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Abstract— Demand response (DR) management is one of the 
key applications of today’s and future energy systems. The 
success of the DR programs strongly depends on several 
consumer-specific parameters, as, e.g., willingness to participate, 
comfort requirements, technical affinity etc., which are often 
neglected in corresponding simulation models. In this paper, a 
conceptual design of an agent-based socio-technical DR consumer 
model is proposed. It is based on a structural agent analysis 
mapped to a framework for a multi-agent simulation model. 

Keywords— demand response, user model, structural agent 
analysis, agent based simulation 

I.  INTRODUCTION  

Achieving optimal generation, distribution, storage and 
consumption of electric energy – while preserving natural 
resources – is one of the main goals of todays and future 
electricity grids. As one of the essential smart grid 
technologies, demand response (DR) has to be enabled in the 
residential sector. DR in this context refers to “changes in 
electric usage by end-use customers from their normal 
consumption patterns in response to changes in the price of 
electricity over time, or to incentive payments designed to 
induce lower electricity use at times of high wholesale market 
prices or when system reliability is jeopardized” [1]. According 
to [2], DR programs provide the capability to achieve 25-50% 
of the EUs 2020 targets concerning energy savings and CO2 
emission reductions. As shown in [3] and [4] the success of a 
DR program essentially depends on the end consumers’ 
participation and their behavior when configuring and using a 
DR system.  

Due to the critical infrastructure, the integration of new 
smart grid technologies requires extensive tests and simulations 
before any large-scale deployment. Several tools and 
frameworks exist, which offer solutions for complex smart grid 
simulation challenges (see e.g. [5]). Concerning DR systems 
and algorithms, most of the proposals include a simulation part; 
some of them also consider certain aspects of consumers’ 
behavior (see Section II.B). However, to our knowledge an 
adequate representation of all relevant user interactions and 
decisions is missing in these approaches.  

Analyzing such socio-technical systems is a major research 
field in social sciences. A review on literature in this area has 
shown that agent-based models might be considered as a 

preferred simulation tool (see Section II.C). In these 
approaches, agents are human individuals or organizations of 
them. Based on a more generic agency definition (see Section 
II.D), also technical subsystems may be considered as agents 
and corresponding models are applied in fields such as 
biological sciences, ecology, economy and others [6]. In [7] 
and [8] reviews on multi-agents concepts used for grid energy 
management are provided.  

Multi-agent systems are increasingly used in the 
quantitative social sciences as a promising method [9], [10], 
[11]. Nevertheless, especially when it comes to decision 
models in socio-technical systems, it is repeatedly stated that 
these models have weaknesses when it comes to applying them 
to real-world problems [12], [13]. To our knowledge, no model 
exists that combines social simulation of an energy consumers’ 
behavior with realistic simulation models of the energy grid. 
Therefore, the aim of this work is to design a concept for an 
agent-based socio-technical user model, which can be 
integrated in more comprehensive smart grid simulations.  

The rest of this paper is structured as follows: In Section II 
an overview of related work in the field of demand response 
and the corresponding consumer behavior is provided. In 
addition, literature on general user models from the field of 
social sciences is reviewed along with relevant aspects of 
agent-based simulation models. As the system model is based 
on this specific approach, Section III describes the framework 
of a structural agent analysis (SAA) proposed by Binder [14] 
and the rules to map this into an agent-based simulation model. 
Results of applying these steps to designing an agent-based 
consumer model in the context of demand response systems 
will be shown and discussed in Section IV; we conclude in 
Section V with a summary and an outlook on future work. 

II. RELATED WORK 

The section on the theoretical background of this work is 
divided in four main parts: (1) a short review on DR models, 
(2) an overview of research work dealing with consumers’ 
behavior in the context of demand response, (3) an introduction 
to general user models, which are assessed to be relevant for 
the research question and (4) a subsection dealing with relevant 
basics of agent-based simulation models. 



