
F. Knirsch, A. Unterweger, G. Eibl, D. Engel, “Privacy-Preserving Smart
Grid Tariff Decisions with Blockchain-Based Smart Contracts”, Josef

Ressel Center for User-Centric Smart Grid Privacy, Security and Control,
Technical Report 2017-01, 2017.

Privacy-Preserving Smart Grid Tariff Decisions
with Blockchain-Based Smart Contracts

Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Abstract The smart grid changes the way how energy and information are ex-
changed and offers opportunities for incentive-based load balancing. For instance,
customers may shift the time of energy consumption of household appliances in ex-
change for a cheaper energy tariff. This paves the path towards a full range of mod-
ular tariffs and dynamic pricing that incorporate the overall grid capacity as well
as individual customer demands. This also allows customers to frequently switch
within a variety of tariffs from different utility providers based on individual energy
consumption and provision forecasts. For automated tariff decisions it is desirable
to have a tool that assists in choosing the optimum tariff based on a prediction of
individual energy need and production. However, the revelation of individual load
patterns for smart grid applications poses severe privacy threats for customers as
analyzed in depth in literature. Similarly, accurate and fine-grained regional load
forecasts are sensitive business information of utility providers that are not sup-
posed to be released publicly. This paper extends previous work in the domain of
privacy-preserving load profile matching where load profiles from utility providers
and load profile forecasts from customers are transformed in a distance-preserving
embedding in order to find a matching tariff. The embeddings neither reveal individ-
ual contributions of customers, nor those of utility providers. Prior work requires a
dedicated entity that needs to be trustworthy at least to some extent for determining
the matches. In this paper we propose an adaption of this protocol, where we use
blockchains and smart contracts for this matching process, instead. Blockchains are
gaining widespread adaption in the smart grid domain as a powerful tool for public
commitments and accountable calculations. While the use of a decentralized and
trust-free blockchain for this protocol comes at the price of some privacy degrada-
tion (for which a mitigation is outlined), this drawback is outweighed for it enables
verifiability, reliability and transparency.

Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel
Salzburg University of Applied Sciences, Josef Ressel Center for User-Centric Smart Grid Privacy,
Security and Control, Urstein Süd 1, 5412 Puch bei Hallein, Austria. e-mail: fabian.knirsch@
en-trust.at

1

fabian.knirsch@en-trust.at
fabian.knirsch@en-trust.at

2 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

1 Introduction

A global trend towards the modernization of energy grids is ongoing: Information
and communication technologies are integrated into the energy grid infrastructures,
creating so-called “smart grids”. A multitude of new use cases become possible,
including the balancing of power generation and consumption, electric mobility,
renewable energy sources and real-time pricing. The modernization on the technical
side is accompanied by a move towards deregulation on the regulatory side [1],
thereby vastly increasing the number of choices on the side of the end consumer. In
liberalized energy markets, the paradigm for the customers will be changed: They
will be able to change tariff, provider or both frequently and to adapt dynamically.
There are a number of pilot regions that have shown the benefit of this deregulation,
e.g., the German eEnergy projects, most notably the MeRegio project [1].

Customers have to choose one tariff out of those offered from their local utilities.
In order to select the optimal tariff, i.e., the one fitting their electricity consumption
at a given time, customers need to match their current usage habits to the offered
pricing schemes. As an example, consider an energy provider which is interested
in moving energy consumption away from times with high demand because this
decreases the amount of immediately available but expensive energy resources. In
order to encourage customers to use energy at off-peak times, the provider could
offer better tariffs for load profiles that are dissimilar to normal consumption pro-
files by, e.g., lowering a fixed-price tariff from 23 cents/kWh to 17 cents/kWh. As
another example, in order to stimulate people charging their cars during the night
instead of during the day, a load profile with high consumption during night might
be associated with another cheap tariff. A convenient way to perform the matching
of current and desired consumption profiles is for the customer to provide a current
load profile, i.e., a recent energy usage record, to different energy providers, to a
third party, or a blockchain-based smart contract providing a matchmaking service
for tariffs offered by various energy providers.

However, while this is a convenient approach, there are privacy concerns: It has
been shown that personal information, such as lifestyle, religion, habitual patterns,
sleep-wake-cycles and activities can be extracted from load profiles (e.g., [2, 3]). On
the side of the energy providers, there is also reluctance to disclose the load profiles
that different tariffs are based on (e.g., typical load profiles of customer groups),
as this is internal information that, in a liberated market, can make a difference in
commercial success [1]. Therefore, while both, the consumer side and the provider
side, are interested in facilitating optimal matching, the aforementioned are strong
reasons against disclosing full information for the matchmaking process.

In [4], a method for tariff selection has been presented that preserves both, con-
sumer privacy and the internal company data of energy providers. This is achieved
by the use of embeddings where load profiles are transformed into a domain that
does not allow to reconstruct the original load profiles, but preserves the distances.
The method outperforms previously suggested methods. In particular, it limits data
expansion, which is an issue when classical homomorphic encryption is used. The
trade-off is matching accuracy, which in this method is not 100%. Depending on

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 3

choice of parameters, higher accuracy can be traded for increased data expansion.
However, in real-word application scenarios, the accuracy of 93.5%, which can be
realized with the proposed approach at negligible data expansion, is sufficient.

In this paper, we propose an adaption of the approach in [4]. Our proposed exten-
sion of this approach uses blockchains and smart contracts [5, 6]. While the original
approach requires a third party for determining the minimum distance and the opti-
mum match, respectively, we propose omitting the third party and replacing it with
a fully decentralized and trust-less1 network. Smart contracts allow every peer –
customers and utility providers – to calculate and verify the results. This improves
the existing solution in terms of verifiability, reliability and transparency.

The possible use cases of the proposed protocol are manifold. An exemplary
use case would be for a number of utilities to (continually) analyze and cluster the
energy usage data of their customers. Based on this analysis, different tariff groups
can be created. Consumers who wish to select the tariff which is best suited to their
current consumption habits can create a smart contract with their load profiles and
commit it to a blockchain where both, the consumers and the utilities are peers. The
utilities then commit a number of load profiles that represent tariff options and the
smart contract evaluates the best-matching tariff. The result will be verifiable by all
parties.

Note that during the whole process, no load information is disclosed by either
the consumer or the utilities, i.e., the other peers cannot access the consumer data
as it may reveal sensitive information about them [7, 8]. The tariff selection is then
done decentralized and trust-less by executing the smart contract in the blockchain.

In summary, this paper extends the previously presented approach in [4] based
on nearest neighbor embeddings [9] and oblivious transfer [10] for finding the best-
matching tariff without directly revealing any load profiles to any involved party.
This paper contributes (i) a fully decentralized and trust-less approach for tariff-
matching; and (ii) an exemplary implementation as a smart contract. The proposed
approach is designed for the preservation of privacy, i.e., as in [4], privacy relies
on the security of embeddings [9]. While the privacy guarantees of the proposed
approach are not as strong as the ones in [4], a way to mitigate this is outlined.

The rest of this paper is structured as follows: In Section 2, related work from the
domains of secure distance computation, blockchains and smart contracts and other
related approaches is discussed. Section 3 introduces the preliminaries such as de-
sign goals, the original profile matching protocol with a third party and blockchain-
based smart contracts. In Section 4 the decentralized and trust-less protocol for
tariff-matching based on a blockchain is presented in detail. Section 5 evaluates the
proposed protocol, presents a conceptual implementation of the smart contract and
compares the proposed protocol to related work. Section 6 summarizes this work
and gives an outlook to future research.

1 The trust-lessness of blockchains relies on the assumption that at least half of the computing
power is spent by honest peers [5], as will be described in Section 3.3.1.

4 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

2 Related work

In this section, we provide an overview of related work. We distinguish between
secure distance computation methods which are suitable to compare load profiles,
existing work related to blockchains and smart contracts and other related work
including oblivious transfer and smart-grid literature with tariff selection and profile
matching.

2.1 Secure Distance Computation

The following related work describes secure distance computation algorithms. In
our approach, we compare load profiles using Euclidean distance measures, which
is a similar type of computation.

Mukherjee et al. [11] propose a method where a number of selected Fourier trans-
form coefficients are permuted and communicated between the involved parties. The
properties of the Fourier transform are used to provide limited guarantees on dis-
tance preservation based on the selection of transform coefficients. This makes their
approach probabilistic with the number of coefficients retained providing a tradeoff
between privacy and accuracy. Although our approach is probabilistic as well, the
level of privacy is not influenced by the parameters which affect the accuracy of our
approach.

Ravikumar et al. [12] describe an algorithm for secure Euclidean distance compu-
tation. Their approach is probabilistic as well, but requires a high number of vectors
to be compared in order to come close to the actual distance values. In contrast, our
approach finds the minimum distance in nearly all cases, allowing for near-perfect
matching.

Wong et al. [13] introduce transformations of database points and query points
that enable a ranking of the database points with respect to their nearness to the
query points suitable for k-nearest-neighbor determination. However, their transfor-
mations are not distance-preserving which enhances security against attackers with
known plaintexts, but limits possible applications.

Rane et al. [9] and Boufounos et al. [14] propose the use of distance-preserving
embeddings for privacy-preserving matching and nearest-neighbor searches in the
context of image retrieval. We apply these distance-preserving embeddings as one
step in our proposed protocol and make use of their privacy-preserving properties.

