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Resumable Load Data Compression in Smart Grids
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Abstract—We propose a compression approach for load profile
data, which addresses practical requirements of smart metering.
By providing linear time complexity with respect to the input data
size, our compression approach is suitable for low-complexity
encoding and decoding for storage and transmission of load
profile data in smart grids. Furthermore, it allows for resum-
ability with very low overhead on error-prone transmission
lines, which is an important feature not available for stan-
dard time series compression schemes. In terms of compression
efficiency, our approach outperforms transmission encodings
that are currently used for electricity metering by an order of
magnitude.

Index Terms—Compression, evaluation, load data,
resumability.

I. INTRODUCTION

SMART GRIDS rely on information and communication
technology to measure, transfer, and manage detailed data

on grid status. Smart metering is an important component of
this system, providing detailed data in the distribution network.
This data forms one of the key components for use-cases in
the smart grid, such as energy feedback [1], grid monitoring,
and load forecasting [2].

The most important arguments for compressing smart meter
data are discussed in detail below: 1) data volume; 2) com-
munication bandwidth; and 3) energy efficiency. Each of these
arguments is valid for almost all use-cases of smart metering.
However, the degree to which compression is advantageous,
depends on the specific requirements of the use-case, such
as the volume of data produced in smart metering, the need
for (near) real-time transmission, or the predominant direc-
tion of communication (while some use-cases, e.g., real-time
pricing, push data to the meter, most use-cases involve the
meter transmitting data to a data concentrator). Compression
is needed most for use-cases which generate a high volume
of data, such as monitoring of grid stability, which requires
fine-grained data with low delay.

A. Data Volume

While in the traditional billing use-case, the data vol-
ume is very small and, therefore traditionally there was no
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need for data compression whatsoever (even for automated
meter reading), it is evident that for the use-cases in the
smart grid, data volume increases dramatically: for instance,
the data volume of load profile data at a granularity of
1 s and double-precision floating point for the 40 million
households in Germany amounts to 25 TB of raw data per
day. With the method presented in this paper, this volume
can be reduced by nearly 90% to approximately 2.6 TB
(assuming data properties similar to the test data). This
reduction is not only beneficial in terms of reducing the
volume of transmitted data, but also positively impacts storage
requirements at the Distribution System Operator.

B. Low Bandwidth

Many smart meters will be connected to low-bandwidth
communication links, such as powerline communication (PLC)
links. Compression is an important tool to make the best use
of the available bandwidth. For example, PLC is more reli-
able for lower data rates. Through compression, reliability
can therefore be increased. Another example for a benefit
of compression is the number of communicating parties. In
some scenarios a number of smart meters need to communi-
cate within the same network segment, often using collision
detection or avoidance. The probability of collision increases
with the volume of data each smart meter tries to transmit
in the same time interval, up to a point where communica-
tion becomes impossible. With compression, the data rate can
be reduced and with it the probability of collision. Therefore,
compression enables more smart meter to communicate in the
same multiple-access segment.

C. Energy Efficiency

The case for data compression of load profiles is also sup-
ported from the perspective of energy consumption. The idea
of smart grids is closely linked to increasing energy efficiency.
Care should be taken for the components of the smart grid to
also reflect this endeavor through economical use of energy.
The power required for the transmission of bits significantly
exceeds the power required for the computational complexity
of compression algorithms (e.g., on the Mica2dot platform,
for the power needed to transmit 1 bit, more than 2000 clock
cycles can be executed [3]). Thus, the employment of compres-
sion methods saves energy and the effect is multiplied by the
vast number of smart meters in the field. The computational
capabilities of smart meters will definitely support compres-
sion methods such as suggested in this papers (smart meters
will need to support at least basic cryptographic primitives [4],
which are more demanding than the operations needed for
compression as presented here).
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Apart from good compression, a method for compressing
load data should fulfill a number of other requirements.

1) Low to moderate computational complexity to keep
power and processor requirements for smart meters low.

2) Low memory requirements (e.g., the use of large dictio-
naries makes the smart meter unnecessarily expensive).

3) Low overhead for initialization.
4) Ability to Resume After Interruption: If the communi-

cation link to a smart metering device is temporarily
down, synchronizing the compression algorithm needs
to be fast and efficient.

We propose an approach to compression of load profile data
that fulfills all of the above criteria.

