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Particularly with respect to coordinating power consumption and generation, demand response (DR) is a
vital part of the future smart grid. Even though, there are some DR simulation platforms available, none
makes use of game theory. This paper proposes Okeanos, a fundamental, game theoretic, Java-based,
multi-agent software framework for DR simulation that allows an evaluation of real-world use cases.
While initial use cases are based on game theoretic algorithms and focus on consumption devices only,
further use cases evaluate the effects of plug in electric vehicles (PEVs). Results with consumers show
that the number of involved households does not affect the costs per household. Further evaluation
involving PEVs demonstrates that with an increasing penetration of PEVs and feed-in tariffs the costs
per household per month decrease.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Energy demand in the USA is expected to increase by at least
19%, the supply, in contrast, is only expected to rise by 6% [1]. Fur-
thermore, this energy mismatch is not a US-specific problem [2,3].
While renewable energy could help relieve the load on the grid, it
also poses a significant challenge to the grid in terms of keeping
supply and demand in balance. With respect to coordination,
demand response management (DRM) could pose an ideal solution
to this problem [4,5]. DRM refers to ‘‘changes in electric usage by
end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time, or to
incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability
is jeopardized” [6, 21].

Game theory, in its essence, aims to help understand situations
in which several decision-makers interact. Being a mathematical
framework and analytical tool, game theory helps study the
relationships and actions among rational players. This characteris-
tic renders it an ideal tool to model and understand the inherent
complexity of demand response (DR) resulting from this interac-
tion. Publications in this area range from load shifting approaches
[7,8] to using storage devices such as PEVs in micro-grid storage
games [9] to games that focus on utility companies [10,11]. One
thing that these works have in common is a mathematical proof
that by optimizing a utility function, a stable point called a Nash
equilibrium will be reached [12,13].

This study proposes Okeanos, a novel, game theoretic, Java-
based, multi-agent software framework for DR simulation that is
capable of investigating the effect of optimizing multiple electric
appliances using a game theoretic approach. It is fundamentally
different from other DRM software approaches as it plans con-
sumption and production ahead of time. By utilizing game theory,
Okeanos benefits from mathematically sound solutions for finding
the optimal schedule for household appliances. It supports the sim-
ulation of different types of loads and can be configured to work
with different game theoretic DRM approaches. The current source
has been released as open source1 and can be used and extended to
fit various needs.

While initial results show that savings of up to 6% can be
achieved by changing the switch-on time of three household appli-
ances, higher savings can be achieved either by adding more man-
ageable devices to the simulation or by incorporating elective
vehicles (EVs) of some sort. In this study, the focus will remain
on plugin EVs (PEVs).

The remainder of this paper is structured as follows: The funda-
mental DR simulation platform, Okeanos, is introduced and key
concepts are highlighted in Section ‘‘Okeanos”; Results of load
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shifting are presented and described in Section ‘‘Simulation of mul-
tiple households with load-shifting devices”; This is followed by
simulations that incorporate PEVs in Section ‘‘Evaluation of
Okeanos with plug in electric vehicles”; and, finally, Section
‘‘Conclusion” concludes this work.
2 For detailed instructions on the exact syntax see [22].
Okeanos

Okeanos is a novel DR simulation platform with a special focus
on the inclusion of game theory. Unlike the software presented in
[4,14,15], any coordination mechanism that complies with the
defined interface is compatible with Okeanos.

Okeanos aims to be a holistic platform for DRMwith support for
a wide variety of appliances. Through the means of extensibility,
new devices can be added by writing a driver for the specific appli-
ance. With OSGi as the foundation, new features can be easily
developed, deployed or replaced.

Independent smart household appliances

Similar to other approaches, Okeanos utilizes the multi-agent
paradigm to represent household appliances. Thus, with a one-
to-one matching between agents and household devices, every
device can work towards and set goals or targets on its own. Appli-
ances are proactive and make independent decisions according to
the information available to them.

In order not to implement all multi-agent features from scratch,
Okeanos builds on JIAC, a feature-rich, modularized and easy to use
framework [16]. JIACs modern approach that uses the Spring
framework as the basis for the whole system is unique throughout
a comparison of multi-agent frameworks including JADE [17],
Janus [18] and Jason [19]. Additional evaluation criteria included
functionality, active development, ease of use and adoption
throughout the software developer community.