Homomorphic cryptosystems can be used for secure distance computation [15,
16], e.g., in the context of image retrieval [17], fingerprint matching [18] and face
recognition [19]. Kolesnikov et al. [20] combines homomorphic encryption for com-
puting distances with Garbled circuits for choosing the point having the minimum
distance to the query point. We provide a detailed comparison between our original
approach, the approach based on blockchains and additive homomorphic cryptosys-
tems in Section 5.3.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 5

2.2 Blockchains and Smart Contracts

For the proposed protocol, blockchains are used as a distributed, public and per-
manent platform for deciding on an optimum tariff and storing this decision repro-
ducibly. A blockchain as a public ledger for coin-based transactions is originally
proposed in [5] for Bitcoin. Since then, a wide range of applications have been es-
tablished that are based on that technology (e.g., [21, 22, 23, 6]). Some approaches
improve the principles of Bitcoin in terms of privacy ([21]), while others propose a
turing-complete blockchain for arbitrary calculations ([23, 6]).

In [22], the authors propose a protocol that uses a blockchain as an access-control
manager that does not require a third party. This allows to reduce trust into a single
entity, similarly to the approach proposed in this paper.

In [6], the author presents a turing-complete blockchain that can be used to build
decentralized applications. All inputs and states are public in this approach, which
limits privacy. In [23], the authors propose a similar concept that preserves user
privacy by the use of zero-knowledge proofs.

2.3 Other Related Work

In our proposed approach, we make use of oblivious transfer [10, 24, 25]. It allows
one of two parties to query one of an arbitrary number of items from the second
party without revealing (i) which item has been requested; and (ii) any of the other
items. A detailed description of the use within our protocol is provided in Section
3.2.

From a use case point of view, apart from oblivious transfer, related work in-
cludes literature on tariff decisions, load profile matching and forecasting as well as
demand-response and demand-side-management. For the latter two, Palensky and
Dietrich [26] provide an overview. In general, privacy concerns and communication
overhead on the smart meter side are seldomly addressed in protocols for demand
side management and tariff-matching. We focus on these privacy and communica-
tion overhead aspects by providing some examples below.

Caron and Kesidis [27] describe an approach where customers share load profile
information so that the utility can achieve a smoother aggregate load profile. This
is also possible with the approach proposed in our paper. However, the load profiles
are not revealed to the utility, thus preserving the privacy of the customers.

Similarly, Shao et al. [28] attempt to reduce peak loads by incentivizing cus-
tomers to shift time of use of electrical devices. This behavior can also be triggered
when applying our approach to provide suitable template load profiles, albeit not
in real-time. Again, the load profiles do not need to be shared with the utility as
opposed to the approach by Shao et al.

Ramchurn et al. [29] follow a game-theoretic approach with customer incentives
for reducing peak loads. They use a decentralized protocol, as opposed to our as well
as to Caron’s and Kesidis’s [27] and Shao et al.’s [28] approach. The approach by

6 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Ramchurn et al. defers certain loads with defined probability imposing constraints
on the customer’s choices. In contrast, our approach gives the customer full authority
on tariff decisions.

Another game-theoretic approach for shifting energy consumption is proposed
by Mohsenian-Rad et al. [30]. In this setting, the smart meters of the users interact
in order to minimize overall energy consumption. Their approach requires peer-
to-peer communication with transmission overhead depending on the number of
smart meters involved. Conversely, our approach does not require any peer-to-peer
communication whatsoever.

3 Preliminaries

This section introduces the preliminaries for the proposed protocol that uses block-
chains and smart contracts for the matching process. First, the previously proposed
protocol [4] that uses a dedicated third party for the matching process in presented.
Second, the concept of blockchains and smart contracts are introduced as a decen-
tralized and trust-less alternative for the original protocol.

The notation used throughout this paper is summarized in Table 1. F denotes a
load profile forecast that is used by the consumer to represent the load pattern and T
denotes a template load profile that is linked to a tariff from the utility providers. The
embedding is explained in the next section and is denoted as F̃ and T̃, respectively.

U utility provider

SM smart meter

TP third party

F load profile forecast

F̃ embedded load profile forecast

T template load profile

T̃ embedded template load profile

T tariff

U set of utilities

Lu set of tariffs from utility u

(u∗, l∗) index of best-matching utility/tariff

E(·),D(·) encryption and decryption functions

r←$Z sampling of a random number from Z

Table 1 Overview of notation used in this paper.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 7

3.1 Requirements

The objective of this paper is to rely on a fully decentralized and trust-less architec-
ture for tariff-matching. For the matching process and the performed calculations,
we define the following requirements:

1. Transparency. All calculations should be transparent to both, the utility providers
and the customers. This prevents an adversary from forging matching results (i.e.,
a binding to committed values) and it also prevents the utility providers from later
changing their template load profiles retroactively.

2. Verifiability. Calculations and the results, i.e., the optimum matching should be
verifiable by all participants. This allows the customer and the utility providers
to verify at any time that the found tariff has indeed a minimum distance with the
submitted parameters.

3. Reliability. The matching should not rely on a single party. All participants
should be able to perform the matching and therefore increase the fault-tolerance
of this approach by decentralizing this crucial step in the protocol. In the original
paper [4], the protocol requires a dedicated third party that acts as a broker for
the matching.

4. Privacy. While fulfilling the first three requirements, the calculation should still
be privacy preserving in accordance to the following privacy definition.

Privacy Definition: A protocol is privacy-preserving if none of the participants
learns more than a particular, predefined function of the input data [31]. The pro-
posed protocol is privacy preserving, if none of the participating entities has access
to the original load profiles and only the minimum distance between the customers’
load profile forecast and the template load profiles of the utility provider is revealed.
At the end of the protocol, the smart meter only learns the tariff associated to a
template load profile that has the minimum distance to the load profile forecast.

3.2 Profile Matching Protocol

This section is a summary of our previous protocol [4] which allows one smart meter
to find an optimum tariff based on its load profile forecast. A number of template
load profiles corresponding to tariffs from different utilities are used for this search.
Throughout the process, none of the involved parties has access to the others’ data.
The process is therefore privacy-preserving. Note that the following protocol still
makes use of the third party for finding the optimum match. It will later be shown
how to replace this with a blockchain and smart contracts, respectively.

Figure 1 illustrates the different steps of our protocol which are described in
detail below. The protocol is split into three phases, namely initialization, matching
and oblivious transfer.

8 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Fig. 1 Overview of the proposed protocol. All participating utilities Uu ∈ U provide embedded
template load profiles L̃u corresponding to their tariffs Tu,l to a third party TP. A smart meter
SM sends its embedded load profile forecast F̃ to this third party which returns the best-matching
utility index u∗ and its tariff index l∗. Subsequently, the smart meter can request information about
the best-matching tariff Tu∗,l∗ from the best-matching utility Uu∗ through oblivious transfer. Black
vertical bars indicate rate limiters.

3.2.1 Initialization

Let the set of participating utilities be denoted as U . Each utility Uu, u∈{1, . . . , |U |}
(cf. Figure 1, right) has a list of tariffs Tu,l with corresponding template load profiles
Lu,l (denoted as set Lu in Figure 1 where utilities can have different numbers of load
profiles l ∈ {1, . . . , |Lu|}). For example, utility U1 has a standard tariff T1,1 for day
workers and a night-owl tariff T1,2 for night workers. The corresponding template
load profiles L1,1 and L1,2 show peak loads at different times of the day opposite to
the respective working hours.

Template load profiles allow each utility to control demand and response in a
fine-grained manner, e.g., by rewarding customers with atypical load profiles so that
peak loads are avoided. Although the tariffs need to be known to the customers for
billing and transparency, the template load profiles are considered to be private to
the respective utility. Therefore, no details are shared with competing utilities. In
practice, template load profiles and tariffs may be significantly more complex than
the example described above, with privacy on the utility side being a much more
pressing issue.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 9

In order to keep the template load profiles private, each utility calculates an em-
bedding L̃u,l ∈ {0,1}m for each of its original template load profiles Lu,l ∈Rk as the
first step of the initialization phase:

L̃u,l =

⌈
A ·Lu,l +W

∆

⌉
mod 2 (1)

A is a random m× k matrix with i.i.d. Gaussian elements with mean 0 and variance
σ2, and W is a random m-dimensional vector with i.i.d. uniform elements in the
range [0,∆]. ∆ is both, a quantization and a security parameter, and described in
detail in [9, 14].

This embedding does not allow a potential attacker to reconstruct the original
load profile, but preserves the distance between load profiles within a very small
margin of error as described below. This enables comparisons of load profiles with-
out the need to handle the respective original, private data.

The second step of the initialization phase of our protocol requires each utility to
send all of its calculated embeddings L̃u,l to a third party, denoted as TP. The need
for this third party will become clear in the subsequent matching phase.

3.2.2 Matching

In this phase, a smart meter, denoted as SM, first creates a load profile forecast F.
It can either be based on past load profiles, e.g., of the current day or week, or on
user input, e.g., prospective changes in work schedules. Similar to each utility in the
preceding initialization phase, the smart meter first calculates an embedding of F,
denoted as F̃. This way, the smart meter does not need to disclose its original load
profile which may reveal sensitive information about the user.