The rest of this paper is structured as follows. Section II
gives an account of related work in the areas of load data rep-
resentation and time-series compression. Section III describes
the characteristics of load data, motivating the design of
our proposed compression approach, which is presented in
Section IV and analyzed in detail in Section V. In Section VI,
our approach is evaluated and compared to existing repre-
sentations with respect to transmission size and computation
time. Finally, we provide an outlook in Section VII before we
conclude our paper in Section VIII.

II. RELATED WORK

In [5], standard general-purpose compression algorithms are
applied to publicly available load data set. The evaluation
shows that load data is well suited for compression. We use the
same data set in this paper and conduct a more detailed analy-
sis on compressibility of load data. Using the same data set, we
can also show that the approach proposed here is comparable
to standardized methods in terms of compression performance,
while offering additional features such as resumability, which
are important for real-world use.

Compression has been proposed in other areas of the smart
grid. The compression of phasor measurement units (PMUs)
data is the field most closely related to smart meter readings
compression. In [6], different data compression techniques for
PMU readings are discussed and evaluated. Ning et al. [7]
proposed a wavelet-based compression technique for the read-
ings of PMUs. In a similar vein, Khan et al. [8] proposed the
use of the embedded zerotree method for PMU measurements.
While approaches for compressing PMU data are relevant to
the subject area considered here, the compression of load data
from smart meters differs significantly from PMU readings,
by: 1) the origin of the data and consequently the properties
of the data; 2) the number of sensors in the field, which is
vastly higher in smart metering; and 3) the requirements for
practical operation, such as real-time transmission of values.

In the general area of time-series compression, there are
a number of contributions, the most notable and active field
being audio compression [9]. Another active research area
in compression is, of course, centered on video (see [10]).
Methods from both fields can be considered for adaptation for
load data compression. In fact, some approaches from the area
of motion data compression show potential to prove useful
when adapted to load data, as will be discussed below.

In practical operation in energy grids, currently no com-
pression is applied by any of the standardized data formats in
smart metering. The “open smart grid protocol” [11], which is
a protocol suite spearheaded by European Telecommunications
Standards Institute (ETSI), defines a format for transferring
metering data, using up to 16 channels in the same interval.
“All channels are stored as total values (no differential values)
[11, p. 34],” and no compression is applied.

The smart metering coordination group, working under
EU standardization mandate M441, has defined a functional
reference architecture for communications in smart meter-
ing systems in a CEN/CENELEC/ETSI technical report [12].
Data model standards and communications profile standards
are considered in the report, but data compression is not
addressed.

The “device language message specification” and the
“companion specification for energy metering” provide data
formats and communication standards for automatic meter
reading. The relevant standards for the data format are
IEC 62056-21 [13] and IEC 62056-53 [14]. A lower layer
encoding for metering values, the A-XDR encoding rule, is
specified by IEC 61334-6 [15].

III. LOAD PROFILE DATA CHARACTERISTICS

Load profiles are time series of electrical power consump-
tion. While the measurement precision is configurable and
use-case dependent to a large extent, all load profile data with
similar sampling intervals exhibit certain characteristics, some
of which will be described in this section.

Note that there may be several other data characteristics
which depend on the use-case or are limited to a number
of data sets. As we intend to describe general characteristics
which apply to a large percentage or even all load profile data
in a smart-meter scenario with second- to minute-granularity
of sampling, we omit use-case- and data-set-specific
characteristics.

On detailed examination of load profiles of consumer house-
holds, it can be noticed that, while most consecutive values
within a load profile tend to exhibit small value differences
between one another, few values exhibit large differences.
Depending on the time difference between two consecutive
values, this effect is more (e.g., when the sampling inter-
val is in the range of seconds) or less dominant (e.g., when
the sampling interval is in the range of minutes or even
coarser).

In order to show that this is true for a large number of load
profiles, we analyze the properties of consecutive values in a
number of load profiles from different data sets. We use the
low frequency Massachusetts Institute of Technology (MIT)
Reference Energy Disaggregation Data Set (REDD) data
set [16] (abbreviated as MIT data set henceforth) as well as
the TU Darmstadt tracebase data set [17] (abbreviated as TUD
data set henceforth).

The MIT data set consists of a total of 116 load profiles.
Each load profile contains average power readings of one indi-
vidual circuit from one of six houses. The data is sampled
in intervals of 1 s with a precision of 0.01 watts, i.e., the
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Fig. 1. Frequency of small consecutive value differences in the MIT (black)
and TUD (gray) data sets. Filled circles denote the average relative frequency
over all load profiles, while empty circles accentuate the load profile with the
smallest relative frequency.

smallest nonzero difference between two consecutive values
is 0.01 watts.

