis using graphs, we model systems
as a whole in adherence to the standardized reference
architecture using an ontology driven approach to in-
tegrate expert knowledge.

A considerably broader approach for an assess-
ment tool that incorporates both, the balancing of pri-
vacy requirements and operational capabilities is pre-
sented in (Knirsch et al., 2015). This work presents
a graph based approach that allows the modeling of

systems with respect to the operational requirements
of certain nodes (e.g. metering at a certain frequency)
and the impact of privacy restrictions on subsequent
nodes. The authors further present an optimum bal-
ancing algorithm, i.e. to what extent restrictions
gained from privacy enhancing technologies and the
necessary operational requirements can be combined.
However, this needs sufficient information on how
privacy is impacted by certain use cases which is pro-
vided by this work.

3 ARCHITECTURE

This section is dedicated to an architectural overview
as well as a detailed discussion of the components.
Figure 1 shows the principal components of the pro-
posed architecture, including input and output. For
a privacy assessment, the framework accepts two in-
puts, a use case UC modeled as a DFG in adherence
to the SGAM and a set of threat patterns T . In or-
der to qualitatively analyze this input the use case is
mapped to individuals – i.e., instances of classes – of
an ontology (sometimes referred to as the assertion
box, ABox (Shearer et al., 2008)). The correspond-
ing class model (sometimes referred to as the termi-
nological box, TBox (Shearer et al., 2008)) is based on
the SGAM. This qualitative analysis provides explicit
and implicit information about the elements from the
DFG: actors, components, information objects and
their interrelation. The results of the qualitative as-
sessment are the input for the subsequent quantitative
analysis. The output of that analysis is finally a class c
from a set of classes C that the use case is assigned to.
A threat pattern t is used to describe potential threats,
where t 2 T and a class c represents a subset of threats
T �. A class c describes how threat patterns and the
qualitative results are combined, which is presented
as a threat matrix as an output. Note that the terminol-
ogy threat matrix is borrowed from security analysis
and that the output is not a matrix in the mathematical
sense. A threat matrix compares a set of threats and
the risk for these threats. Formally, the classifier is de-
fined as Assign UC to ci if t 2 T �i ;8t 2 T;1� i� fCg.
A threat exploits a set of vulnerabilities and is miti-
gated by a set of countermeasures. Each threat pat-
tern can be evaluated for itself or multiple patterns
are combined to classes of threats. A vulnerability
is any kind of privacy impact for any kind of stake-
holder or actor. Threats are evaluated using the attack
vector model which is adapted from security analy-
sis and defined in detail later in this paper. In gen-
eral, an attack is feasible, if given (i) an attacker; (ii)
a privacy asset; and (iii) the resources to perform the
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Smart Grid Architecture 
Model (SGAM)

«Input»
Data Flow Graph (DFG)

Ontology TBox Ontology ABox

Qualitative Analysis

«Input»
Threat Patterns

Pattern Matching Quantitative Analysis

«Output»
Threat Matrix

Figure 1: Architecture overview showing input, output,
components and principal information flows of the frame-
work.

attack. Hence, a receiver or collector of privacy crit-
ical data items is potentially able to access these as-
sets and to use them in a way not corresponding to
the original purpose. This is formally represented as
hdata access;privacy asset;attack resourcesi.

3.1 Data Flow Graphs

In order to qualitatively and quantitatively assess the
privacy impact of a use case a formalization is cru-
cial. In this section we introduce the concept of Data
Flow Graphs (DFG) for the smart grid based on a
model-driven design approach originally presented in
(Dänekas et al., 2014) and (Neureiter et al., 2013).
DFGs formally capture all aspects of use cases in the
smart grid in adherence to the SGAM. They contain
high-level business cases as well as detailed views of
a system’s characteristics such as encryption and pro-
tocols. DFGs are a powerful tool as they allow both,
easy modeling and full adherence to the reference ar-
chitecture. Furthermore, in the graph relationships
between actors, as well as the transported informa-
tion objects (IO) are modeled. Nodes in a graph rep-
resent business actors, system actors or components
and edges represent data flows annotated with IOs. In
accordance to the standard (CEN, Cenelec and ETSI,
2012b), DFGs consist of the following five layers:

1. Business Layer. In a DFG this layer is a high level
description of the business case. Business actors,
their common business goal and their business re-
quirements are modeled.

