
Evaluation of OSGi-based Architectures for
Customer Energy Management Systems

Mike Pichler
Corporate Technology

Siemens AG
Vienna, Austria

Email: mike.pichler@siemens.com

Armin Veichtlbauer and Dominik Engel
Josef Ressel Center for

User-Centric Smart Grid Privacy, Security and Control
Salzburg University of Applied Sciences
Email: {firstname.lastname}@en-trust.at

Abstract—The Smart Grids requires distributed components
to control the demand side. These components have to fulfill
various requirements from communication issues to graphical
user interfaces for monitoring and controlling. In this paper,
we define high level requirements to software architectures
for Customer Energy Management Systems and evaluate some
existing solutions based on Java and OSGi. The conclusion shows,
that there are some promising solutions available, although none
of the evaluated frameworks fulfills all requirements.

Keywords—Smart Grid, Customer Premise, Smart Home, En-
ergy Management, Architecture, CEMS

I. INTRODUCTION

Applications like demand side management and demand
response allow to integrate the customer premise into the
energy system. While there is plenty of experience in optimiz-
ing energy generation and distribution, the customer premise
is a relatively new topic for research and industry [1]. The
Smart Grid Coordination Group introduces the Customer En-
ergy Management System (CEMS) to connect appliances that
consume, generate or store energy to the Smart Grid [2]. These
appliances are located in residential or commercial buildings.

While commercial facilities usually are equipped with
Building Automation Systems (BAS), today’s residential build-
ings mostly don’t have any automation. Even if there is a Home
Automation Systems (HAS) installed (making the customer
premise a “Smart Home”), it is completely different to a BAS,
as it usually lacks higher order business logics such as energy
optimization, etc. Yet it is expected that major consumers in
households like heat pumps will become “smarter”, i.e., they
will be able to communicate with a CEMS.

This paper evaluates different open source software archi-
tectures and frameworks, which can be used for a CEMS.
It is structured as follows: After a short overview of related
work, the software requirements on CEMSs will be defined
based on use cases from different sources. In the evaluation
section, the candidate solutions will be evaluated based on
these requirements. Finally, a conclusion of the work is given,
as well as an outlook to further steps.

II. RELATED WORK

In [3], the authors introduce Information and Communica-
tion Technologies (ICT) architecture functionalities for Smart
Homes. They mention three technical “measures” on which

the functionalities of the ICT architecture are based: End user
feedback on his/her energy behavior, automated decentralized
control of distributed generation and demand response for a
better local match between demand and supply, and finally
control for grid stability and islanding operation to maintain
or restore stability in (distribution) grids. These measures
describe the basic functionality of CEMSs. More detailed use
cases are formulated by the Home Gateway Initiative (HGI)
in [4]. Nevertheless, all HGI use cases can be allocated to the
measures listed above. The use cases and measures are used
to extract some basic requirements of CEMSs.

Smart Homes can be divided into several domains like
safety, comfort, entertainment, etc. [5]. An increasingly impor-
tant role over the last years play electro mobility and Ambient
Assisted Living. These domains have an enthusiastic develop-
ment and user community. Thus, several software architectures
for Home Automation are available, most of them under open
source licenses. Many architectures are implemented in Java
and use the OSGi framework [6] to ensure a modular and
adaptable design. The benefits of using OSGi for CEMS have
been described in [7] and [8].

Additional inputs come from different research and devel-
opment projects within the Smart Grid Model-Region Salzburg.
In the Building2Grid project, so-called Building Agents were
used to enable physical and marked-oriented demand response
[1]. This agent got enhanced to the Building Energy Agent
(BEA), which has been installed in 40 buildings in the
township Köstendorf near Salzburg. The third relevant project
is the Smart Grids-friendly housing area HiT, which is also
equipped with a BEA enabling demand response with day-
ahead pricing.