As a second step, the embedding is sent to the third party, like the embeddings
from the utilities in the previous phase. As a third step, the third party finds the best
match for the load profile forecast out of the list of template load profiles from all
utilities through the received embeddings. More precisely, it finds the template load
profile with the smallest normalized Hamming distance to the forecast and outputs
the template load profile index l∗ as well as the corresponding utility index u∗, i.e.,

(u∗, l∗) = argmin
u,l
||F̃− L̃u,l ||1. (2)

This is possible due to the distance-preserving property of the embeddings (as
described in more detail in [9]), where the Euclidean distance of the original data
vectors is proportional to the normalized Hamming distance of the embedded vec-
tors with a configurable small error ε , i.e.,

||F̃− L̃u,l ||1 ∼ ||F−Lu,l ||2 + ε. (3)

10 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

As a consequence, the probability that the best match in the original space and the
best match in the embedded space coincide, is close to one:

Pr

[
argmin

u,l
||F̃− L̃u,l ||1 = argmin

u,l
||F−Lu,l ||2

]
= 1−δ . (4)

This probability is referred to as matching accuracy. The smaller ε is, the higher the
accuracy is.

The result (u∗, l∗) of the matching operation is a pair of indices identifying the
utility Uu∗ of the best match and its tariff Tl∗ . However, no information about any
load profile is revealed. The tuple (u∗, l∗), is transmitted to the smart meter as a
fourth and final step, allowing the smart meter to fetch the tariff information from
the utility Uu∗ directly in the next phase in order not to disclose the actual tariff Tl∗

associated with the index l∗.
The third party needs to be involved in the calculation above since neither the

smart meter nor any of the utilities can be completely trusted to correctly perform
calculations on the data. In addition, malicious parties are considered, i.e., they
could manipulate their own input to bias the result in their favor or they could use
multiple different inputs to derive additional information about the other parties’
data. This is avoided by the use of an independent third party with a rate limiter
(vertical black bars in Figure 1) which prevents bulk-probing from the other parties.

The third party can be thought of as a neutral party which performs only compu-
tations, e.g., a proxy of the Council of European Energy Regulators (CEER) which
strives for a fair tariff market and competition. However, since any party may be dis-
trusted, including the third party, the latter is not allowed to perform calculations on
the actual data, but on embeddings only. This is why the latter need to be calculated
by the other parties. This way, the third party is not able to access the original load
profiles of either the smart meter or the utilities.

Note that the third party may collect statistics on the matching results (i.e.,
the indices (u∗, l∗)) of all smart meters. However, this can be rendered futile if
the utilities regularly shuffle their template load profiles’ indices in the initializa-
tion phase e.g. each day. For example, (u∗, l∗) = (1,1) means a standard tariff
and (u∗, l∗) = (1,2) a night-owl tariff, respectively, on one day, and the other way
around, i.e., (u∗, l∗) = (1,1) means a night-owl tariff and (u∗, l∗) = (1,2) a standard
tariff, respectively, on the next day.

Note that the third party could be omitted when using verifiable computing [32,
33]. However, this would induce substantial overhead which is critical on a device
with limited capabilities, such as smart meters. In the subsequent oblivious transfer
phase, the third party is not involved at all and hence never has access to the tariff
Tu∗,l∗ itself. Therefore, the third party only needs to be trusted to perform the correct
calculation int the matching phase. This remaining level of trust will be replaced by
a decentralized trust-less architecture for the blockchain-based protocol.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 11

3.2.3 Oblivious Transfer

In the last phase of the embedding-based protocol, the smart meter sends a query to
the utility Uu∗ in order to obtain the best-matching tariff Tl∗ based on its index l∗.
The third party is not involved in this transaction and does therefore not obtain any
information about the tariff itself apart from its index.

At this stage, the customer has not yet made the decision whether or not to switch
to the best-matching tariff – they still need the tariff information for this. Thus,
on the one hand, the smart meter must not disclose l∗ to the utility since it would
allow the utility to deduce information about the original load profile, even when the
customer chooses not to switch to the matching tariff. On the other hand, the utility
does not want to disclose all tariffs, some of which may exclusively be available to
certain customers or groups. It only wants to disclose the tariff corresponding to the
index l∗, but without being allowed to know this very index.

A solution for this is oblivious transfer [10, 24, 25]. It allows the smart meter
to retrieve a tariff l∗ from a vector of tariffs Tu∗,l , without the query (index) being
known to the utility Uu∗ and without any other tariffs being disclosed to the smart
meter apart from Tu,l∗ . In our use case, communication with Uu∗ yields the tariff
Tu∗,l∗ .

The steps of the oblivious transfer phase can be summarized as follows: Initially,
i.e., before any other communication, the utility Uu∗ sends one key Ku∗,l per tem-
plate load profile Lu∗,l to the smart meter. The number of template load profiles is
identical to the number of tariffs as described above. Thus, in total |Lu∗ | keys are
sent.

Secondly, the smart meter generates a nonce n which is encrypted with the (l∗)th

key. The encrypted nonce, c, is then sent to the utility. This step requires a rate
limitation (e.g., one query per day) on the utility’s side since the smart meter could
otherwise query all available tariffs by iterating through the available indices. The
rate limit has to be chosen such that the maximum number of allowed queries is
lower than or equal to the average frequency at which utilities update their tariffs.
If, for instance, utilities update their template load profiles daily, a rate limit of one
query per day is sufficient.

Thirdly, the utility decrypts c with all of its keys, yielding decryptions dl . For
the key with the index sent by the smart meter, the decryption yields the nonce n,
while, for all other keys, the decryption result is a garbage value gl . For the utility,
however, these are indistinguishable from the nonce. Thus, the utility cannot find
out the index l∗.

Fourthly, the utility encrypts all tariffs Tu∗,l with the decryption results dl as keys,
i.e., the nonce known to the smart meter for the index l∗ and garbage values gl for
the others. The encrypted tariffs, tl , are then sent to the smart meter which decrypts
the (l∗)th encrypted tariff with the previously generated nonce. This yields the de-
sired tariff Tu∗,l∗ . The other tariffs cannot be decrypted since the encryption and
decryption keys do not match, thus do not leak any information to the smart meter.

12 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

3.3 Blockchains and Smart Contracts

This section introduces blockchains and the concept of smart contracts. Further-
more, an exemplary smart contract is presented, the application of a decentralized,
trust-less architecture is motivated and privacy issues are discussed.

3.3.1 Overview

After having originally been proposed in [5], blockchains are gaining an increased
adaption in many fields, e.g., [22, 23]. A blockchain is a trust-less and fully decen-
tralized peer-to-peer system that is designed to hold immutable information once
data is committed to the chain. Generally, a blockchain can therefore be described
as a distributed, immutable database.

In the originally proposed Bitcoin protocol from [5] the blockchain is used to
keep track of coins, i.e., a public list of how much coins are owned by each peer.
Therefore, each block contains sender and receiver information, as well as the
amount of coins to be transferred. This is called a transaction and – once confirmed
by the peers – appends a new block to the chain that also includes the hash of the
previous block and is therefore permanently linked to a series of previous transac-
tions.

The public list of chained blocks can be verified by all peers in the network
by checking the integrity of the new block and the correct calculation of the hash,
respectively. While the generation of valid blocks consumes a considerable amount
of computing power, this is also referred to as the proof of work. In order to prevent
the tampering with already created blocks, all peers in the network agree on the
longest valid chain. A chain is valid if it is verified by other peers. Accordingly, a
block and transaction can be considered valid if it is followed by a sufficient amount
of other valid blocks. Therefore, the blockchains is trust-less if at least half of the
computing power for the proof of work is spent by honest peers [5].

In order to prevent the tampering with already created blocks, all peers in the
network agree on the longest valid chain. A chain is valid if it is verified by other
peers. Accordingly, a block and transaction can be considered valid if it is followed
by a sufficient amount of other valid blocks. Therefore, the blockchains is trust-less
if at least half of the computing power for the proof of work is spent by honest peers
[5].

Note that at all times all states are publicly available and can be verified by all
peers by simply checking the hashes from the very first block (also referred to as the
genesis block) up to the last block. Peers in the network are identified by a private-
public key pair (identifier or address).

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 13

3.3.2 Smart Contracts

The Bitcoin protocol is designed for a particular purpose. However, blockchains
can be used to store arbitrary information. Recently, the application of blockchains
for smart contracts has been proposed [23, 6, 34]. Ethereum2, for instance, is a
platform for executing smart contracts on a turing-complete virtual machine, the
Ethereum Virtual Machine (EVM), where computing results are stored in a public
blockchain. Similarly to the Bitcoin protocol, in Ethereum, a peer-to-peer network
stores a decentralized ledger with state information. These states, however, include
details about executed smart contracts. A smart contract is a program that can send
and receive messages and execute some logic. For executing a contract, i.e., creating
a new block, the miner is paid with Ether. There are a number of newly developed
program languages that compile to EVM bytecode, such as Solidity3 that resembles
a JavaScript-like syntax.