A. Demand Response Models 

Based on the common DR definition given in Section I, 
Albadi et al. give a more detailed definition: “DR includes all 
intentional modifications to consumption patterns of electricity 
of end-use customers that are intended to alter the timing, level 
of instantaneous demand, or the total electricity consumption” 
[15]. Customers’ potential actions are reduction or time shifting 
of electricity usage, known as direct load control (DLC) and 
reducing the peak to average ratio (PAR), respectively. As a 
third option in [15] the usage of onsite generation and storage 
capacities is mentioned. Different pricing schemes (price based 
or incentive based) are employed as strategies to motivate 
consumers to choose any of these options, e.g., real time 
pricing (RTP). In case of incentive-based DR, customers get 
incentives, e.g., for switching off an appliance as a response to 
a certain load reduction request or they are rewarded for 
allowing direct load control (DLC).  DLC is a specific DR 
model enabling the utility to directly control customers’ 
equipment, as, e.g., proposed in [16]. This approach reduces 
peaks by temporarily inhibiting the turn-on of certain high 
power appliances without disturbing already in-use appliances. 
Also in [17], a DLC model is used to centrally schedule and 
control power demand tasks at the customer side. In [18], a 
cloud-based DR scheme is proposed, where the optimal 
incentive price to achieve a certain load reduction is 
determined based on a publish-subscribe communication 
scheme. Different from DLC, here the control of appliances is 
realized at the customer premises, not at the utility side. 
Additionally, the model used in [18] optimizes the schedules of 
energy consumption for a group of users (multi-user scenario), 
also in [19], a coordinated load management of several flexible 
electricity consumers is presented.  In a single-user scenarios 
the optimization is performed per household [20]. Demand 
response decisions are not made by the consumers in a case-to-
case-manner but usually an algorithm implemented in a 
technical DR system (also referred to as energy management 
system) optimizes the performed actions. Considering the large 
number of contributions on DR, the following algorithms 
classes are frequently employed: game theory, linear 
programming, particle swarm optimization, arrival processes 
and multi-agent based models. In our meta-analysis evaluating 
the data communication requirements of common DR models a 
more detailed overview can be found [21]. 

B. Consumer behaviour in the context of demand response  

As the previous overview on demand response programs 
has shown, corresponding modeling and simulation approaches 
in most cases require presumptions concerning consumers’ 
decisions and behavior. There are some DR proposals, which 
explicitly integrate this perspective. As one of the relevant 
aspects, the preferences of optimal appliance scheduling are 
one focus of the approaches presented, e.g., in  [22] and [23]. 
Since these approaches require complex fine-grained 
appliance-level information, Chandan et al. [24] present an 
inclusive DR planning system (iDR) using only smart meter 
data to determine utility functions. In [25] a model is proposed 
that differentiates a long-term steady and a short-term dynamic 
consumer behavior: The steady component represents the 
typical usage pattern of appliances and the dynamic one 
responds to variations of the electricity price. A more general 

methodology for modeling the behavior of electricity 
prosumers is provided in [26]. To present the possibilities of 
that framework, a case study is shown that models the car 
drivers’ behavior and the corresponding impact of the electric 
vehicle charging on the electricity grid.  In a sensitivity 
analysis, Miller et al. [4] show the high impact of humans’ 
decision to participate in a direct load control program. This 
finding could be confirmed by our own simulations where the 
role of user interaction and acceptance for a cloud-based DR 
model has been investigated [3]. It was found that the number 
of participating users has a strong effect on cost cutting for a 
certain load reduction. Within this setup the user acceptance 
did not increase with more configuration options and higher 
amount of possible user interactions. In order to avoid complex 
configuration of a DR system with autonomous appliance 
scheduling, as, e.g., proposed in [27], there is no need of user 
interaction. In this model, time of use probabilities of the 
appliances will be learned automatically from energy 
consumption patterns under varying weather conditions, day of 
week, etc. The method proposed in [28] also uses such a 
forecasting approach.  