III. REQUIREMENTS AND EVALUATION CRITERIA

This section describes the functional requirements of soft-
ware architectures for CEMS. In principle, the evaluation of the
considered architectures and frameworks can be done in three
ways: Evaluation of non-functional requirements, source-code
evaluation based on static and dynamic software metrics, and
evaluation of functional requirements. Whereas non-functional
requirements can be evaluated using methods like the Archi-
tecture Tradeoff Analysis Method (ATAM) [9], source-code
evaluation is usually done with tools like Sonatype Qube. This
paper focuses on the evaluation of functional requirements
only, based on the topics named by [10].



Java/OSGi	  

Communica0on	  Drivers	  

BACNet	  

Framework	  Services	  

Logging	  

Graphical	  User	  Interface	  

Provisioning	  

Configura<on	  

Security	  Services	  

Data	  Model	  and	  Persistence	  

Applica0ons	  

KNX	   ...	  

Sensors	   Actuators	   ...	  

App	  1	   App	  2	   ...	  

Fig. 1. Application Framework on the basis of [12]

The basic components of an application framework for a
CEMS are shown in Figure 1. On top of Java and OSGi,
communication drivers enable connecting different devices and
appliances to the CEMS. These components can be accessed
from applications using a standardized data model. In addition,
common services like logging, configuration and a graphical
user interface have to be provided. In this section, we define
the functional requirements for the later evaluation. All re-
quirements listed in the following sections have been derived
from the use cases described in [4], [11] and [2].

A. Applications

Applications represent the business logic of the CEMS.
They can use different services provided by the framework and
provide data to or consume them from other applications (see
Figure 1). A CEMS can be a multi-vendor system, running
applications from different manufactures. This leads to the
problem, that a single application can cause a system crash, for
instance when allocating too much memory. A way to isolate
applications in OSGi platforms has been presented in [13].

The architecture should enable application development
in an effective and unified way. Developers shall be able
to access common functionality provided by the framework
using standardized methods and services. A common way to
provide this access is to pass a context object to the application
during initialization. This method is also used by OSGi, which
passes a context instance to bundles and components [6]. An
architecture for CEMS can use the mechanisms provided by
the OSGi framework or can define own classes or interfaces
for application development.

R1.1: The CEMS shall provide a standardized way to access
framework services.

R1.2: The CEMS shall separate the runtime environment of
different applications (sandboxes).

R1.3: The CEMS shall provide a common (interface) class for
applications.

B. Communication

As described in [2], one of the main purposes of a CEMS
is to connect the customer premise to higher-level energy
and/or power management systems. Thus, a CEMS in its
most simple form is a communication gateway between the

External	  En*ty	  

Customer	  Energy	  
Manager	  

Common	  Data	  Model	   Da
ta
	  M

ap
pi
ng
	   Protocol	  1	  

Protocol	  2	  

…	  

BAS/HAS	  

Smart	  Appliances	  

Fig. 2. CEMS context as defined in [11]

BAS/HAS and the Smart Grid. Thus, communication protocols
and data models are the most important aspects of a CEMS
architecture or framework. Figure 2 shows the context of a
CEMS. The arrows indicate communication channels with the
surrounding world. The communication with external entities
will be standardized by IEC TC57 WG21 and is still work in
progress. As transportation protocol, the extensible messaging
and presence protocol (XMPP) is considered.

Inside the building, the CEMS mainly communicates with
energy-related devices and appliances. As this domain is very
heterogeneous and uses a lot of communication protocols like
BACNet, KNX, or Zigbee, the CEMS must be able to integrate
drivers for these protocols very easily and in a standardized
way. Requirements may differ depending on the type of the
building. For commercial buildings, equipped with a BAS, the
CEMS can pass schedules and other complex data structures
to the BAS using management level protocols like BACNet
or OPC-UA. For residential buildings, equipped with a HAS,
simple data structures like on/off commands must be passed
to devices like heat pumps or electrical heaters using field
level protocols like KNX. Inside the CEMS, this makes a great
difference. While the control algorithms in larger buildings are
located in the BAS, residential buildings need to run these
algorithms inside the CEMS, depending on the capabilities
of the connected devices and appliances. This leads to the
following communication-related requirements:

R2.1: The CEMS shall provide drivers for the communication
with external entities for protocols like XMPP, REST
or SOAP web services.