In JIAC, the functionality of agents is defined by agent beans.
Each bean is a small module with a well-defined responsibility,
leading to improved reusability [16]. The energy consumption
game described in Section ‘‘Coordination mechanism in Okeanos”
is an ideal example for this. Its responsibility is to ensure the cor-
rect sequential execution of the algorithm. All agents taking part in
the schedule optimization process use this bean. Due to the auton-
omy of agents, it is possible that agents use different games. The
meaningfulness of such a mixture, however, is questionable, as
no guarantee of the existence of a Nash equilibrium can be given
under such circumstances.

The callback functions (cf. Fig. 2) allow for separation of con-
cerns, as the agent itself is still responsible to forward requests
to the corresponding components. Similarly, drivers and other ser-
vices are agent beans as well, ready to be used by agents to support
its goals.

Plug in support

OSGi and the Spring framework are two well-known Java
frameworks that provide a solid foundation for Okeanos. While
both are very powerful tools and offer many features for their
respective fields, they share some key concepts, most notably loose
coupling and separation of concerns. Naturally, it is beneficial to
combine the two and have a module-based, service oriented sys-
tem as the platform Okeanos runs on, using Spring for the wiring
of the components. Eclipse Gemini Blueprint provides a clean
and easy to use interface for integrating the two frameworks.

However, to be able to fully utilize benefits of loose coupling,
thorough planning is required. Device drivers are the perfect
example for the need for extensibility. A flexible and powerful
interface eases the interaction with new implementations and
the integration of new modules into the system. This is crucial to
be able to keep the threshold for developing new modules as low
as possible.

With Okeanos built on OSGi, it comprises a conglomerate of
various bundles (see Fig. 1) rather than a monolithic core. To allow
for optional bundles, the OSGi R5 specification [21] recommends
separating interfaces from the implementation in a separate bun-
dle. Consider, for example, a logging service: The application does
not necessarily need an implementation for a correct execution,
however, at least the interface needs to be present to allow for
proper resolution.

As indicated in Fig. 1, every service in Okeanos could be repre-
sented in its own module. While, this is possible, it also implies an
explosion of projects and, therefore, an increase in complexity.
Therefore, layers serve as the boundaries for modules in Okeanos.
As recommended, the interfaces of each layer are separated from
the implementation and consolidated in different bundles.

Likewise, as it is possible to have no implementation in an OSGi
container, it is possible to have multiple implementations present.
This is especially true for device drivers, as they all implement the
same interface. To be able to distinguish between drivers, addi-
tional properties, such as year and brand of a household device,
can be specified.

Fig. 1 shows the logic separation between the supporting
libraries in the infrastructure bundles area and the application
bundles that provide the actual functionality. The Spring extender
bundle that is part of the Eclipse Gemini Blueprint project is
responsible for activating all Spring powered application bundles
and starting up their Spring contexts. This is similar to a J2EE envi-
ronment, where the Spring application context is started by the
application server, whereas here, the extender bundle is responsi-
ble for starting all application contexts.

Every such bundle has its own independent context that can
import and export services by using special tags2 in the con-

text.xml file. The exported services are regular Spring beans that
are registered in the OSGi service registry and, thus, made available
to other contexts. For imported services, respectively, Gemini Blue-
print searches for a suitable match in the OSGi service registry,
fetches it and makes it available to the context.

Coordination mechanism in Okeanos

The requirement of game theory that players have to act ration-
ally is ensured by representing every player by its own agent. Play-
ers in this context are household appliances as described earlier.

While there are a number of published game theoretic
approaches to DR management [7–11], the game proposed by
Mohsenian-Rad and co-authors [7] was modeled with Okeanos as
a first proof of concept. Reasons for this include that the algorithm
was formulated in pseudo code, which allows for accurate adapta-
tion. Further, potentially more devices can be integrated in the first
place by utilizing load shifting as if it were possible with storage
devices due to the lack of available data.

The decentralized objective function in [7] with xhn;a as the
energy consumption of a scheduled appliance a of user n at hour
h is given by

minimize
xn2Xn

XH
h¼1

Ch

X
a2An

xhn;a þ
X

m2Nnfng
lhm

 !

subject to lhm ¼
X
a2An

xhm;a h 2 H

ð1Þ



Fig. 1. Okeanos bundle structure with sample household devices and services. The indicated dependencies are only for illustrative purposes. Drivers do not depend on each
other in Okeanos. Adapted from [20].
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with a set of cost functions Ch that are increasing and strictly con-
vex [7].