Smart contracts can be deployed by every peer in the network. Once committed
to the blockchain, a smart contract is identified by a unique address and can be
called by other peers. The code of a smart contracts needs to be public as well,
since all peers in the network must be capable of verifying the computation results.
Smart contracts therefore expose one or more methods and hold state information
in internal variables. As a simple example which is commonly used to demonstrate
a smart contract (compare to, e.g., [23]) consider a rock-paper-scissors game as in
Algorithm 1. Here, a smart contract is created that accepts an input from two players
(“rock”, “paper” or “scissors”) and determines a winner. The notation for algorithms
in this paper is summarized in Table 2. Assume this algorithm is deployed in the
blockchain and is assigned a unique identifier or address. Players willing to bet can
use this address and call the commit method in order to send their bet.

The first parameter of type ID is passed automatically as an argument to all meth-
ods and refers to the address of the caller. This is a concept that is also found in
real-world implementations. For the algorithms in this paper this is made explicit
for clarity. The address is an alpha-numeric value of approximately 40 characters,
depending on the concrete protocol that is derived from the public key of a peer.

ID data type holding an address in the blockchain

Hash data type holding a hash (e.g., SHA-2)

HashMap<U,T> data type mapping elements of type U to elements of type T

Ẽ data type holding an embedding

Ẽ[] data type holding an array of embeddings

� value representing null or undefined

Table 2 Overview of notation used in algorithms in this paper.

2 https://www.ethereum.org/
3 https://solidity.readthedocs.io/en/develop/

14 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

ID player1 = �;
ID player2 = �;
Hash hash1 = �;
Hash hash2 = �;
string bet1 = �;
string bet2 = �;

begin commit(ID sender, Hash hash)
if player1 == � then

player1 = sender;
hash1 = hash;

else if player2 == � then
player2 = sender;
hash2 = hash;

else
return “wait for next game”;

end

begin open(ID sender, string bet, int r)
if sender == player1 ∧ H(bet|r) == hash1 then

bet1 = bet;
else if sender == player2 ∧ H(bet|r) == hash2 then

bet2 = bet;
else

return “invalid commitment”;
end

begin evaluate(ID sender)
if ¬ (bet1 == � ∨ bet2 == �) then

if bet1 == “rock” ∧ bet2 == “scissors” then
return player1 + “ wins”;

else if bet1 == “paper” ∧ bet2 == “scissors” then
return player2 + “ wins”;

else
. . . /* test for other cases */

else
return “commit bets and open commitment first”;

end
end

Algorithm 1: Smart contract for playing a rock-paper-scissors game. Both players
send a commitment for their bet and once all bets are received, the players open
their commitment and the winner can be determined by calling the evaluate
method.

In order to prevent any player from learning the other players’ value, a compu-
tationally hiding commitment scheme is used (see [35]). Instead of only sending
a string bet, player i, i ∈ {1,2}, sends the hash of the string and a random num-
ber ri←$Z, i.e., hi := H(beti|ri) with H(·) being a collision-resistant universal hash
function H : {0,1}x→{0,1}y, x,y ∈ Z+, with, e.g., y = 256, and beti|ri denotes the
concatenation of the bet and the random number. Due to the one-way property of the
hash function and the random number which is only known to the player, the public

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 15

information in the blockchain does not reveal the bet, but only the hash. Once all
players sent their commitments, the game can be evaluated. To do so, the players
open their commitment by sending (beti,ri) and the smart contract verifies whether
H(beti|ri) = hi. If the hash of the commitment and the hash of the values beti and
ri are equal, the commitment is opened. Otherwise, the commitment is invalid and
the winner cannot be determined until the commitment is opened correctly. The
message flows for player i and the smart contract are shown in Figure 2. Note that
there also exist information-theoretically secure binding schemes such as Pedersen
commitments [36], which are out of scope for this work.

While such commitment schemes prevent other players from learning the bets
during the game, they do not provide forward secrecy once the commitments are
opened and the game is finished. This would, for instance, allow an adversary to
learn the bets from a player over time4. A more advanced approach is to use zero-
knowledge proofs, e.g., as presented in [23], where the authors present a blockchain
model for smart contracts that allows for private parts that are never revealed pub-
licly.

3.3.3 Summary

Generally, blockchains such as Bitcoin and blockchain-based smart contract im-
plementations such as Ethereum are not privacy-preserving in the sense that the
information remains undisclosed. In contrast, all the information committed to the
blockchain is publicly available to all peers. Usually, the ownership of coins and
other data is claimed by a private key that has been randomly generated once and
does not allow to link to any individual. However, this kind of pseudonymity is not a
strong privacy guarantee, as sender, receiver and the amount of data as well as state
information are public. In order to privately process data in a blockchain, there are
recent trends that strengthen the privacy, e.g., [21, 23].

In summary, blockchains offer the ability to provide a decentralized database
that does not require trusting other peers with certain limits as discussed in Section
3.3.1. A consensus on the state of the database is found by a set of decentralized
executed rules and proof-of-work mechanisms. Blockchains are therefore particu-
larly suitable for minimizing or removing the role of a trusted or semi-trusted third
party, while at the same time providing full transparency to all participants. How-
ever, in order to achieve privacy, blockchains need more sophisticated approaches,
e.g., building on commitments or zero-knowledge proofs. It is later shown that, for
preserving forward-secrecy in the proposed protocol, embeddings and commitments
are not sufficient and stronger privacy guarantees as proposed in [23] are required.

4 A player could change address for every game providing a means of pseudonymity for this use
case. However, for the tariff matching, as shown later, we need to reveal the actual “players” at
some point for the oblivious transfer which requires more sophisticated approches.

16 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Player i Smart Contract

beti←{rock, paper, scissors}
ri ←$Z

. .commit .

hi := H(beti|ri)

wait for all players

. open .

beti,ri

check if ∀i ∈ {1,2} :

H(beti|ri)
?
= hi

and find winner i

i (winner)

Fig. 2 Message flows for the rock-paper-scissors game for player i, i ∈ {1,2}, and the smart con-
tract with a computationally hiding commitment scheme. First, each player chooses a bet and a
random number, where r←$Z denotes the drawing of the random number. Both values are hashed
and committed. Second, once all players sent their values, the commitments are opened. If the
values are correct, the winner is determined.

3.4 Assumptions

For the following protocol description, we define a number of properties for our
blockchain-based profile matching protocol. First, a preliminary protocol is intro-
duced that fulfills already three out of our four initial requirements: (i) Transparency;
(iii) Verifiability; and (ii) Reliability. The fourth requirement, privacy, is only partly
fulfilled. While the template load profiles and the load profile forecasts are embed-
ded and do not allow for immediate recovery of the original data, all this information
is publicly and permanently available and stored in the blockchain, i.e., forward se-
crecy is not fulfilled. An adversary could query the blockchain for previous requests
and use this information to brute-force load profiles. The feasibility of brute-forcing
embedded data is briefly discussed in [4].

In order to fulfill our privacy requirement regarding forward-secrecy, a way needs
to be established that allows to calculate the matching in the blockchain while at the
same time not revealing the inputs.

For the preliminary protocol, we assume a blockchain that allows to execute
smart contracts (e.g., Ethereum). Therefore, all parties, i.e., SM, Uu with u ∈
{1, . . . , |U |} are peers in the blockchain and are thus able to execute smart contracts.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 17

For the improved protocol we additionally assume the blockchain to be capable of
privacy-preserving calculations (e.g., HAWK [23]).

4 Protocol Description

Figure 3 illustrates the different steps of our adaption of the original protocol for
blockchains. The protocol can again be split into three phases, namely initialization,
matching and oblivious transfer, with the matching phase being further split into a
commitment and an opening phase (separated by red dotted lines). In the initial-
ization phase, the same embedding approach as in the previous protocol is applied.
In this phase, load curves are transformed into an embedding that does not allow
to retrieve the original load profile, but preserves the ability to calculate distances.
In contrast to the original protocol, the matching phase is handled within a public
blockchain instead of a dedicated third party. The oblivious transfer phase remains
the same as in the previous protocol and is therefore not discussed in detail in this
section.

4.1 Initialization

Each utility Uu, u ∈ {1, . . . , |U |} (cf. Figure 3, right) has a list Lu of tariffs Tu,l
with corresponding template load profiles Lu,l . As in [4], utilities can have different
numbers of load profiles l ∈ {1, . . . , |Lu|}).

For each template load profile Lu,l , its embedding L̃u,l ∈ {0,1}m is calculated by
Uu as specified by Equation 1. This way, in the subsequent matching phase, utili-
ties do not need to submit the plain template load profiles, but only an embedding
for privacy reasons. Similarly, SM calculates the embedding F̃ of its load profile
forecast F and only sends F̃ in the matching phase.

4.2 Matching

In contrast to the original paper, the matching phase is completely redesigned, fully
decentralized and trust-less based on a blockchain. Using a blockchain and a smart
contract for determining the distance poses some advantages over a dedicated entity
TP, which corresponds to the initially stated requirements:

1. Transparency. Once a template load profile L̃u,l or a load profile forecast F̃ is
written to the blockchain, this information is public. Every peer can view the data
and the data cannot be altered by anyone after being encoded in the chain.