2. Function Layer. The function layer details the
business case by mapping business actors to sys-
tem actors and by dividing the high level business
goals in use cases and steps.

3. Information Layer. This layer describes informa-
tion flows in detail. System actors communicate
to each other through IOs. IOs are characterized
by describing information attributes on a meta-
level. An IO is one of the key data used for clas-
sification and is discussed in greater detail below.

4. Communication Layer. The communication layer
is a more detailed view on communication taking
into account network and protocol specifications.

5. Component Layer. In a DFG this layer contains
concrete components. Therefore system actors
are mapped to components and devices.

Each layer is a directed graph. Both, nodes and
edges can have attributes. The semantics, however,
are varying. For instance, where attributed edges in
the business layer describe a business case, in the in-
formation layer concrete meta-data of communication
flows are captured. Even though implicitly covered in
the model presented above, for automated evaluation
we introduce two additional layers: Between business
and function layer we include the Business Actor to
System Actor Mapping and between communication
and component layer the System Actor to Component
Mapping. This allows to capture the complexity of
use cases on different levels while still maintaining
the cross-layer relationship between high-level busi-
ness actors and their representation as components.
These layers are directed graphs as well, with edges
indicating the mapping. The mapping defines a one
to many relationship from business actors to system
actors and from system actors to components. In the
European Smart Grid Reference Architecture with the
SGAM Methodology an approach for mapping use
cases to the reference model is suggested. DFGs build
on this methodology focusing on actors and their in-
terrelation. An implementation for modeling DFGs
in UML is available as the SGAM Toolbox1. Data
Flow Graphs contain explicit information (what is
modeled) and implicit information (what can be con-
cluded). Conclusions are drawn using ontology rea-
soning.

3.2 Ontology Design

The ontology driven approach for classification has
been chosen for two main reasons: (i) ontologies are
powerful for capturing domain knowledge explicitly;
and (ii) through logic reasoning (Shearer et al., 2008)
ontologies are a source for implicit knowledge. The
power of ontologies to formally capture knowledge
and how to draw conclusions is discussed in (Guar-
ino et al., 2009). The power of reasoning for gaining

1http://www.en-trust.at/downloads/sgam-toolbox/
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additional, implicit knowledge can easily be outlined
with two examples: In a DFG, information objects
may be sent from an actor A to an actor B and from
there to another actor C. This is explicitly modeled in
the DFG. A reasoner in an appropriate ontology, how-
ever, may conclude directly the transitivity, hence that
actor A in fact sends information to actor C. Another
example is concerned with compositions of data. An
information object I1 may contain sensitive data and
it may be used by an actor D to compose another in-
formation object I2 that is sent to a collecting actor
E. It is not explicitly modeled in the DFG, but it can
be concluded by the reasoner, that E receives an in-
formation object which is of type sensitive data since
I2 is a composition of I1. The ontology we propose
here is designed to capture all aspects of a DFG. The
ontology is modeled in OWL2 and class expressions
are stated in Manchester Syntax3. Therefore, all com-
ponents available for modeling DFGs are represented
either directly or as an abstraction in the ontology (re-
ferred to as the TBox). The DFG is represented in
the ontology as a set of individuals (referred to as
the ABox). Figure 2 depicts the principal classes and
relationships of the ontology and therefore the most
relevant concepts for mapping a DFG to the ontol-
ogy. This view shows the main classes and relation-
ships for illustration purposes only; our current ontol-
ogy comprises more than 60 classes, data properties
and object properties. Crucial concepts represented
immediately, include which actor sends or receives
which data and IO and how these IOs are composed.
Furthermore, a set of pre-classifiers is defined to de-
termine implicit knowledge.

These classifiers are OWL classes using an
equivalent class expression in Manchester Syntax.
For instance, to determine if some aggregation
consists of direct personal data, the following expres-
sion is used: Data and isAggregationOf some
DirectPersonalData. To determine the multiplicity
of the sending actor and if the data is a composi-
tion sent by many of such actors, more elaborate
expressions can be phrased: Data and isSentBy
some Actor and Multiplicity value "n" and
isCompositionOfMany some Data.