R2.2: The CEMS shall provide management level communi-
cation drivers for protocols of the building automation
domain like BACNet or OPC-UA.

R2.3: When the CEMS will be used in residential buildings,
it shall provide field level communication drivers for
protocols of the home automation domain like KNX.

R2.4: The CEMS shall provide developers with the ability to
implement and add new communication drivers easily
using a standardized internal interface.

C. Persistence and Data Models

Persistent data have to be stored in a way, that they are
still available after a system shutdown or restart. One of the
most common ways doing this is to use (relational) databases.
These databases work very well, if the structure of the data
is known and does not change over time. Yet developers have
to be able to define and add new complex data structures to
the framework. Thus it must be possible to store new – and at
the moment of framework creation unknown – data structures



into the system’s local database. For that purpose document-
oriented database systems are more appropriate [14].

On the other hand, a common task for CEMS is to store
time series of primitive data values, e.g., storing historical
energy consumption data. Values are sampled in a predefined
interval and are stored together with the current date and
time. Since the structure of this data doesn’t change, relational
databases can be used.

R3.1: The CEMS shall be able to store complex data structures
in a generic way, independent of the data model.

R3.2: The CEMS shall be able to store historical data like
time series and query them effectively.

R3.3: The CEMS shall provide developers with the ability to
define and add complex data structures, which can be
used by applications running within the framework.

R3.4: The CEMS shall provide developers with the ability
to map complex data structure to primitive types like
Boolean or float values to enable the usage of field level
protocols.

D. Provisioning and Configuration

When a CEMS has been installed inside a building, a lot of
configuration work has to be done. The initial configuration is
called provisioning and may also include software downloads
and updates. The provisioning process can be done manually
(by an engineer or the customer) or remotely by an external
service provider.

Since configuration can be a very cumbersome process
for customers, it should be made as easy as possible. The
CEMS must thus provide capabilities to handle configuration
for all applications in a standardized way. A single instance
must administrate all configuration artifacts in order to enable
efficient configuration.

As mentioned before, another aspect of provisioning is
the download and installation of software from a central
repository or market place. Beyond that, the framework shall
provide a standardized way for software updates, which is
independent of the provider of a single application running on
the system. Apple’s ecosystem for the mobile operating system
iOS is an example for that: the App Store enables to install
new applications and also handles software updates centrally.
Additionally to the possibility to update single applications, an
update process for the framework itself should exist.

R4.1: The CEMS shall administrate all configuration artifacts
centrally and in a standardized way.

R4.2: The CEMS shall be able to handle software update for
the installed applications centrally.

R4.3: The CEMS shall be able to download and install soft-
ware updates for the framework itself from a central
server ecosystem.

R4.4: The CEMS should provide the customer with the abil-
ity to search, download, install and uninstall software
applications.

E. Privacy and Security

Both, privacy and security are important aspects for CEMS.
This applies due to three reasons:

(1) CEMS are connected to many real-world devices like
heating systems or smart appliances. Offenders can cause
serious damage yielding high costs.

(2) CEMS are often designed as multi-vendor devices, running
applications from a lot of (more or less trustable) sources.

(3) CEMS collect confidential data from its users like energy
consumption.

Security issues can be split up into several layers. In [15],
the author introduces the network security layer, the operating
system layer and the application layer. While the network
security layer and operating system layer are out of scope
of this paper, the application layer should be covered by
CEMS frameworks and architectures. Java brings along a very
comprehensive security concept for application security with
domain specific policies, e.g., for accessing files, establishing
network connections and so on. By default, a Java application
has unrestricted permissions, yet by instancing a so-called
Security Manager, policies must be provided to control the
application’s permissions.

Another aspect in this context is code security. As ma-
licious code can cause serious damages inside the system,
only trusted code should be executed. This can be realized by
signing code with a certificate. The CEMS should only execute
code signed by a trusted instance. This is especially important
for multi-vendor systems, which execute several applications
from different vendors in a single system.