2. Verifiability. The calculation performed by the smart contract, i.e., the result of
the calculation which in this case is the optimum match, is written immutably to

18 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Blockchain

SM

U1

U|𝓤|

……

 𝐅, r

argmin
𝑢,𝑙

 𝐅 − 𝐋𝑢,𝑙 =: 𝑢∗, 𝑙∗

U
𝑢∗

𝐾𝑢∗,𝑙

E 𝑛 𝐾𝑢∗,𝑙∗ =: 𝑐

E 𝑇𝑢∗,𝑙 𝑑𝑙 =: 𝑡𝑙

U𝑢∗ calculates: D 𝑐 𝐾𝑢∗,𝑙 =: 𝑑𝑙 =
𝑛 𝑙 = 𝑙∗

𝑔𝑙 otherwise

D 𝑡𝑙∗ 𝑛 = 𝑇𝑢∗,𝑙∗

𝑙 ∈ {1, … , ℒ𝑢∗ }

𝑙 ∈ {1, … , ℒ𝑢∗ }

𝑙 ∈ {1, … , ℒ𝑢∗ }

 𝐋 𝒰 ,𝑙, 𝑟 𝒰 ,𝑙, 𝑙 ∈ 1, … , ℒ 𝒰

 𝐋1,𝑙,𝑟1,𝑙 , 𝑙 ∈ 1, … , ℒ1

𝑢∗, 𝑙∗

U1

U|𝓤|

…

𝐻(𝐋1,𝑙|𝑟1,𝑙), 𝑙 ∈ 1, … , ℒ1

…𝐻(𝐅 𝑟)

𝐻(𝐋 𝒰 ,𝑙|𝑟 𝒰 ,𝑙), 𝑙 ∈ 1, … , ℒ 𝒰

Fig. 3 Overview of the proposed protocol. After the initialization phase (not shown), all partici-
pating parties commit their load profiles to the block chain as the first part of the matching phase.
In the second part, all parties open their commitments publicly in the blockchain. At the end of
the matching phase, the established smart contract returns the best-matching utility index u∗ and
its tariff index l∗. The smart meter can then request information about the best-matching tariff
through oblivious transfer as proposed in [4].

the blockchain as well. Therefore, every peer can later verify the chain of blocks
and whether the calculated result is actually the best match. In particular, this
also holds for the customer.

3. Reliability. Smart contracts that are based on blockchains are decentralized by
design. There is no single entity that is responsible for performing the calcula-
tions, but every peer can calculate and verify results. This makes blockchains
more reliable, compared to centralized architectures.

The matching phase that only needs to compute the hamming distance of the em-
bedded load forecast and the embedded template load profile (as shown in Equation
2) is written as a smart contract. This smart contract is created by the smart meter
SM which prepared an embedded load profile forecast F̃ in the initialization phase
and now wants to find an optimum tariff. The address in the blockchain of the smart
meter and the load profile forecast are the initialization parameters for this smart
contract. The contract is then bound to this particular smart meter. The binding as-
sures that no other peer can trigger the evaluation method, i.e., the initial creator
remains in control of the contract.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 19

Once this smart contract is created, utility providers Uu, u ∈ {1, . . . , |U |} can
commit their embedded template load profiles L̃u,l , with l ∈ {1, . . . , |Lu|} by send-
ing H(L̃u,l |ru,l), where ru,l is the random number for the commitment as described
in Section 3.3.2. The collection of load profiles can be realized by providing a public
method that accepts an array of hashed template load profiles as a commitment from
each utility in the commitment part (top part of Figure 3). As soon as a smart con-
tract is established, the commitment of the load profile forecast from the customer
as well as any committed template load profiles from the utility providers cannot be
changed or overwritten in this particular instance. However, if a new smart contract
is created, both, customer and utility providers can commit their load profiles again
and the protocol starts over. The smart contract is open and accepts the commitments
from the utility providers as long as the commitments are not opened.

If the smart meter received enough tariff options or after a certain amount of
time has passed, SM and all Uu can trigger the opening method, thereby starting
the opening part (middle part of Figure 3). If the commitments are opened correctly,
the actual embedded load profiles are stored in the smart contract, SM triggers the
evaluation method and the best-matching tariff (u∗, l∗) is returned. This also closes
the current instance of the smart contract. Note that the index u∗ of the utility corre-
sponds to the ID or address of the utility in the blockchain.

4.3 Oblivious Transfer

The oblivious transfer phase does not deviate from the originally proposed protocol
and is described in Section 3.2. The blockchain is only used for finding the minimum
distance to the utility/tariff that matches best, i.e., (u∗, l∗). The smart meter then
initiates the oblivious transfer in order to receive the desired tariff Tu∗,l∗ .

5 Evaluation

In this section, we evaluate privacy-preserving load profile matching. For the eval-
uation we introduce an implementation for the smart contract that is independent
of concrete programming languages or platforms. We then discuss the privacy and
security properties of the blockchain-based approach and finally, the proposed ap-
proach is compared to related work.

5.1 Implementation

The following algorithms, Algorithm 2 and Algorithm 3, show how to implement a
smart contract that performs tariff matching. Note that this is an implementation to

20 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

show the concept and that this code still has some practical limitations as discussed
later.

While the following algorithm is independent of concrete smart contract pro-
graming languages (e.g., Solidity, Hawk), it follows common design principles [35]
and can be easily turned into a program in a specific language. The smart con-
tract consists of five global variables and five methods that implement the creation
and evaluation of the smart contract as well as the ability to receive and verify
commitments. The smart contract uses basic data types such as double precision
floating-point types (double) and integer types (int), more complex data types such
as HashMap and Arrays (denoted by square brackets), specific data types such as
ID (storing an address of a node in the blockchain), Ẽ (storing an embedding, which
is discussed in detail later) and Hash (storing a SHA-2 hash). The principle of this
smart contract is similar to the implementation presented in Algorithm 1 for the
rock-paper-scissors game. All parties first send hashed values as a commitment and
then open their commitments, which is verified in the smart contract by comparing
the hashes. Instead of determining a winner as in the game, the optimum tariff based
on the minimum distance is found.

In the following, the methods for the smart contract are described in detail:

• create. This method is called upon the initial creation of the smart contract.
The method expects two arguments, sender and a hashed value loadforecast. The
first is the creator of the smart contract, i.e., the smart meter that wants to perform
a tariff matching. The latter is a commitment for an embedding of the load profile
forecast. Both values are used for initializing the smart contract. The commitment
is calculated by the smart meter by hashing the embedded load profile forecast
and a random number.

• commit. Once the smart contract is initialized, it can be found by utilities that
want to offer a tariff. These utilities then call the commit method which expects
two arguments, sender, which is the address of the utility, and loadprofiles, which
is an array of hashed embedded template load profiles. Utilities can only once
send an array of an arbitrary number of hashed template load profiles. This as-
sures that utilities cannot change or revoke committed data for this instance of
the smart contract. The commitment is calculated by the utilities by hashing the
embedded template load profiles and a random number for each template load
profile.

• smopen. The smart meter can open its commitment by sending the embedded
load profile forecast and the random number that was used for calculating the
hash. The smart contract verifies if the commitment is valid and stores the em-
bedded load profile forecast for the evaluation.

• uopen. Similarly to the smart meter, utilities can open their commitments by
sending the embedded template load profiles and the random numbers that were
used for calculating the hashes. The smart contract verifies if the commitment is
valid and stores the template load profiles for the evaluation.

• evaluate. After a certain amount of time or whenever the smart meter feels
that enough utilities have committed and opened their template load profiles, the
smart meter can call the evaluate method. This method can only be called if both,

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 21

the smart meter and the utilities have successfully opened their commitments and
it can only be called by the owner of the smart contract. The method performs
the actual matching (i.e., finding the minimum distance in the embedded dimen-
sion as shown in Equation 2) and returns both, the address of the utility with the
best-matching tariff and the index of that tariff (u∗, l∗). This terminates the exe-
cution of the smart contract and the smart meter uses this information to run the
oblivious transfer phase outside of the blockchain and the smart contract.

For an actual implementation of such a smart contract, there are a few aspects
to be considered. First, the evaluation of the original protocol [4] has shown that
an embedding dimension of m = 8192 is needed, which consequently leads to 8192
bit numbers that need to be processed for the matching. The EVM, for instance,
has maximum word size of 256 bit which would require additional steps to process
numbers of that size.

Second, the above smart contract fully relies on the privacy features of embed-
dings. After the smart meter opened its committed load profile forecast or a utility
opened its committed template load profile, respectively, this information is pub-
licly available and visible in the blockchain. For this purpose, however, privacy-
preserving implementations (e.g., Hawk [23]) can be used, where zero-knowledge-
proofs are employed in order to hide information in the blockchain.

5.2 Privacy and Security

The proposed protocol does not rely on a third party like [4], but uses a blockchain
and smart contracts instead. Using these technologies, the four requirements intro-
duced in Sections 3.1 and 3.4 are fulfilled, namely:

• Transparency. All calculations are transparent to the smart meter and the utility
providers. This is guaranteed by the properties of the blockchain [5]. Once data is
written to the blockchain, it cannot be changed and therefore prevents adversaries
from forging matching results.

• Verifiability. Calculations and the results are verifiable by all participants. This
is guaranteed, since the results of smart contracts are stored in the blockchain
[23, 6] and can be verified through recomputing the blocks.