The TUD data set consists of a total of 1836 load profiles.
Each load profile contains average power readings of one of
44 electric appliances. Like the MIT data, the data is sampled
in intervals of 1 s with a precision of 1 watt, i.e., the smallest
nonzero difference between two consecutive values is 1 watt.

Fig. 1 shows the relative frequency of the 20 smallest possi-
ble absolute value differences between consecutive values for
both the MIT and the TUD data set. For example, 93% of
all value differences in the load profiles of the MIT data set
(illustrated by filled black circles) are between −0.05 and 0.05
watts (both inclusive), corresponding to the five smallest pos-
sible value differences. However, there is at least one data set
(illustrated by empty black circles) in which only 40% of all
value differences are within these limits.

The plots clearly show that the biggest part, i.e., more
than 95%, of the consecutive value differences are between
−0.1 and 0.1, corresponding to only ten of the smallest possi-
ble value steps. This is somewhat surprising considering that
the maximum absolute value difference in the load profiles
from MIT data set is as large as 6680.55 watts, corresponding
to 6 68 055 value steps.

The distribution of the value differences in the TUD data
set (gray filled circles) is even more surprising. Quasi all,
i.e., more than 99.99%, of the consecutive value differences
are −1, 0, or 1, although the absolute value differences are as
large as 4879 watts maximum.

In both, the TUD and the MIT data set, less than the smallest
0.02% possible value differences (with respect to the maxi-
mum occurring value difference in all load profiles) make up
more than 99% of all differences. Although, this is an average
value summarizing all load profiles of the respective data set,
it clearly shows that the load profile data tends to exhibit very
small changes between two measurement points with respect
to the corresponding data values.

As there is a high amount of load profiles per data set,
the empty circles in Fig. 1 depict the characteristics of the
load profiles with the lowest relative frequency of small value
differences per data set for both, the MIT (black) and the TUD
data set (gray).

Fig. 2. Proposed compression approach: a list of values from a load pro-
file (1) is transformed to a compressed bit string (6) through five successive
encoding steps (A–E).

In the TUD data set, the worst case scenario in terms of
the relative frequency of value differences of no more than
6 watts is one data set with 95% relative frequency. In other
words, only 5% of all value differences in the worst case data
set are larger than six. Similarly, in the worst case load profile
in the MIT data set, there are only a little more than 20% of
all value differences whose absolute value is greater than 20.

While both data sets contain load profiles where the num-
ber of small value differences is significantly smaller than on
average, i.e., smaller than for all load profiles of the respec-
tive data set, the percentage of small value differences is very
high and increases significantly with every additional value
difference step.

Considering that the displayed value difference steps in
Fig. 1 only cover about 0.003% (20 out of 6 68 055) and
about 0.41% (20 out of 4879) of the actual value differ-
ence range of the MIT and TUD data set, respectively, this
allows for the following conclusions on load profile data
with second-granularity, thereby summarizing some of their
compression-relevant characteristics.

1) Quasi all value differences of two consecutively sampled
load profile data values are very small with respect to
the possible range of value differences.

2) Large value differences are very rare, even in worst-case
load profiles (in the analyzed data sets).

IV. PROPOSED COMPRESSION APPROACH

We propose a compression approach consisting of five steps
(denoted as A–E) illustrated in Fig. 2, which exploits the load
profile data characteristics described in Section III. Our algo-
rithm takes a list of values from a load profile (1) as input and
outputs a compressed binary representation of it (6). In the
following, the five processing steps (A–E) are described.

A. Normalization

Floating point operations typically accumulate rounding
errors due to their finite precision, which may lead to unde-
sirable side effects. Furthermore, floating point operations are
often more expensive in terms of computation time than their
integer counterparts due to the lack of floating point units in
most embedded systems [18]. Therefore, the first step of our
approach (denoted as A in Fig. 2) is the conversion of floating
point values to integer values, referred to as normalization.