C. User Models of consumer behavior 

Independent of the specific demand response context, 
general models and theoretical background concerning 
consumers’ behavior will be considered in the following. The 
focus of this review is set on models of human behavior that 
specifically impacts an ecosystem and a combined analysis of 
material and social flows. According to [29], the term material 
stands for both, substances and goods, whereas goods are 
considered as mixtures of substances that have economic 
values assigned by markets. This terminology only includes 
material goods, immaterial goods such as energy, services, or 
information and their analysis might be coupled with 
corresponding material flow analyses (MFA). In [30] a 
generalized framework for materials and energy flow analysis 
is presented which does not explicitly distinguish between 
them. The authors of [31] compare ten frameworks established 
in the research area of socio-ecological models, the approaches 
are categorized and a general guideline for selecting the 
adequate framework for a given research issue is provided. 
With respect to the aim of the project presented here, the 
Human Environment Systems (HES) approach [32] will be 
further considered. In their HES framework, Scholz and Binder 
define the following six basic principles: (1) human and 
environmental system are different but interrelated, with 
actions and reactions being part of both systems, (2) human 
and environmental systems should be considered 
hierarchically, (3) a model of the environmental system and its 
dynamics needs to be constructed, (4) goals and strategies are 
basic components of behavior (decision theory), (5) 
environmental awareness has to be conceptualized concerning 
the strategies found in (4), and (6) post-decisional evaluation of 
environmental reactions (also delayed and dislocated) has to be 
performed. In [33], Binder gives an overview on social 
sciences modeling approaches, which are coupled to MFA 
based on the hierarchical level they are used for, ranging from 
the society (national level) down to an individual (household). 
The general idea of these models is to provide additional 
information not only to analyze, but also to manage material 



flows with respect to social interactions. In her review Binder 
identifies some shortcomings of these approaches and proposes 
in [14] a heuristic that combines a structural agent analysis 
(SAA) with MFA. Since this approach provides the basic 
principles for the conceptual model design within the here 
presented project details will be described in Section III.A. 

D. Agent-based Simulation Models  

As already mentioned in Section I, agent-based models 
address a wide range of simulation challenges in very different 
research areas. They are used both for social simulations and 
for models focusing on technical aspects. This is possible due 
to the generic characteristic of multi-agent systems: they are 
particularly suited for situations characterized by autonomous 
entities whose actions and interactions determine the overall 
system [34]. For simulating human systems with agent-based 
modeling (ABM), Bonabeau states the following three benefits 
in [35]: (1) ABM captures emergent phenomena, (2) provides a 
natural description of the system and (3) is flexible. In general, 
ABM has been considered as a promising methodology for 
social science research in the last two decades (see, e.g., [36], 
[37]). Due to the multiple and heterogeneous application areas 
and disciplines of agent-based modeling, many differing 
definitions of agency exist. However, they all share the 
following concepts: notion of an agent, its environment and 
autonomy [8]. Wooldridge [38] considers agents as intelligent 
with flexible autonomy having the three characteristics 
reactivity, proactiveness and social ability. Based on [29] 
“everything associated with an agent is either an agent 
attribute” (static or dynamic) or a method (as, e.g., behavior 
and behavior rules). These rules lead to certain decisions and 
further interactions with the environment or other agents. To 
model the process of human decision making in agent-based 
models the belief-desire-intention (BDI) framework is widely 
used, see, e.g., [39], [40], [41], [42]. BDI is a specific agent 
architecture deviated from the theory of practical reasoning 
[43]. It is based on three components: belief (agent’s 
knowledge about environment and own state), desire 
(objectives, goals), and intention (plans, course of action). 
Several frameworks have been already proposed that 
implement the BDI architecture’s agents in already existing 
agent-based modeling and simulation platforms, as, e.g., 
Netlogo [42]. 

III. SYSTEM MODEL 

The approach presented here to design a consumer model in 
the context of demand response systems is based on the 
aforementioned heuristic technique proposed by Binder [14]. 
The author combines material flow analysis with structural 
agent analysis (SAA) and thus provides strategies dealing with 
challenges arising from material flow management. In order to 
apply the combined MFA-SAA heuristic to design a consumer 
model in the context of demand response, energy flows are 
interpreted as material flows within the here presented 
approach. It might be used to analyze the impact of social 
structures on agents’ actions but also the feedback from these 
actions on social structures and the corresponding material 
consequences.  

The identified agents and their structural factors will be 
further implemented in a general framework of an agent-based 
simulation model. These types of models are increasingly used 
both in corresponding social sciences approaches and in smart 
grid models and thus represent a promising method to figure 
out aspects of interactions between them. 

A. Structural agent analysis  

The structural agent analysis proposed in [14] is based on 
Giddens structuration theory [44] which provides a general 
framework for studying the systems of social interactions. The 
SAA consists of seven steps which will be shortly described 
below.  