Fig. 3. OSGi Delegation Model as defined in [6]

The OSGi specification adds several new features to the
Java 2 security architecture to adapt it to the typical use cases
of OSGi deployments [6]. In the current version 5 of the OSGi
specification, this extension is called Conditional Permission
Admin Service Specification. The service maintains a system-
wide table of policies. The framework operator can provide
certificates for signing bundles and grants permissions to the
installed bundle in the OSGi framework. Figure 3 shows this
process, which is called the Delegation Model.

R5.1: The CEMS shall only execute code which is signed by
the operator or a delegated actor.

R5.2: The CEMS shall restrict accessing functions using the
Java and OSGi security mechanisms.

R5.3: The CEMS shall encrypt confidential customer data like
measurement time series.

F. Graphical User Interface (GUI)

GUIs are important parts of CEMSs in order to visualize
energy-related data like current consumption. Common ways



for providing such interfaces in the domain of home and
building automation systems are web-based interfaces running
locally or on a central server and applications for mobile
phones or tablet PCs. Independent of the GUI type, data from
the CEMS must be provided. Because this can be a security
and privacy issue, all data should be accessed in a standardized
way using a single point of entry to the system. This enables
to install a right management system and to apply policies like
described in the previous subsection.

R6.1: The CEMS shall provide a single point of entry for
accessing data related to graphical user interfaces (e.g.
a webservice).

R6.2: The CEMS shall provide a web-based graphical user
interface (GUI) for operation and configuration.

R6.3: The CEMS shall provide developers with the ability to
extend the GUI with a standardized look and feel.

R6.4: The CEMS should provide applications for common
mobile device operating systems like Apple’s iOS or
Google’s Android.

IV. EVALUATION RESULTS

Based on the requirements described in the last section,
we have evaluated four existing candidate solutions. Table I
shows these frameworks and the evaluated versions. The listed
frameworks have been chosen according to following reasons:
Distribution in the Smart Home domain and availability with
open source licenses (economic reasons), as well as imple-
mentation in Java and utilization of the OSGi framework [6]
(technical reasons).

TABLE I. EVALUATION CANDIDATE SOLUTIONS

Framework Manufacturer Version Link

OpenMUC Fraunhofer ISE 0.12.3 http://www.openmuc.org/

IoTSyS TU Vienna 0.1 https://code.google.com/p/iotsys/

OpenHAB openHAB UG 1.4.0 http://www.openhab.org/

OGEMA Fraunhofer IWES 2.0 http://www.ogema.org/

A. Applications

OpenMUC as well as IoTSyS provide no special classes
or interfaces for building an application. Services like the data
access service can by used directly from the OSGi service
registry. OGEMA follows a different approach for applications:
the framework provides an interface class for application de-
velopment. This interface allows to access framework services.
For security reasons, the direct use of OSGi services is not
allowed.

While building applications with the mentioned frame-
works requires Java programming knowledge, OpenHAB uses
scripts based on Eclipse’s Xtend language. Base functionalities
can still be implemented in Java using so-called actions. These
actions can be called from scripts afterwards. The third concept
of OpenHAB are rules, which are also Xtend scripts. Rules can
be compared with if-statements and allow to execute scripts
based on certain conditions (e.g., the room temperature drops
below a predefined threshold). Another interesting feature is
the possibility to run scripts via Google calendar entries or
manually from an XMPP-based chat console.

Table II summarizes the fulfilled requirements of each
framework which has been evaluated. While all frameworks
provide a standardized way to access the framework services
(R1.1), none of them uses sandboxes to separate the different
applications (R1.2). OGEMA is the only framework that
provides an application interface (R1.3).

TABLE II. FULFILLED APPLICATION REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R1.1 X X X X

R1.2

R1.3 X

B. Communication

All evaluated frameworks provide the concept of protocol
drivers for communication. The number of supported protocols
diverge widely between the frameworks. While OGEMA only
supports four protocols, OpenHAB brings along over 70 so-
called bindings. These range from building automation proto-
cols like KNX to appliances like Samsung Smart TVs. IoTSys
comes with about 10 drivers for the most common protocols
from the building automation domain. Furthermore, it is the
only framework that supports the BACNet protocol, which is
very popular for commercial and industrial sites.