As the precision of each value is bounded for both, tech-
nical and physical, reasons, so is the precision of a list of
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values. Let pi denote the precision of the ith value vi, expressed
in the number of decimal places after the decimal point.
Consequently, the precision of each value contained in the
list of values is bounded by

pmax = max
i

pi. (1)

Moving the decimal point of each value by pmax decimal
places to the left, all values can be expressed as normalized
integer values ni with the same precision

ni = vi · 10 pmax . (2)

This calculation is illustrated for pmax = 2 as step A in
Fig. 2. We observed that pmax is typically identical for all
input values vi for quasi all real-world load profile data since
the measurement precision hardly ever changes.

Note that the normalization step may be omitted if the input
values have no decimal places after the decimal point.

B. Differential Coding

As described in detail in Section III, the differences between
consecutive values are mostly very small. This property can
be exploited by differential coding, i.e., by storing only the
differences between two consecutive values instead of the
actual values. Note that this is closely related to differential
pulse-code modulation [19].

The differential coding in our approach is illustrated as
step B in Fig. 2. The differential values di are calculated from
the normalized input values ni from the previous step by a
simple subtraction for all values but the very first

di>0 = ni − ni−1. (3)

The first value remains unchanged, since there is no refer-
ence value for it to be subtracted from

d0 = n0. (4)

C. Variable Length Coding

In order to actually exploit the fact that a large number of
difference values di are likely to be small (see Section III), a
variable length code is needed. We use a zeroth order signed
exponential-Golomb code as used in the H.264 standard [10]
and described in detail in [20].

Although exponential-Golomb codes are optimal for geo-
metrically distributed values [20] and the difference values di

are unlikely to be exactly distributed in this way, we use this
code as it is able to compactly represent small difference val-
ues, which are very likely to occur. Large difference values,
which are not very likely to occur, may slightly affect coding
efficiency.

Table I shows both signed and unsigned zeroth-order
exponential-Golomb code words for the corresponding inte-
ger input values, i.e., possible di in our use-case. Note that
it is necessary to use signed exponential-Golomb code words
since the difference values di may be negative.

A value of zero can be encoded using just one bit. All
other signed exponential-Golomb code words can be con-
structed by mapping the unsigned exponential-Golomb code

TABLE I
LIST OF EXEMPLARY VALUES AND THEIR RESPECTIVE SIGNED AND

UNSIGNED ZEROTH ORDER EXPONENTIAL-GOLOMB CODE WORDS.
HYPHENS DENOTE INVALID VALUES. ADOPTED FROM [21]

words alternately to negative and positive values, respectively.
Using this encoding, each difference value di is transformed
into a corresponding variable length code word ci as illustrated
as in Fig. 2 (step C).

D. Code Word Concatenation

To group the variable length code words ci from the pre-
vious step for the subsequent step, they are concatenated to
a bit string b as illustrated in Fig. 2 (step D). Note that no
delimiters are required since the code words include implicit
length information (the number of leading zero bits is equal
to the number of value bits after the delimiting one bit).

E. Entropy Coding

As a final step, we perform entropy coding on the con-
catenated bit string b in order to get the final compressed bit
representation e, as illustrated in step E in Fig. 2. By using
an arithmetic coder, which theoretically allows perfect, i.e.,
zero-redundancy entropy coding under certain conditions [22],
this aims at removing most of the remaining redundancy.

Since the code words ci have variable length and are poten-
tially large, we use binary arithmetic coding which operates on
bit level and therefore only distinguishes two symbols—zero
and one. Since the probabilities of these two symbols, which
are required as an input for the arithmetic coder, may differ
depending on the input values, we start with 50:50 proba-
bilities and perform adaptive encoding, i.e., we modify the
probabilities of the two symbols during the encoding process
according to their actual occurrences.

In order to avoid floating point operations during arithmetic
coding, an implementation relying only on integer operations
is recommended. As described in Section VI, we use an
implementation which is based on the algorithm proposed
in [22]. Although, it is possible to faster implementations,
see [20] or [23], the latter rely on approximations. Therefore,
their final bit string length may in some cases be slightly
different from our results.

F. Summary

As summarized in Fig. 2, the input values vi (1) are normal-
ized to integer values ni (2), which are differentially coded as
di (3). After each differentially coded value di is encoded as
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TABLE II
WORST-CASE TIME COMPLEXITY OF OUR APPROACH AND ITS CORE

STEPS WITH RESPECT TO THE NUMBER OF INPUT VALUES n AND

THEIR MAXIMUM SIZE m IN BITS

one variable length code word ci (4), all code words are con-
catenated to a single bit string b (5), which is finally entropy
coded as a compressed bit string e (6).