• Reliability. The matching does not rely on a single party, but the computation is
decentralized and can be performed by any peer in the blockchain [6].

• Privacy. The privacy-preserving properties stem from [4], with one exception
that will be discussed below. Since the blockchain stores data permanently and
publicly available, additional features such as a commitment scheme and private
blockchains are required [23].

In the following, the privacy properties of this protocol are discussed. While most
of the privacy analysis is already conducted in [4], the replacement of the third party
by a public blockchain requires a discussion of privacy of previously non-public
data.

22 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

ID owner = �;
Hash loadforecasthash;
HashMap<ID, Hash[]>templatehashes = new HashMap<>();
Ẽ forecast = �;
HashMap<ID, Ẽ[]>templates = new HashMap<>();

begin create(ID sender, Hash loadforecast)
owner = sender;
loadforecasthash = loadforecast;

end

begin commit(ID sender, Hash[] loadprofiles)
if ¬ templatehashes.contains(sender) then

templatehashes.add(sender, loadprofiles);
else

return “load profile commitments already sent”;
end

end

begin smopen(ID sender, Ẽ loadforecast, int r)
if sender == owner ∧ H(loadforecast|r) == loadforecasthash then

forecast = loadforecast;
else

return “invalid commitment”;
end

end

begin uopen(ID sender, Ẽ[] loadprofiles, int[] r)
if templatehashes.contains(sender) then

int index = 0;
foreach Hash embeddinghash in templatehashes.getValues(sender) do

if ¬ (embeddinghash == H(loadprofiles[index]|r[index])) then
return “invalid commitment”;

end
index ++;

end
templates.add(sender, loadprofiles);

end
end

Algorithm 2: This first portion of the smart contract for matching a load profile
forecast to template load profiles shows the creation, commitment and open meth-
ods for both, the smart meter and the utilities. The parameters of type ID always
refer to the caller. A smart meter initiates a matching by creating a smart contract
with a commitment for its load profile forecast. Utilities then commit their tem-
plate load profiles. The smart meter and the utilities can open the commitments
before determining the best-matching tariff.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 23

begin evaluate(ID sender)
if sender == owner ∧ ¬ (forecast == �) ∧ ¬ templates.empty() then

double bestdistance = ∞;
ID bestutility = �;
int besttariffindex = �;
foreach ID utility in templates do

int index = 0;
foreach Ẽ embedding in templates.getValues(utility) do

double distance = ‖embedding− f orecast‖;
if distance < bestdistance then

bestdistance = distance;
bestutility = utility;
besttariffindex = index;

end
index ++;

end
end
return (bestutility, besttariffindex);

end
return “not allowed”;

end

Algorithm 3: This second portion of the smart contract for matching a load pro-
file forecast to template load profiles shows the evaluation to find the minimum
distance. If all commitments have been opened, the creator of the smart contract
can evaluate the template load profiles and determine the best-matching tariff and
the corresponding utility offering that tariff.

This protocol is privacy-preserving as none of the participating entities has access
to the original load profiles of the others, but only to the embedded load profiles. In
[4], the privacy features of the embedding approach are discussed in detail.

In [4], it is assumed that all parties involved in communication through our pro-
posed protocol are authenticated, e.g., through X.509 certificates [37]. This is not
necessary because, using a blockchain, all parties are already automatically authen-
ticated using public key cryptography [5] where each peer in the blockchain has a
unique key, also referred to as address.

Similarly, in [4], for the initialization and matching phases, it is assumed that all
communication links are encrypted, e.g., by symmetric encryption such as AES
[38]. In contrast, such an encryption of the communication links is not used in
the proposed protocol. Instead, two techniques are applied that prevent others from
breaking confidentiality. A commitment scheme is used to prevent other parties from
learning embedded load profiles during the commitment phase of a smart contract.
However, this does not prevent the embedded load profiles from being released once
the smart contract has been evaluated, which requires to open the commitments.

In the proposed protocol as shown in Fig. 3, the parameters A, W and ∆ are
only known to the smart meter and the utilities as they are in [4]. However, in the
proposed protocol, the embedded load profile forecast F̃ as well as the embedded

24 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

template load profiles L̃u,l are publicly known since they are committed into the
blockchain. As a consequence, the smart meter and all utilities know the embedding
parameters and all embedded load profiles. Thus, privacy boils down to the question
how much information can be inferred from both, the embedding parameters and
the embedded load profiles.

Since the focus of this work is to show that blockchains can be used in principle
for the protocol originally proposed in [4], the privacy analysis of this aspect is left
as future work. However, it should be noted that privacy-preserving smart contracts
as described in [23] can be used at the cost of reduced transparency. This way, em-
bedded load profiles remain completely private even after the execution of a smart
contract, thus solving this issue.

In Section 3.2.1 is is discussed that in [4] the third party may collect statistics on
the matching results by collecting the indices (u∗, l∗). Principally, the same holds
for the blockchain-based approach where these indices are the result of evaluating
the smart contract. For the approach with a TP, utilities can regularly shuffle their
template load profiles’ indices. The same approach can be applied in the approach
presented in this paper. Additionally, all parties are only identified by their ID or
address in the blockchain. This pseudonymity in combination with the shuffling of
the indices prevents other parties from learning such statistics. Furthermore, bulk
probing of either the smart meter or the utility providers is a similar issue, which is
discussed in detail in [4].

In the oblivious transfer phase, which is identical to [4], no additional encryption
is necessary. The security properties of oblivious transfer are not discussed in this
analysis, but can be found in literature, e.g., [10, 24, 25], since this analysis mainly
focuses on the privacy impact of the information that is transferred.

5.3 Comparison to Related Work

In this section, the proposed blockchain-based approach is compared to existing
approaches. Figure 4 shows a comparison of three approaches: the presented ap-
proach, the approach relying on a third party, which we extend in this paper, and
an approach using homomorphic encryption. This section extends the discussion
originally presented in [4].

The core purpose of the presented approach is to find similarities, i.e., nearest
neighbors, of time series by Euclidean distance computation while preserving the
privacy of all actors. In [9, 17, 39], approaches based on additively homomorphic
encryption, e.g., the Paillier cryptosystem [40], are discussed which also allow cal-
culating Euclidean distances. Thus, they can be used as an alternative to nearest-
neighbor embeddings as proposed in this paper and in [4]. Therefore we compare
our approach to the latter. Figure 4 (left) shows a simplified version of our proposed
scheme in this paper, (center) of the scheme proposed in [4] and (right) approaches
using homomorphic encryption.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 25

Fig. 4 Comparison of three distinct approaches for privacy-preserving tariff matching. From left to
right: (i) blockchain-based approach as presented in this work; (ii) embedding-based approach that
relies on a third party for matching as presented in [4]; and (iii) approach that uses homomorphic
encryption proposed in [9, 17] and discussed in [4].

In the following, the approach using homomorphic encryption is described. Fur-
thermore, the embedding-based approach from [4] is compared to the one using
homomorphic encryption. Finally, our proposed approach, which is similar to the
embedding-based approach is compared to the latter and the communication over-
head is discussed.

In the homomorphic encryption-based approach the smart meter communicates
with each utility separately sending a load profile forecast encrypted with an ad-
ditively homomorphic scheme. Each utility responds with a partial result for each
template load profile as shown below. From this, the smart meter can calculate the
Euclidean distance in order to retrieve the index (u∗, l∗) of the best-matching tem-
plate load profile. Finally, the smart meter and the utility u∗ run the oblivious transfer
protocol identically to our approach in order to retrieve the tariff Tu∗,l∗ .

Like our proposed protocol, this homomorphic protocol comes without the need
of a third party. By contrast, fetching the template load profiles as well as the dis-
tance computation itself is performed by the smart meter. All encryptions are per-
formed with the public key, decryptions can only be performed by the smart meter,
which is the only party owning the private key.

The Euclidean distance between the forecast load profile and each of the template
load profiles of all utilities must be computed by using an additively homomorphic
cryptosystem [9] in an identical manner, i.e., with the same modulus n of Paillier’s
cryptosystem. Therefore, for sake of readability, Li is written instead of Lu,l,i and
A, B are written instead of Au,l and Bu,l . The goal of the protocol is to privately
compute

||F−L||2 = ∑
i

L2
i −∑

i
2FiLi +∑

i
F2

i =: A+B+C. (5)

26 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

First, the smart meter submits its encrypted load profile forecast values E (Fi) di-
rectly to each utility. As a single load profile forecast value is much smaller than
the modulus, data packing is used to better exploit the input domain. Therefore, not
a single value is encrypted, but all k values of the load profile forecast are packed,
encrypted and sent as one message. Data packing is achieved by shifting values to
a certain bit range, such that for all operations the value remains within that range
[16], e.g., for k values and a range of b bits v = v1|v2| . . . |vk = ∑

k
i=1 vi2b(i−1).

Using this encrypted load profile forecast and exploiting the homomorphic prop-
erties E(x+ y) = E(x)E(y) and E(x)c = E(cx), the utility can compute and send
back the partial result

E(A+B) = E

(
∑

i
L2

i

)
∏

i
E (Fi)

−2Li (6)

to the smart meter. Exploiting the homomorphic property again, term C can be added
and the smart meter gets the Euclidean distance by

||F−L||2 = D

(
E

(
∑

i
F2

i

)
E(A+B)

)
(7)

When following the above protocol, neither the utility knows the smart meter’s
load profile forecast, nor does the smart meter know the utility’s template load pro-
file. In addition, the inner product F ·L is never revealed to any of them.