1) Identification of relevant agents 
Based on MFA, agents affecting relevant variables are 

identified in this step. Two types of agents exist: directly 
interacting ones and agents, which indirectly affect the system. 
Note that agent in this context means persons and 
organizations that might be asked for their interactions and 
other influencing factors. 

2) Analysis of structural factors (SF) 
Agents’ decisions influencing MFA variables depend on 

several structural factors. The second step of the SAA which 
might be performed together with step 1 aims to analyze these 
factors for each agent based on Giddens key categories (see 
also [45]): signification rules, legitimation rules, allocative 
resources and authoritative resources. Beside determination of 
the structural factors, the interactions between them have to be 
analyzed in this phase. A matrix may be a helpful tool to 
visualize the impact of one factor on the others, e.g., in an 
ordinal scale from 0 to 2 (0 = no, 1 = weak and 2 = strong 
influence). Note that the values in this matrix might differ 
depending on the agent’s perspective. 

3) Weigthing the relevance of SF 
In the third step, Binder recommends in her approach to 

rank the structural factors concerning their weighted impact on 
agents’ actions. The results will be closely related to the cross-
impact matrix developed within step 2. 

4) Step 4: Agent –structure diagram 
To finalize the steps 1-3 an agent-structure diagram will 

help to visualize their results. Arrows of different thickness 
also allow representing the weight of the structural factors. 

5) Step 5: Agents‘ options, constraints and facilitators 
Starting from an understanding view of agents, their 

interactions and structural factors provided by the steps 1-4, 
options to manage and change the MFA system have to be 
identified in step 5. Options are ways of acting that affect the 
material flows. Structural factors might constrain or facilitate 
them. This overall analysis results in a list of options and their 
supporting or constraining structural factors for each agent. 

6) Interferences among agents 
Agents, their options and the corresponding facilitators and 

constraints might interfere with each other and thus affecting 
also the consequences on material flow management. In this 
step, therefore, the outcome of the steps 1-5 has to be further 
analyzed to determine these interferences. 



7) Effects of agents‘ action on structure 
Finally, the expected long-term effects of agents’ action on 

structure have to be estimated, e.g., impact of certain actions on 
consumers’ affinity on technology (signification).  

Binder recommends several research methods in order to 
perform the required analyses for each step, such as literature 
reviews, surveys, expert interviews and MFA methods. The 
selection of the combined MFA-SAA technique as framework 
for developing the conceptual design of a socio-technical DR 
consumer model is based on two crucial factors. First, as 
already stated energy flows might be interpreted as material 
flows. Second, the agent-based approach of the model offers all 
advantages of this technique to represent human individuals or 
organizations as well as technical systems as agents. 

B. From SAA to a Multi-agent Simulation Model  

In order to perform a combined modeling and simulation of 
consumers’ behavior and their technical environment the 
results from the SAA shall be implemented in a computational 
agent-based simulation model. This step requires the 
transformation of the agent-structure diagram (Fig. 2) into an 
agent-based modeling framework with its typical 
characteristics, rules and terminology (see Section II.D). Based 
on the literature review for SAA and multi-agent simulation 
models the mapping shown in TABLE I. will be applied. 

TABLE I.  FROM SAA TO A MULTI-AGENT SIMULATION MODEL 

Structural Agent Analysis Multi-agent Simulation Model 
agent agent 

structural factor attributes 
changes of structural factors perception 

options of agents interaction 
interaction among structural factors reasoning / decision making 

influence of structural factors on 
options 

reasoning / decision making 

IV. RESULTS 

The focus of the design presented here is set on a scenario 
mainly considering consumers using a demand response 
system to manage their energy loads and storages. The results 
present a stepwise development of a structural agent diagram 
based on a combined MFA and SAA which is further 
implemented in a MAS modeling framework.  

A. High level MFA and SAA for a DR scenario 

From the energy perspective, the goal of a demand response 
system is to shift or curtail residential loads in order to assist 
the energy system’s reliability. Visualizing the results of a high 
level MFA and SAA, Fig. 1 shows the main agents involved in 
the general energy supply chain and the corresponding energy 
flow (steps 1-4, simplified). Note that distributed energy 
resources are not included in this scenario.  