On the other side, OpenMUC has a strong support of
energy-related protocols. In addition to KNX and Modbus,
OpenMUC also supports IEC 61850, DLMS/COSEM and
SML. These protocols can be very useful to connect the energy
domain with the building domain. Table III shows a selection
of the supported protocols from these two domains.

TABLE III. SUPPORTED PROTOCOLS (SELECTION)

Protocol OpenMUC IoTSys OpenHAB OGEMA

KNX X X X X

Modbus TCP X X X X

wM-Bus X X

BACNet X

EnOcean X X

IEC 61850 X

DLMS/COSEM X

Table IV shows the fulfilled requirements related to com-
munication. All frameworks provide field level drivers, but
only IoTSyS also provides management level drivers like
BACNet.

TABLE IV. FULFILLED COMMUNICATION REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R2.1 X

R2.2 X

R2.3 X X X X

R2.4 X X X X

C. Data Model and Persistence

Persistence is strongly related to the internal representation
of the data, which is also called the internal data model. All
of the evaluated frameworks introduce such a data model,
independent of the communication protocols. As described



in the previous chapter, this works well for primitive data
types like numbers or boolean values. OpenMUC defines a
set of primitive types like boolean, integer or double values.
Complex types like data structures are not possible, but all
data types can be persisted in a unified way into a time
series database. IoTSyS uses the Open Building Information
Exchange (oBIX) format, as defined in [16]. Although only
primitive data types are implemented at the moment, complex
data structure are possible with oBIX. In the current version,
the IoTSyS persistence layer doesn’t support complex data
types.

OGEMA brings along its own data model, which also
includes complex data types. It defines so-called standard
resource types like temperature sensors and switching actuators
[17], but also models for more complex devices like heat
pumps or electrical meters. The data model can be extended
by writing Java interface classes that derive from a resource
interface. OpenHAB defines singlevalue primitive types as
well as complex types, which are sorted maps of primitive
values with a string-key. All types are called items. Different
persistence layer implementations allow to store these items
into databases like MySQL, but also to persist item states,
e.g., through MQTT messages (see [18] for details).

TABLE V. FULFILLED PERSISTENCE REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R3.1 X

R3.2 X X X

R3.3 X X

R3.4 X X

D. Provisioning and Configuration

The configuration of all evaluated frameworks is done
using configuration files. Although these files could also be
located on or updated from centralized servers, remote con-
figuration and provisioning is not implemented in any of the
frameworks.

The OpenMUC configuration can by accessed by a Con-
figService implementation, which handles file access and lis-
tens for configuration changes. The config file contains all
channel information, but is not intended for storing application
configurations, too. This must be implemented by developers
for each application separately, a unified mechanism is not pro-
vided. A similar approach is used in IoTSys. The configuration
is read from a single Java properties file.

With the ConfigDispatcher bundle, OpenHAB is the only
framework that provides a unified way to handle configura-
tion for applications in the framework. OpenHAB reads all
configuration entries from a single text file and distributes the
entries using OSGi’s ConfigAdmin service. The format of the
configuration file is similar to a standard Java properties file,
with the exception that the property name must be prefixed by
the name of the application.

The current release of OGEMA doesn’t provide config-
uration handling. As the direct access to OSGi services is
prohibited, applications must handle loading and persisting
configuration by their own.

None of the evaluated frameworks provides support for
handling provisioning or configuration issues from a remote
server. Because of the central administration of all configu-
rations, the implementation of remote configuration can be
done easily in OGEMA and OpenHAB. Provisioning (e.g.,
remotely install software bundles) and handling applications
compared to an App Store is a new concept for all evaluated
frameworks and has to be implemented from scratch. Table VI
shows, that most of the requirements related to configuration
and provisioning are not fulfilled by the evaluated frameworks.
Approaches for provisioning residential gateways can be found
in [19] and [20].

TABLE VI. FULFILLED CONFIGURATION REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R4.1 X

R4.2

R4.3

R4.4

E. Privacy and Security

None of the evaluated frameworks provides encryption for
the measurement and configuration data. This leads to the
problem, that an offender can access all private data of a com-
promised system. In general, OpenMUC provides no security
mechanisms except an authorization when trying to access the
graphical user interface. IoTSyS brings an implementation of
the Extensible Access Control Markup Language (XACML)
standard, which is described in [21].