Now, the communication need, i.e., bandwidth requirement, is calculated and
compared with this paper’s solution. In the first step of the protocol, the smart meter
needs to send k packed and homomorphically encrypted load values Fi to each of the
|U | utilities. By encrypting a single value with the Paillier cryptosystem, a plaintext
p ∈ Z∗n results in a ciphertext E(p) ∈ Z∗n2 leading to an expansion of the bit size by
a factor of 2.

The second message is the encryption of

A+B = ∑
i

L2
i −∑

i
2FiLi ∈

[
−∑

i
F2

i ,∑
i

L2
i

]
(8)

where the lower limit follows from the fact that

||F−L||2 = A+B+C ≥ 0⇒ A+B≥−C. (9)

Since squaring of a number leads to an expansion of 2, both, the lower and upper
limits need a maximum of k ·2s bits, where s is the bit size of a single load value Fi.
Therefore, A+B needs 2 ·2ks = 4ks bits. Because of subsequent data expansion by
a factor of 2 due to encryption, finally, the ciphertext fits into 8ks bits, which would
require a modulus of 8ks bits size for the Paillier cryptosystem with modulus n. If
the modulus is smaller (see below for a practical example), the message can be split
into multiple messages, the number of which is

⌈ 8ks
2n

⌉
=
⌈ 4ks

n

⌉
.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 27

As a practical example consider k = 96 values of a day profile arising from a 15
minute measurement interval, a bit size of s = 16 and |U |= 5 utilities, each having
|Lu|= 20 template load profiles. Therefore, a template load profile (as well as load
profile forecast) is of size 4ks = 4 · 96 · 16 = 6144 bits. According to latest NIST
recommendations [41], a Paillier modulus of n = 2048 bits (expanding to 4096 bits)
is chosen, which requires three messages of that size, since 8ks

2n = 4ks
n = 3.

For the homomorphic encryption approach, the smart meter sends its homomor-
phically encrypted load profile forecast to each of the |U | utilities. As described
above, sending one load profile forecast requires three messages of 4096 bits size
after encryption. Sending all load profile forecasts in this step therefore requires
3 ·4096|U | bits.

In addition, the oblivious transfer step at the end requires one message of 256
bits size (when using AES-256 [38]). Thus, the total bandwidth for sending needed
by a single smart meter is 7.53 KiB (rounded to two decimal places).

Each utility responds to the requesting smart meter with a partial result (see Equa-
tion 6) for each of the |Lu| template load profiles, as described above. From this,
the smart meter calculates the Euclidean distance. One template load profile requires
3 ·4096 bits, as described above. One utility therefore sends 3 ·4096|Lu| bits. Thus,
|U | utilities send 3 ·4096|Lu||U | bits, which are received by the smart meter.

In addition, the oblivious transfer step requires sending |Lu| messages of 256
bits size. The smart meter thus receives a total of 3 · 4096|Lu||U |+ 256|Lu| bits
= 150.63 KiB (rounded to two decimal places). The total required bandwidth is
shown in Figure 5 (solid and dashed black lines).

With the embedding approach, the smart meter needs to send its load profile fore-
cast consisting of m bits of data to the third party. All |U | utilities need to send |Lu|
template load profiles of m bits each, totaling |U ||Lu|m bits. For the communica-
tion of the best-matching indices (u∗, l∗), s = 16 bits = 2 B should suffice.

Figure 5 shows the bandwidth requirement for the embedding approach pre-
sented in [4] (solid and dashed red lines, as well as dash-dotted blue line) for various
embedding dimensions m and a third party. As discussed in [4], m = 8192 (dashed-
dotted gray line) is a reasonable choice, resulting in an overhead of 100 KiB.

The bandwidth for sending and receiving required by smart meters is orders of
magnitudes smaller for the embedding protocol than for the protocol with homo-
morphic encryption. This is important, since in practical scenarios the bandwidth
connecting smart meters with other parties is likely to be low [42], especially when
using power-line communication (PLC). While the total communication amount for
the embedding method can even be higher than for the homomorphic method, most
of it is needed for the communication from utilities to the third party where a much
better connection is likely.

The approach based on homomorphic encryption does not require a third party
to perform the distance calculation, since either of the participants is involved ex-
actly once in exchanging messages and can limit the rate of requests in order to
prevent chosen-plaintext attacks to learn about load profiles. However, the smart
meter – which is usually a device with only limited computational capabilities –
has to perform the distance computation for every template load profile from every

28 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

log2(m)
8 9 10 11 12 13 14 15 16 17

C
om

m
un

ic
at

io
n

ov
er

he
ad

 [K
iB

]

10-2

10-1

100

101

102

103

HE SM send
HE SM receive
Emb SM send
Emb SM receive
Emb U send

Fig. 5 Comparison of the required bandwidth for the protocol based on homomorphic encryption
and the one from [4] with variable embedding dimension m. The bandwidth needed by the smart
meter is considerably lower with the embedding protocol (denoted Emb) than with the protocol
using homomorphic encryption (denoted HE). Utilities only need to send data to the TP using the
embedding protocol (blue, dashed-dotted).

utility, which results in a total of ∑u |Lu| distance computations. This is likely to be
impractical for a device with low computational capabilities like a smart meter and
thus another disadvantage compared to our approach.

However, the homomorphic approach calculates all distances exactly. This is not
the case in the profile matching approaches presented in this paper and in [4]. In
summary, the smaller overhead in data expansion comes at the cost of only near-
perfect matching. However, the accuracy depends on m which can be chosen appro-
priately as shown in [4].

Finally, in terms of bandwidth the proposed protocol is nearly identical to the
embedding-based protocol. As shown in Figure 4, the third party TP is replaced by
a blockchain, but the same messages need to be sent.

However, there is an additional overhead due to the use of commitments – de-
pending on the size of the hash y as discussed in Section 3.3. Assuming y = 256 for
SHA-2, each commitment requires 512 bits in total – 256 bits for the hash as the
commitment and 256 bits for the random number in the opening. The smart meter
sends these 512 additional bits once for the load profile forecast, whereas each util-
ity sends 512 additional bits per template load profile, resulting in a total required
bandwidth of 512|Lu|. As shown in Figure 6, this additional overhead becomes
negligible for large values of m. For m = 8192, as argued practically in [4], the
sending overhead is approximately 6% for both, SM and U. The receiving overhead
is identical to the embedding approach.

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 29

log2(m)
8 9 10 11 12 13 14 15 16 17

C
om

m
un

ic
at

io
n

ov
er

he
ad

 [K
iB

]

10-2

10-1

100

101

102

103

Emb SM send
Ours SM send
Emb U send
Ours U send

Fig. 6 Comparison of the required bandwidth for our proposed protocol and the one from [4],
which both are based on embeddings. This figure uses the same scaling as Figure 5 with vari-
able embedding dimension m. The bandwidth needed for our proposed protocol (denoted ours) is
slightly higher for the smart meter and utilities (due to the commitments) than with the protocol
using a TP (denoted Emb) that is not required in our protocol. While the required bandwidth for
sending is slightly higher, both protocols perform equally well for receiving (not depicted).

6 Conclusion

We described a load profile matching protocol which enables tariff decisions in
smart grids using blockchains and smart contracts. Our protocol finds the best-
matching tariff for a customer with 93.5% accuracy, while ensuring transparency,
verifiability and reliability. The proposed protocol outperforms homomorphic en-
cryption and has comparable communication overhead to previous related work [4]
without relying on a third party. Instead of a single third party, a blockchain and
smart contracts are used which allow for decentralized, privacy-preserving tariff-
decisions in the smart grid. As in [4], the privacy of all participants depends on the
usage of embedding transformations with one exception that can be mitigated by
the use of privacy-preserving smart contracts [23].

Future work will focus on an actual implementation in Solidity and an evaluation
of the costs associated with the evaluation of the proposed smart contract, especially
when using privacy-preserving smart contracts as proposed in [23].

30 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

Acknowledgments

The financial support by the Austrian Federal Ministry of Science, Research and
Economy and the Austrian National Foundation for Research, Technology and De-
velopment is gratefully acknowledged. Funding by the Federal State of Salzburg is
gratefully acknowledged. The authors would like to thank their partner Salzburg AG
for providing real-world load data.

References

1. L. Karg, K. Kleine-Hegermann, M. Wedler, and C. Jahn, “E-Energy Abschlussbericht – Ergeb-
nisse und Erkenntnisse aus der Evaluation der sechs Leuchtturmprojekte,” Bundesministerium
fr Wirtschaft und Technologie (German Federal Ministry for Economy and Technology),
Tech. Rep., 2014, in German. [Online]. Available: http://www.digitale-technologien.de/DT/
Redaktion/DE/Downloads/ab-gesamt-begleitforschung.pdf? blob=publicationFile&v=4

2. M. Lisovich, D. Mulligan, and S. Wicker, “Inferring Personal Information from Demand-
Response Systems,” IEEE Security & Privacy, vol. 8, no. 1, pp. 11–20, 2010.