The integration of the DR system as an agent is based on 
the general agency definition (see Section II.D) and extends the 
natural SAA model, which focuses only on individuals or 
organizations. This adaption allows the integrated analysis of 
interactions between consumers and their DR system, which is 
described in detail in the following section. 

 

Fig. 1. High Lever MFA and SAA for a smart grid scenario with DRM 

B. SAA for consumers in a DR scenario 

Based on the general overview on energy flow and 
participating agents in an overall DR scenario given in section 
A, a more detailed analysis of structural factors and 
interactions between consumers and demand response systems 
is provided here. Applying steps 1-4 of the proposed model on 
this specific constellation identifies agents, structural factors 
and relevant interactions shown in Fig. 2. The findings are 
based on a comprehensive research in DR literature (see 
section II.A) and own projects [3], [46]. 

 

Fig. 2. Agent-structure diagram for consumer and DR system 

As already stated in the system model description (see 
Section III.A.2), not only agents but also structural factors may 
interact with each other. A corresponding analysis of these 
impacts between structural factors is part of step 2. First, two 
categories have been identified:  non-interacting and interacting 
structural factors. As non-interacting factors the legitimation 
rules (smart meter obligation, organization of several 
households) and authoritative resources (subsides) can be 
considered. For some of the remaining structural factors, the 
matrix shown in TABLE II.  exemplarily represents the impact 
these factors have on each other. The estimated strength of the 
impact is given as no impact (0), weak direct relation (1) and 
strong direct relation (2). The value expresses the potential of 
one factor to influence/change the other factor. A general 
dependency/ relationship as, e.g., persons with a high affinity 
for technology would accept higher initial costs than persons 
without, is not illustrated here, since the person’s technological 
affinity has no impact on the initial costs.  



TABLE II.  IMPACT AMONG SFS  (0 = NO, 1 = WEAK AND 2 = STRONG) 

from\to price/ 
incentive 

initial 
costs 

comfort 
req. 

techn. 
affinity 

environ. 
awaren. 

price/ 
incentive 

- 0 2 0 0 

initial 
costs 

0 - 1 1 0 

comfort 
req. 

0 0 - 1 0 

techn. 
affinity 

0 0 1 - 0 

environ. 
awaren. 

0 0 2 1 - 

 

Performing step 5 of the SAA, TABLE III. shows 
exemplarily the options/possible interactions of the consumer-
agent and their corresponding constraints and facilitators.  

TABLE III.  Options of consumers influenced by structural factors 

options of consumers influencing structural factor 
participation in DR program initial costs 

affinity for technology 
smart meter obligation 

basic configuration of DR system affinity for technology 
comfort requirements 

load schedule  energy price 
comfort requirements 

allowed shut down energy price, incentive 
comfort requirements 

consumer association initial costs 
energy price, incentive 

… … 

C. MAS modeling framework 

Using the mapping rules proposed in TABLE I. an 
approach that follows the formal description of multi agent 
simulation models (see section II.D) is shown in Fig. 3. 
Structural factors identified within the SAA are represented as 
agents’ attributes, their interactions and also their influence on 
options/actions will be part of the reasoning and decision-
making process which is out of scope of this work.  

 

Fig. 3. Consumer and DR system: MAS modeling framework  

D. Discussion 

Whereas the results presented here do not provide a 
complete socio-technical DR user model, the developed design 
gives valuable input for further refinement of a corresponding 
agent-based simulation. The impact among structural factors 
and their influence on agents‘ options (actions) is only 
analyzed within the SAA approach, but especially the results 
shown in TABLE II. and TABLE III. will aid to precise the 
decision-making framework of the consumer agent. In a 
corresponding BDI approach the findings can be used to 
formalize the choice of plans based on the evaluation of certain 
criteria [42]. 

V. CONCLUSION 

The agent structure-diagram shown in Fig. 2 and the 
corresponding agent-based simulation framework (Fig. 3) 
provide a detailed insight in a DR scenario mainly considering 
consumers’ options to behave and interact in its environment. 
The process of reasoning and decision-making is not integrated 
yet in detail, but the SAA already provides valuable input for 
this upcoming step. The target framework shall be used for 
further simulation of more comprehensive MAS-based smart 
grid models.  
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