The OGEMA framework uses the Java security architec-
ture. It defines permissions for common tasks like accessing
online values or historical data and uses the security manager
to check these permissions when executing the related com-
mands. OpenHAB doesn’t provide any security mechanisms.
Table VII shows, that security and privacy issues, as introduced
in [22] and [23], are not implemented in most cases.

TABLE VII. FULFILLED SECURITY REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R5.1

R5.2 X X

R5.3

F. Graphical User Interface

OpenMUC provides a web-based user interface with some
functionalities related to recording and viewing time series of
measurement data. The user interface has been implemented
in a modular way, so extensions with a consistent look and
feel are possible. All data necessary for the user interface can
be retrieved from a REST webservice. IoTSyS doesn’t have
a user interface for operation or configuration. On the other
hand, an engineering tool called Obelix is part of the project,
which allows to define wirings between single data points.
Together with the data abstraction layer, data point values can
be exchanged over different communication protocols using
this wiring. As IoTSyS is designed to use REST webservices
and the oBIX data model [16], user interfaces can easily access
all data points.



OGEMA uses the Apache Wicket framework for its user
interface. The evaluated alpha-version of OGEMA 2.0 provides
an explorer for the data repository, which enables supervision
of all data structures in a generic way. Application program-
mers are able to extend the user interface with custom pages,
very similar to the possibilities provided by OpenMUC.

The most comprehensive user interface support comes with
OpenHAB. It ships with a web-based user interface, as well
as native applications for iOS and Android (which can be
downloaded in the particular app stores). The apps allow
to monitor and control home automation components in a
generic way, so additional devices can be added easily and
without programming knowledge. Additionally, OpenHAB in-
cludes an Eclipse-based rich-client application which is called
“Designer”. This application allows to implement scripts and
define rules using the Xtend scripting language (see Section
IV-A).

TABLE VIII. FULFILLED GUI REQUIREMENTS

Requirement OpenMUC IoTSyS OpenHAB OGEMA

R6.1 X X X X

R6.2 X X X

R6.3 X X

R6.4 X

V. CONCLUSION AND OUTLOOK

Most of the requirements have been fulfilled by the
OGEMA 2.0 framework, closely followed by OpenHAB. As
the analyzed OGEMA framework is alpha-release, it seems
to be a promising solution for the future. OpenHAB has a
comprehensive support of communication drivers and offers
various graphical user interfaces. On the other hand, security
concepts are completely missing in OpenHAB. IoTSyS as
well as OpenMUC strongly focus on communication issues,
while disregarding complex data structures and centralized
configuration. In particular the combination of using IPv6 to
address data points, data abstraction with the oBIX standard
as well as XACML for policy-based access control in IoTSyS
is an interesting approach for web-based “Internet of Things”
(IoT) systems.

The result also shows, that none of the evaluated frame-
works fits 100% to the defined requirements. Although solu-
tions and implementations for all issues are available (some
references can be found in Section IV), they still have to
be combined in comprehensive framework solution. Research
topics are unified data models as well as communication
standards for connecting the CEMS with the outside world.
Researchers and standardization groups are already working
on these issues, considering aspects like security, privacy and
scalability.

ACKNOWLEDGMENTS

The work described in this paper has been performed
within the research project “Josef Ressel Center for User-
Centric Smart Grid Privacy, Security and Control”. The fi-
nancial support by the Austrian Federal Ministry of Science,
Research and Economy (BMWFW) and the Austrian National
Foundation for Research, Technology and Development is
gratefully acknowledged.

REFERENCES

[1] P. Palensky and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,” Industrial In-
formatics, IEEE Transactions on, vol. 7, no. 3, pp. 381–388, 2011.

[2] Smart Grid Reference Architecture, CEN/Cenelec/ETSI Smart Grid
Coordination Group Std., Nov. 2012.