Every appliance only needs to optimize its own schedule xhn;a,

because the consumption of all other players lhm; m 2 N n fng is
static. For debugging reasons and the sake of comprehensibility,
Okeanos uses particle swarm optimization (PSO).

As denoted in Fig. 2, the algorithm proposed in [7] is started by
the agent every time a new schedule is needed. Okeanos adopts the
suggested 24 h planning horizon, which requires the agent to initi-
ate it once a day.

The next step is to minimize the costs, i.e., solve the objective
function (1). To be able to do that, the necessary information needs
to be obtained first. The game has no knowledge, which device is
used, therefore, it asks the agent. It knows about the configuration,
obtains the information from the driver and returns it. Because the
agent is the broker, it could also decide to alter this information.
That is, stricter time frames could be set or it could remove itself
completely from the schedule.

With that information in its memory, a configuration object of
the local device and the most current information of all other
devices is assembled. Subsequently, the agent is asked to optimize
the configuration. Again, due to re-usability only the agent has
knowledge about which optimization algorithm, game and drivers
are used. The agent forwards the request to the optimization algo-
rithm, e.g., PSO, which then returns the optimized schedule to the
agent and, finally, to the energy consumption game.

The agent is then asked to approve the schedule before contin-
uing. At that point, the algorithm proceeds by checking whether
the optimized schedule has changed since the last announcement.
If so, it broadcasts the new schedule to other agents. If not, Okea-
nos sets a timeout after which the agent assumes that no new
schedules will be announced anymore.

If a new schedule is received within this time, the timeout is
reset and the process starts again, as denoted by the loop-box in
Fig. 2. This is repeated until no new schedules are received
anymore and the timeout finally expires.

Once the timeout has expired, the equilibrium is reached and
the agent informed about it by calling a callback function with
the final schedule for the local device and the sum of the final
schedules of all other devices.
Optimization algorithm

The optimization algorithm tries to find solutions to (1).
Currently, only two different implementations of PSO are available.
PSO belongs to the category of swarm algorithms and is loosely
inspired by bird flocks or fish schools as first presented by Eberhart
and Kennedy in 1995 [23].

The two implementations only differ in the solution space: The
first implementation PSORegulableLoadOptimizer covers load shift-
ing, while the second, PSORegenerativeLoadOptimizer, also handles
charging and discharging of PEVs. Therefore, for load shifting, the
velocity, as it represents a change relative to the current position,
is represented as a vector of time differences in 15 min steps. This
resolution tries to strike a balance between an optimal solution,
which requires a higher resolution and a good solution, which
can be calculated considerably faster. The position comprises the
start times a device runs. That is, the position of a washing
machine that has to run twice a day would be represented by a
vector that comprises two values: the start time of the first run
and the start time of the second run.

For charging and discharging of PEVs, Okeanos takes a different
approach using PSORegenerativeLoadOptimizer. Not the start time is
relevant here, but the amount of power charged or discharged at
every 15 min interval is important. This is also exactly what a par-
ticle’s position comprises. The velocity is a vector containing the
change of charge for every interval. Optimizing regenerative loads
like PEVs is more challenging, as a maximum capacity, minimum



Fig. 2. Process flow of energy consumption game.

Table 1
Comparison of costs per household per month with an increasing number of
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capacity and maximum charge per slot need to be taken into
account too.
households.

10
Households

20
Households

50
Households

Costs per month per
household

$88.57 $86.84 $90.23
Simulation of multiple households with load-shifting devices

In a recent publication [24] Pipattanasomporn et al. collected
the load profiles of selected major household appliances like dish-
washers, AC units, refrigerators, washing machines and dryers. The
data is available either in one second intervals or in one minute
intervals that average the consumption over 60 s periods. Hence,
due to the quality of the data, devices from this survey are modeled
in Okeanos.

Here, the initial results presented in [25] are extended. These
results show that by optimizing three household appliances of
one household, Okeanos can save up to 5.9% of energy costs per
month. The next logical step is to increase the number of house-
holds involved. That is, this section studies the impact of a rising
number of households on the costs per household per month.

Not every household is alike, therefore, the load profile for every
household is randomly scaled to either 25, 28, 30, 33 or 35 kWh per
day. Additionally, it is randomly shifted between 1 h of its regular
time. Finally, dishwashers, washing machines and clothes dryers
run with a 33% chance. This configuration is chosen to account
for different habits and usage patterns of customers.