3.3 Threat Patterns

In this paper we evaluate the privacy impact on cus-
tomers, thus we identified the following list of typ-
ical high-level threats based on literature reviews
(Cavoukian et al., 2010), (Langer et al., 2013),
(Simmhan et al., 2011a). These threats have been

2http://www.w3.org/TR/owl-features/
3http://www.w3.org/TR/owl2-manchester-syntax/

Data Actor

Event Series BusinessCase

+sends+isSentBy

+isReceivedBy +receives

+isAggregationOf

+isCompositionOf

+hasBusinessCase

+isSubjectTo

Figure 2: Principal components of the ontology, showing a
subset of the relationships between actor and data.

modified in order to be more representative for the
use cases from the University of Southern California
microgrid that are investigated in this paper. Subse-
quently, IOs that may cause these threats are deter-
mined.
Customer Presence at Home. This privacy concern
is discussed in (Cavoukian et al., 2010). To poten-
tially determine a person’s presence at home, some
device in the customer premises is needed. This de-
vice collects data at a certain frequency, high enough
to have a resolution that allows to draw conclusions
on the energy usage of specific devices. Furthermore,
data collected from that device needs to be sent to an-
other actor (i.e., a utility). At the utility an individ-
ual or a system needs to have access to the data in an
appropriate resolution. Since we always assume that
data is accessed legally, we do not focus on unallowed
data access. Additionally, the total delay of the data
transmission is of relevance. If data is collected and
transmitted in almost real time the presence at home
can be determined immediately. If data is available
with a delay only, the analysis of past events and pre-
dictions might be possible. If this information is pub-
lished, an attacker might exploit this vulnerability in
order to break in the house.
Tracking Customer Position. This threat is espe-
cially interesting for electric vehicle charging. As-
suming the customer has some identification towards
the charging station, at least the location, a timestamp
and the amount of energy consumed will be recorded
for billing. Depending on the design of the infrastruc-
ture only little information will be sent to the opera-
tor or a very detailed profile of the customer is main-
tained. Here, the multiplicity of the actors is crucial
and the fact that different actors have access to the
same data. Attacks for this threat are described in
(Langer et al., 2013), e.g., using information for tar-
geted ads, for tracking movements to certain places or
to infer the income based on recharges.

3.4 Pattern Matching

Actual classification is done in the pattern matching
process. For each actor in the DFG and the ontology,
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respectively, the attack vector is determined, i.e., to
which resources does an actor have access and what
is the effort. If that shows feasible matching this
is seen as a threat. It can be retrieved immediately
from the ontology if an actor has access to a certain
IO. This is done by evaluating actor and data object
properties and by incorporating information from
the pre-classifiers. Furthermore, relationships on the
business layer and data properties such as encryption
are taken into account. The following, discriminative
set of classifiers is used to determine potential threats:
first, for each information object the data provider and
the data collector are determined (according to the
terminology defined in (Barker et al., 2009)) and it is
assessed who has access to the data. This yields a list
of three-tuples in the form hinformation object (IO),
data provider (DP), data collector (DC)i. Then it is
determined if an information object either contains
sensitive or direct personal data (according to the
terminology defined in (The European Parliament and
the Council, 1995)). This yields another three-tuple
in the form hinformation object (IO), sensitive (S),
direct personal (DP)i. Finally it is determined if the
attacker has actual data access, yielding one more
three-tuples in the form hinformation object (IO),
data collector (DC), access (A)i. Data access
depends on the relationship of actors, on data res-
olution, retention and encryption. Matching these
tuples to each other results in the components of the
attack vector, recalling hdata access, privacy asset,
attack resourcesi yields hhIO;DP;DCi, hIO;S;DPi,
hIO;DC;Aii. An exemplary attack vector for a
DR use case where DR preferences are sent to
the utility is hhDR preferences;customer;utilityi,
hDR preferences; false; falsei,
hDR preferences;utility; trueii. This already provides
thorough qualitative analysis. It is possible to deter-
mine which actor can potentially threaten the privacy
of another actor. It is even possible to conclude
how and where this might happen. However, for
a quantitative assessment the risk for a particular
threat is calculated. While a qualitative assessment is
useful in supporting detailed system design decisions
and evaluation, for a very first outline of the overall
system characteristics, a quantitative value is much
more expressive. Further, providing a numeric
value for the system’s privacy impact helps to easily
compare and contrast proposed designs.