[3] K. Kok, S. Karnouskos, D. Nestle, A. Dimeas, A. Weidlich, C. Warmer
et al., “Smart houses for a smart grid,” in Proc. 20th International
Conference and Exhibition on Electricity Distribution (CIRED 2009).
IET, Jun. 2009.

[4] Home Gateway Initiative (HGI), “Use Cases and Architecture for a
Home Energy Management Service,” HGI, Tech. Rep., Aug. 2011.

[5] Die Deutsche Normungs-Roadmap Smart Home + Building, Verband
der Elektrotechnik, Elektronik und Informationstechnik e.V. (VDE) Std.,
2013, (in German).

[6] The OSGi Alliance, “OSGi core release 5,” 2012. [Online]. Available:
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf

[7] R. P. Diaz, A. Fernández, M. Ramos, J. J. Pazos, J. Garcı́a, and A. Gil,
“Enhancing residential gateways: a semantic OSGi platform,” Intelligent
Systems, IEEE, vol. 23, no. 1, pp. 32–40, 2008.

[8] S. Zeadally and P. Kubher, “Internet access to heterogeneous home area
network devices with an OSGi-based residential gateway,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 3, no. 1, pp. 48–56,
2008.

[9] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, “The architecture tradeoff analysis method,” in Engineering
of Complex Computer Systems, 1998. ICECCS’98. Proceedings. Fourth
IEEE International Conference on. IEEE, 1998, pp. 68–78.

[10] G. Starke, Effektive Softwarearchitekturen. Carl Hanser Verlag, 2014.
[11] IEC62746 - System interface between customer energy management

system and the power management system, International Organization
for Standardization (ISO) Std., 2014, (Draft).

[12] Fraunhofer IWES, “OGEMA: Open Gateway Energy Management,”
Fraunhofer IWES, Tech. Rep., 2012. [Online]. Available: http:
//www.ogema.org/downloads/fraunhofer-iwes ogema fs 1.pdf

[13] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot, and B. Folliot,
“I-JVM: a Java virtual machine for component isolation in OSGi,” in
Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP Interna-
tional Conference on. IEEE, 2009, pp. 544–553.

[14] N. Leavitt, “Will NoSQL databases live up to their promise?” Computer,
vol. 43, no. 2, pp. 12–14, 2010.

[15] C. Scarioni, Pro Spring Security. Apress, 2013.
[16] OASIS Open Building Information Exchange (oBIX) TC, “oBIX

1.0. OASIS Committee Specification,” Dec. 2006. [Online].
Available: http://www.oasis-open.org/committees/download.php/21462/
obix-1.0-cs-01.zip

[17] D. Nestle, J. Ringelstein, H. Waldschmidt, and I. Fraunhofer, “Open
energy gateway architecture for customers in the distribution grid,”
Information Technology, Oldenbourg Verlag, Munich, pp. 83–88, 2010.

[18] D. Locke, “MQ Telemetry Transport (MQTT) V3. 1 Protocol
Specification,” IBM, Tech. Rep., 2010. [Online]. Available: http://
www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

[19] J. C. Duenas, J. L. Ruiz, and M. Santillan, “An end-to-end service
provisioning scenario for the residential environment,” Communications
Magazine, IEEE, vol. 43, no. 9, pp. 94–100, 2005.

[20] D. Zhang, “A new service delivery and provisioning architecture for
home appliances,” in Consumer Electronics, 2003. ICCE. 2003 IEEE
International Conference on. IEEE, 2003, pp. 378–379.

[21] T. Moses, Extensible access control markup language (XACML) version
2.0, OASIS Open Std., Feb. 2005.

[22] C.-C. Huang, P.-C. Wang, and T.-W. Hou, “Advanced OSGi security
layer,” in Advanced Information Networking and Applications Work-
shops, 2007, AINAW’07. 21st International Conference on, vol. 2.
IEEE, 2007, pp. 518–523.

[23] P. H. Phung and D. Sands, “Security policy enforcement in the OSGi
framework using aspect-oriented programming,” in Computer Software
and Applications, 2008. COMPSAC’08. 32nd Annual IEEE Interna-
tional. IEEE, 2008, pp. 1076–1082.