As illustrated in Table 1 and Fig. 3, altering the number of
households does not change the outcome. It, however, can be seen
that the peaks are getting more extreme the more households are
involved.

At least two explanations should be considered when
interpreting this results. On the one hand, there are too few devices
that can be shifted. Also, because the load profiles of households
have a minimum at the point in time when energy is cheapest,
devices hardly have any other choice but to be switched on at that
time. Further, because the average consumption of households is
mostly the same, the energy consumption keeps stacking up and,
as aforementioned, load shifting devices cannot smoothen the
peaks.

On the other hand, the convex cost function at every point in
time could need its parameters readjusted. This, however, is not
very likely, as the devices that respond to costs, already run at
the cheapest points in time. Households, however, do not react
to different costs, which explains the peaks and the stacking of load
profiles.



Fig. 3. Impact of the number of participating households on load profile.
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According to Table 1, the costs per household per month do not
show a significant difference when the number of participating
households is increased. The reason for this is the same as
described before: The load profiles are stacked.
Evaluation of Okeanos with plug in electric vehicles

This use case investigates the impact of integrating PEVs in the
previous use case. As electric vehicles are all about storing energy,
this is an extension to the implemented game theoretic algorithm
[7], which proposes an energy consumption scheduling game. The
original game was never designed for storage. The micro-storage
management game proposed by [9] is contrary to that, it only
proposes storage devices and does not do any load shifting.
The proposed combination of both games is based on simulation
only and there is no mathematical proof given unlike the
individual games. Further, due to the use of PSO and the fact that
it is a meta-heuristic, an optimal solution cannot be guaranteed.
It should also be noted that all PEVs begin with an initial
state-of-charge of zero.
Fig. 4. Impact of penetration of PEVs on load p
Impact of penetration of plug in electric vehicles on costs per
household

The first use case in the category of PEVs evaluates the impact of
different penetrations of PEV on the total consumption. This simu-
lation is based on 20 households, with either 0%, 25%, 50%, 75% or
100% of them owning one PEV. Owning really means having it
stand around and not actively use it for transportation as for what
it is made. In this configuration it acts like a rechargeable battery.

Furthermore, it uses a feed-in tariff of 50%. This means that if
any device sells back energy to the grid, it will get 50% of the
money it would cost the device to buy the same amount of energy.
Additionally, as in the previous section, load shifting devices are
switched on with a 33% chance.

As Fig. 4 shows, if only five of the 20 households, i.e., 25%, have a
PEV, they completely change the load profile of households, over-
riding it with their own consumption pattern. This pattern, ulti-
mately, is derived from the price function. As can be seen, PEVs
charge themselves at the beginning of the day where the price
for energy is cheap and use this energy later in the day to prevent
the household from having to pay the peak price.
rofile. % PEV: variable, feed-in tariff: 50%.



Table 3
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An interesting phenomenon can be noticed at the end of the day
at around 11 p.m. At this time devices start to discharge their
remaining energy. This is due to the limited planing horizon, which
is currently 24 h. Because devices cannot plan more than that, they
want to sell the remaining energy to get the most out of the day.

The change of the load profile can be either wanted or
unwanted. Even with a 25% penetration of PEVs, the peak con-
sumption is nearly at 40 kW, compared to roughly 30 kW if there
are no PEVs present. For higher penetrations, there is an even
higher peak at the low-cost periods. This could be another
unwanted peak as the grid needs to be prepared for that. If the grid
is capable of transporting that amount of energy, this could be
valuable to the utility company, because it sells cheap energy to
customers and gets expensive energy for a cheap price, e.g., with
a 50% feed-in tariff, which can be sold to other utility companies.
Customers, despite the low feed-in tariff, still profit from selling
energy back.

If the grid is not capable of handling that amount of energy, a
possible countermeasure would be to adjust the cost function.
The base price could either be changed or the factor, the costs
per kWh at a point in time rise, could be adjusted as well. The latter
countermeasure potentially has higher prospects of success, as it
particularly penalizes high uses of energy, which, eventually, leads
to a flatter load profile.

Table 2 compares the average costs per month for a household
for a different penetration of PEVs with a 50% feed-in tariff. Most
notably, the more households use PEVs the cheaper the average
price for all households. Finally, when all households own a PEV
and do not use it for anything else beside from participating in load
scheduling, households can cut down electricity costs to approxi-
mately one fourth compared to not using PEVs at all.