3. E. McKenna, I. Richardson, and M. Thomson, “Smart meter data: Balancing consumer privacy
concerns with legitimate applications,” Energy Policy, vol. 41, pp. 807–814, 2012.

4. A. Unterweger, F. Knirsch, G. Eibl, and D. Engel, “Privacy-preserving load profile matching
for tariff decisions in smart grids,” EURASIP Journal on Information Security, vol. 2016,
no. 1, p. 21, 2016.

5. S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Bitcoin.org, p. 9, 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

6. G. Wood, “Ethereum: a secure decentralised generalised transaction ledger,” Ethereum, Tech.
Rep., 2017. [Online]. Available: https://ethereum.github.io/yellowpaper/paper.pdf

7. P. McDaniel and S. McLaughlin, “Security and Privacy Challenges in the Smart Grid,” IEEE
Security Privacy Magazine, vol. 7, no. 3, pp. 75–77, 2009.

8. G. Eibl and D. Engel, “Influence of Data Granularity on Smart Meter Privacy,” IEEE Trans-
actions on Smart Grid, vol. 6, no. 2, pp. 930–939, 2015.

9. S. D. Rane and P. Boufounos, “Privacy-Preserving Nearest Neighbor Methods: Comparing
Signals Without Revealing Them,” IEEE Signal Processing Magazine, vol. 30, no. 2, pp. 18–
28, 2013.

10. J. Kilian, “Founding Cryptography on Oblivious Transfer,” in ACM Symposium on Theory of
Computing. Chicago, IL, USA: ACM, 1988, pp. 20–31.

11. S. Mukherjee, Z. Chen, and A. Gangopadhyay, “A privacy-preserving technique for Euclidean
distance-based mining algorithms using Fourier-related transforms,” VLDB Journal, vol. 15,
no. 4, pp. 293–315, 2006.

12. P. Ravikumar, W. W. Cohen, and S. E. Fienberg, “A Secure Protocol for Computing String
Distance Metrics,” International Conference on Data Mining (ICDM), pp. 40–46, 2004.

13. W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure kNN Computation on
Encrypted Databases Categories and Subject Descriptors,” Proceddings of the 35th SIGMOD
International Conference on Management of Data, pp. 139–152, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1559845.1559862

14. P. T. Boufounos and S. Rane, “Efficient Coding of Signal Distances Using Universal Quan-
tized Embeddings,” 2013 Data Compression Conference (DCC), pp. 251–260, 2013.

15. J. H. Cheon, M. Kim, and K. Lauter, Homomorphic Computation of Edit Distance. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, vol. 8976, pp. 194–212.

16. Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating Private Recommendations
Efficiently Using Homomorphic Encryption and Data Packing,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 7, no. 3, pp. 1053–1066, 2012.

http://www.digitale-technologien.de/DT/Redaktion/DE/Downloads/ab-gesamt-begleitforschung.pdf?__blob=publicationFile&v=4
http://www.digitale-technologien.de/DT/Redaktion/DE/Downloads/ab-gesamt-begleitforschung.pdf?__blob=publicationFile&v=4
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://doi.acm.org/10.1145/1559845.1559862

Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts 31

17. S. D. Rane, W. Sun, and A. Vetro, “Secure distortion computation among untrusting parties
using homomorphic encryption,” in 2009 16th IEEE International Conference on Image Pro-
cessing (ICIP), 2009, pp. 1485–1488.

18. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. D. Labati, P. Failla, D. Fiore,
R. Lazzeretti, V. Piuri, A. Piva, and F. Scotti, “A Privacy-compliant Fingerprint Recognition
System Based on Homomorphic Encryption and Fingercode Templates,” in IEEE 4th Inter-
national Conference on Biometrics: Theory, Applications and Systems, BTAS 2010, 2010, pp.
1–7.

19. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient Privacy-Preserving Face Recogni-
tion,” in Information, Security and Cryptology – ICISC 2009, ser. Lecture Notes in Computer
Science, D. Lee and S. Hong, Eds., vol. 5984. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 229–244.

20. V. Kolesnikov, A. R. Sadeghi, and T. Schneider, “Improved Garbled Circuit Building Blocks
and Applications to Auctions and Computing Minima,” Lecture Notes in Computer Science,
vol. 5888, pp. 1–20, 2009.

21. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zero-
cash: Decentralized anonymous payments from bitcoin,” in Proceedings – IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 459–474.

22. G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy: Using blockchain to
protect personal data,” in Proceedings – 2015 IEEE Security and Privacy Workshops, SPW
2015, 2015, pp. 180–184.

23. A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts,” in 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 2016, pp. 839–858.

24. A. C.-c. Yao, “How to Generate and Exchange Secrets,” in 27th Annual Symposium on Foun-
dations of Computer Science. Washington, DC, USA: IEEE Computer Society, 1986, pp.
162–167.

25. D. Catalano, R. Cramer, G. DiCrescenzo, I. Darmgard, D. Pointcheval, and T. Takagi, Provable
Security for Public Key Schemes. Basel: Birkhäuser Verlag, 2005.

26. P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent En-
ergy Systems, and Smart Loads,” IEEE Transactions on Industrial Informatics, vol. 7, no. 3,
pp. 381–388, 2011.

27. S. Caron and G. Kesidis, “Incentive-Based Energy Consumption Scheduling Algorithms for
the Smart Grid,” in 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm), 2010, pp. 391–396.

28. S. Shao, T. Zhang, M. Pipattanasomporn, and S. Rahman, “Impact of TOU Rates on Distribu-
tion Load Shapes in a Smart Grid With PHEV Penetration,” in 2010 IEEE PES Transmission
and Distribution Conference and Exposition: Smart Solutions for a Changing World, 2010,
pp. 1–6.

29. S. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings, “Agent-Based Control for
Decentralised Demand Side Management in the Smart Grid,” in The 10th International
Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’11, vol. 1. Taipei,
Taiwan: International Foundation for Autonomous Agents and Multiagent Systems, 2011, pp.
5–12. [Online]. Available: http://eprints.soton.ac.uk/271985/

30. A.-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia,
“Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption
Scheduling for the Future Smart Grid,” IEEE Transactions on Smart Grid, vol. 1, no. 3, pp.
320–331, 2010.

31. F. Knirsch, “Privacy enhancing technologies in the smart grid user domain,” it - Information
Technology, Thematic Issue: Recent Trends in Energy Informatics Research, vol. 1, no. 59, pp.
13–22, 2017.

32. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure Network Coding over the Inte-
gers,” in Public Key Cryptography – PKC 2010, ser. Lecture Notes in Computer Science,
D. Pointcheval and P. Q. Nguyen, Eds., vol. 6056. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, pp. 142–160.

http://eprints.soton.ac.uk/271985/

32 Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel

33. D. Fiore, R. Gennaro, and V. Pastro, “Efficiently Verifiable Computation on Encrypted Data,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. Scottsdale, AZ, USA: ACM, 2014, pp. 844–855.

34. G. W. Peters and E. Panayi, “Understanding Modern Banking Ledgers through Blockchain
Technologies: Future of Transaction Processing and Smart Contracts on the Internet of
Money,” in Banking Beyond Banks and Money: A Guide to Banking Services in the Twenty-
First Century, T. Paolo, T. Aste, L. Pelizzon, and N. Perony, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 239—-278.

35. K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by Step Towards Creating
a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab.” in Financial Cryp-
tography and Data Security. Barbados: International Financial Cryptography Association,
2016, pp. 79–94.

36. T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
Advances in Cryptology – Crypto ’91, vol. 91, 1992, pp. 129–140.

37. ITU-T, “Recommendation ITU-T X.509 – Information technology – Open Systems Intercon-
nection – The Directory: Public-key and attribute certificate frameworks,” 2012.

38. National Institute of Standards and Technology (NIST), “Specification for the Advanced En-
cryption Standard (AES),” 2001.

39. R. Lagendijk, Z. Erkin, and M. Barni, “Encrypted Signal Processing for Privacy Protection,”
IEEE Signal Processing Magazine, vol. 30, pp. 82–105, 2013.

40. P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,” in
Advances in Cryptology — EUROCRYPT ’99: International Conference on the Theory and
Application of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceed-
ings, ser. Lecture Notes in Computer Science, J. Stern, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, vol. 1592, pp. 223–238.

41. E. Barker, W. Barker, W. Burr, W. Polk, M. Smid, and C. S. Division, “NIST 800-57: Computer
Security,” pp. 1–147, 2012.

42. A. Unterweger and D. Engel, “Resumable Load Data Compression in Smart Grids,”
IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 919–929, 2015. [Online]. Available:
http://dx.doi.org/10.1109/TSG.2014.2364686

http://dx.doi.org/10.1109/TSG.2014.2364686

	Privacy-Preserving Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts
	Fabian Knirsch, Andreas Unterweger, Günther Eibl and Dominik Engel
	Introduction
	Related work
	Secure Distance Computation
	Blockchains and Smart Contracts
	Other Related Work

	Preliminaries
	Requirements
	Profile Matching Protocol
	Blockchains and Smart Contracts
	Assumptions

	Protocol Description
	Initialization
	Matching
	Oblivious Transfer

	Evaluation
	Implementation
	Privacy and Security
	Comparison to Related Work

	Conclusion
	References