Risk is calculated as the product of the probability
of occurrence (PO) and the expected loss (EL). For the
set T � a number of patterns tv;1 : : : tv;N and tc;1 : : : tc;M ,
respectively is defined. A pattern therefore contains
a set of conditions for vulnerabilities tv;i and counter-

measures tc;i. Conditions are SPARQL ASK queries4

that return either true or false if the pattern applies
or not. For brevity, t 0v denotes the number of vul-
nerabilities that apply, t 0c the number of countermea-
sures that apply and tv and tc denote the total num-
ber of vulnerabilities and countermeasures, respec-
tively. In this paper we propose the following ap-
proach for determining values for the probability of
occurrence PO(t 0v; t

0
c) and the expected loss EL(t 0v; t

0
c):

PO(t 0v; t
0
c) is determined by defining a plane that satis-

fies the following conditions: PO(t 0v = tv; t 0c = 0) = 1,
PO(t 0v = 0; t 0c = tc) = 0 and PO(t 0v = 0; t 0c = 0) = 1

2 .

This yields PO(t 0v; t
0
c) =

1
2 (

t 0v
tv
� t 0c

tc
+1). A linear model

is chosen due to its simplicity and might be extended
by more complex approaches in future. A condition
that is of type vulnerability increases EL(t 0v; t

0
c), a con-

dition of type countermeasure decreases EL(t 0v; t
0
c).

The value of EL(t 0v; t
0
c) is defined in the pattern. Risk

R is finally defined by R = PO(t 0v; t
0
c)EL(t 0v; t

0
c).

To feed in the results gained from the quali-
tative analysis, certain variables in the query can
be bound to instances. For example, given the
following fraction of a query (where usc denotes
the namespace prefix for actors and IOs in the
University of Southern California microgrid) $io
usc:isSentBy ?systemactor . ?systemactor
usc:isRealizationOf ?businessactor .
?businessactor a usc:BusinessActor to
determine if some information object is sent by
some business actor. It is now possible to bind
the variable $io to a concrete value as deter-
mined in the qualitative assessment, e.g., $io  
InformationObject.CustomerName. This allows
to assess a particular impact on a particular in-
formation object or component/actor based on the
previously calculated attack vectors.

We developed generic patterns for typical threats,
i.e., such as the ones mentioned above. The frame-
work is, however, not limited to this set of patterns
and allows the definition of an arbitrary number of
additional patterns to meet the individual needs of the
application scenario. The output of the framework is
a threat matrix contrasting the results from the qual-
itative analysis and from the quantitative risk assess-
ment. For a UC, a threat matrix contains the attack
vector and the assigned risk for the determined class
c.

For illustrative purposes, the following listing
shows an example pattern for customer presence at
home. This includes the vulnerability device in cus-
tomer premises (exemplary assigned an EL of 4) and

4http://www.w3.org/TR/sparql11-query/
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the countermeasure aggregation of data from multiple
customers (exemplary assigned an EL of -6).
<Pattern name="customer presence at home">
<Vulnerability
name="device in customer premises">
<EL>4</EL>
<Condition>
?device x:isRealizationOf $ba .
$ba a x:BusinessActor .
?device x:Zone
"Customer Premises"ˆˆxsd:string

</Condition>
</Vulnerability>
<Countermeasure
name="aggregation of data from multiple
customers">

<EL>-6</EL>
<Condition>
$io x:manyAreAggregatedBy ?io2 .
?io2 x:isReceivedBy ?ba1 .
$io x:isRecevivedBy ?ba2
FILTER (?ba1 != ?ba2)

</Condition>
</Countermeasure>

</Pattern>

4 EVALUATION

For evaluating the framework new, previously unused
use cases are applied. The set of threat patterns and
their impact on privacy is based on the aforemen-
tioned literature reviews. We are therefore using a
representative set of use cases describing typical ap-
plications in the smart grid. This includes, but is not
limited to, smart metering, electric vehicle charging
and DR. In this section a real-life use case from the
University of Southern California microgrid is eval-
uated as an example. This use case has been chosen
as it is (i) simple enough to verify results based on
literature reviews; and (ii) complex enough to have
an interesting combination of actors and information
flows. We are focusing on a DR scenario similar to
the one described in (Simmhan et al., 2011b). This
scenario is outlined in Figure 3. A customer inter-
ested in DR creates an online profile stating on which
DR actions the customer is interested to participate
(e.g., turning down air condition). When the utilities
want to curtail load with DR, a customer whose pro-
file fits the current requirements is sent a text message
to, e.g., turn down the air condition. This message is
acknowledged by the customer and the utility further
reads the meter values to track actual power reduc-
tion. Besides the data flows mentioned, this further
involves the storing of the profile and the past behav-
ior of the customer for a more accurate prediction.
For modeling this use case as a DFG, the following

actors and IOs are identified. Evaluation is performed
with a prototypical implementation that uses DFGs
and threat patterns as an input and produces a threat
matrix as an output.