This, however, is very unlikely to happen outside of simulation,
as the simulation does not take a wide range of factors into
account. Especially, (i) households own PEVs to use them and not
let them stand in the garage at the charging station and (ii) the
wear of batteries, etc. is not taken into account.
Table 2
Comparison of costs per household per month with an increasing number of
households owning PEVs with a 50% feed-in tariff.

Penetration of PEVs

0% 25% 50% 75% 100%

Costs per month per
household

$88.20 $65.98 $52.27 $40.36 $27.50

Fig. 5. Impact of feed-in tariffs on load profi
The simulation, though, respects the maximum capacity, the
minimum capacity, the maximum charge at a time and is also
capable of ‘‘unplugging” a PEV, which means that the vehicle is
currently in use and cannot be used for load scheduling. Further-
more, if a PEV is used, it also loses some charge, which can be
expressed by the software as well.

Cross comparison of impact of feed-in tariff and penetration of plug in
electric vehicles on costs per household

This use case is based on the previous use case, however, greatly
expands the changed parameters. A parameter study of the feed-in
tariff and the penetration with PEVs is done, unlike the previous
use case that assumed a fixed feed-in tariff of 50%.

Fig. 5 illustrates the load profile when changing the feed-in
tariffs. It clearly shows that the higher the incentive, i.e., the higher
the feed-in tariff, the higher the likelihood that PEVs will charge
during low-cost periods and discharge at high cost periods. Again,
this is very similar to previous findings and is the result of trying to
minimize the occurring costs for each device.

More interesting, however, is Table 3 and Fig. 6, which
illustrates, respectively gives the exact numbers of the costs per
household per month depending on the feed-in tariffs and the
penetration with PEVs.

As previously pointed out, the costs per household per month
decrease the more incentive is given (a higher feed-in tariff) or
the more PEVs are available in the simulation. This effect results
in households earning money at the end of the month when there
are both, a high incentive and a high number of PEVs available.

The reason that the costs decrease with an increasing number of
PEVs even with a 0% feed-in tariff is that the PEVs in that case are
not actually selling the energy back to the grid, but provide it to
other devices. Obviously, in total, this leads to a lower price, as
PEVs provide energy during the high-cost periods.
le. % PEV: 100%, feed-in tariff: variable.

Comparison of costs per household per month with different feed-in tariffs and a
different penetration of PEVs.

Feed-in tariff

0% 25% 50% 75% 100%

Households with PEVs
0% $87.01 $86.41 $88.20 $86.78 $87.24
25% $69.25 $68.70 $65.98 $63.77 $64.37
50% $64.21 $61.55 $52.27 $38.81 $35.36
75% $66.65 $58.73 $40.36 $17.47 $9.05
100% $67.52 $56.01 $27.50 �$9.50 �$14.98



Fig. 6. Cross comparison on the impact of different feed-in tariffs and penetration
of PEVs on the costs per household per month.
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However, earning money through the use of PEVs seems
unlikely as [9] simulated the impact of storage devices as well,
with the result that in the UK 38% is ideal number of households
owning a 4 kWh storage device, when the savings of up to 13% is
at its maximum. These savings do not result in the households
earning money at the end of the month. What can be done to make
it more realistic is to adjust the aforementioned factor by which
the costs per kWh rises.

Further, it can be noted that increasing the feed-in tariff from
75% to 100% has a significantly smaller impact than increasing it
from 50% to 75%. One reason could be that the PEVs already use
their whole available capacity when the 75% feed-in tariff is
offered. Similarly, increasing the percentage of PEVs from 75% to
100% does only have a big impact with high feed-in tariffs.

There does not seem to be a particular parameter combination
that is ideal for every case. The decision on the feed-in tariff has to
be made by the utility company for every specific situation.
Obviously, the number of PEVs in a grid need to be taken into
account for that decision.

Conclusion

In this paper, Okeanos, a novel multi-agent demand response
simulation platform focusing on the evaluation of game theoretic
approaches was described. A major characteristic is its extensibil-
ity, which allows to support numerous household devices and
enables the simulation of various games.

Simulation with three household devices shows that the costs
per household are unaffected by number of involved households.
Results involving PEVs demonstrate a decrease in the monthly
utility bills per household with an increasing penetration of PEVs
and feed-in tariffs. Future work will study the impact of using PEVs
for commuting on the costs per household over longer periods
(e.g. months, years, etc.).
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