4.1 Data Flow Graph

Actors. Business actors are the user and the utility.
The user is mapped to the system actors smart meter,
device and portal. DR requests are sent to the user de-
vice (e.g., a cell phone) and the user’s DR preferences
are set in the portal (e.g., a web service). The smart
meter is used to measure actual curtailment. The util-
ity is mapped to a DR repository, containing prefer-
ences for each user and past behavior, to a prediction
unit predicting DR requests based on the preferences
and a control unit to meter user feedback and actual
curtailment.
Information Objects. Cross-domain/zone informa-
tion flows include user preferences sent to the utili-
ties, DR requests sent to the user from the utility and
both, the user acknowledge/decline and the meter val-
ues sent back to the utility. Information flows within
the utilities’ premises are from the DR repository to
the prediction unit and from the control unit to the
DR repository. Given the threat patterns introduced
in Section 3, we use our framework to determine the
privacy impact of this use case which provides the fol-
lowing results.
Customer Presence at Home. The qualitative analy-
sis shows that in the DR repository of the utility infor-
mation about both, past customer behavior and cus-
tomer data is brought together, i.e., direct personal
data is composed with a detailed history of a per-
son’s actions. Furthermore, the customer’s acknowl-
edge/decline and the measured curtailment reveal if a
customer (i) responded to the DR request; and (ii) ac-
tually participated in DR; both is a indication for the
presence at home. For this threat we identified four
vulnerabilities (device in customer premises, collect-
ing data at a certain frequency, receiver has access to
data, data retention is unlimited) and one countermea-
sure (aggregation of data from multiple customers),
resulting in a PO of 0.9, an EL of 11.5 and a risk
value of 10.35.
Tracking Customer Position. In our case, this threat
might apply in two different scenarios: First, this
threat is immediate if the acknowledge/decline re-
sponse to DR requests contains the customer posi-
tion (e.g., if sent by a cell phone or other mobile de-
vice). This does not only show the customers past
and present position, but also if the customer is able
to remotely control devices in his premises. Second,
when the customer is represented by an additional
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Figure 3: Outline of the DR use case that is discussed for evaluation.

component electric vehicle charging station. Assum-
ing that DR requests are also sent with respect to the
charging behavior. Based on the amount of energy
the customer is willing to DR it might be possible to
estimate the consumption of the electric vehicle and
subsequently the traveled distance. For this threat
we identified two vulnerabilities (composition of lo-
cation and timestamp, different actors have access to
the same data) and one countermeasure (aggregation
of data from multiple customers), resulting in a PO of
0.66, an EL of 5 and a risk value of 3.33.

The mode-driven assessment of the DR use case
has shown that the risk of tracking customer posi-
tion is low compared to the risk of determining cus-
tomer presence at home. This result stems from the
fact that there apply a number of vulnerabilities with
high expected loss value, hence a device in the cus-
tomer premises, data collected at a certain frequency,
receiver has access to data and unlimited data reten-
tion.

5 CONCLUSION AND FUTURE
WORK

In this paper we introduced a framework for the
model-driven privacy assessment in the smart grid.
The framework builds on an ontology driven ap-
proach matching threat patterns to use cases that are

modeled in adherence to standardized reference ar-
chitectures. The approach presented here builds on
meta-information and high-level data flows. It has
been shown how to utilize this framework to success-
fully assess the privacy impact on use cases in early
design time. Exemplary threats and exemplary use
cases draw on insights from the University of South-
ern California microgrid. Future work will include an
evaluation of the systems ability to generalize to arbi-
trary kinds of threats in the smart grid. Furthermore
the system will be extended to serve as a policy de-
cision point for system developers and customers in a
smart grid IT infrastructure.
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