G. Decoding Process

Decoding a bit string encoded with our approach requires
applying the inverse operations in the reverse order, i.e., the
decoding equivalents of the encoding steps (E–A). These
decoding steps are shortly described below.

First, entropy decoding (inverse of step E) is performed on
the bit string, yielding a string of variable length code words,
which can be split (inverse of step D) due to the implicit length
information they contain (see Section IV-D). The exponential-
Golomb code words are then decoded (inverse of step C) to
yield difference values. Finally, these values are added to their
respective predecessors (inverse of step B) in order to get the
original absolute values, which can be denormalized through
division (inverse of step A).

V. ALGORITHMIC PROPERTIES

The approach presented in Section IV exploits the char-
acteristics of load profile data for compression. However, its
applicability for a smart metering use-case is not obvious.
Hence, this section analyzes its properties with a strong focus
on practicality. It describes those features which are relevant
when the proposed approach is used to process and transmit
load profile data and provides a detailed overview of its time
and space complexity.

A. Algorithmic Complexity

When encoding n values with a maximum size of i and m
bits each before and after normalization, respectively, all sub-
sequent steps of our proposed compression approach require
processing time and memory depending on m, n or both. In
this section, we derive the worst-case time and space complex-
ity of our approach and the aforementioned steps. The results
are summarized in Tables II and III.

We use asymptotic notation [24] and assume that all val-
ues are available in memory when they are needed by our
algorithm, i.e., they are either all in memory the whole time,
consuming O(mn) bits, or loaded into memory one by one on
demand, consuming O(m) bits. Furthermore, we assume that
the encoded data is either transmitted or stored immediately
so that no temporary memory for the fully encoded bit rep-
resentation has to be taken into account and the algorithm’s

TABLE III
WORST-CASE SPACE COMPLEXITY OF OUR APPROACH AND ITS CORE

STEPS WITH RESPECT TO THE NUMBER OF INPUT VALUES n AND

THEIR MAXIMUM SIZE m IN BITS

space complexity analysis can focus on the overhead of the
algorithm itself.

The first step, i.e., the normalization, largely depends on the
format of the input values. If they are already integer, no oper-
ation needs to be performed. Otherwise, one multiplication for
the i-bit input values, followed by an optional rounding oper-
ation, is required. This requires O(i2) time complexity when
using a straight-forward implementation of an i-bit multiplica-
tion algorithm [24]. For the optional rounding operation, the
same applies.

Since the normalization step itself is optional and, if per-
formed, highly dependent on the input values and their
format, its time and space complexity are not included in
Tables II and III, respectively. It should be noted, however,
that the space complexity of the multiplication is O(i). If i is
proportional to m, this is equal to O(m).

The second step, i.e., the differential coding, can be per-
formed value by value and requires only the last value to
be stored in order to calculate the current value difference.
This takes up m bits of space constantly, plus m bits for
the calculated difference, being of a total space complexity
of O(m).

One m-bit subtraction per value has a time complexity of
O(m) [24]. Since n−1 values need to be processed, this step is
performed n−1 times, corresponding to O(n) time complexity
times the complexity per value, totaling a time complexity
of O(mn) for all values.

The third step, i.e., the variable length coding, can also
be performed value by value. Since the worst-case encoding,
i.e., the variable length encoding of the largest possible value,
is proportional to the input value bit size m [20], the total
space complexity of this step is O(m).

Calculating a variable code word of an i-bit value requires
a constant number of additions and subtractions as well as
i divisions or shift operations [20], followed by a maximum
of 2i + 1 bit writing operations. With the worst-case input bit
length being proportional to m, this requires a time complexity
of O(m), since m-bit additions, subtractions and shift opera-
tions are all of time complexity O(m) [24]. In total, this yields
a time complexity of O(mn) for all values.

Note that the fourth step, i.e., the bit string concatenation,
is not listed in Tables II and III. This is due to the fact
that the output values of the preceding step can be passed
directly to the next step, i.e., the entropy coding step, one
by one so that no intermediate memory is required and no
actual concatenation has to be performed. The bit string con-
catenation can therefore be regarded as a conceptual step
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rather than an actually necessary one in a straight-forward
implementation.

The fifth and final step, i.e., entropy coding, is performed
on the whole output of the third step, value by value, one bit
at a time. This conceals the intermediate concatenation step
as explained above. Since the output of the third step has a
total length which is O(mn), the per-bit time complexity of
the entropy coder times mn yields the time complexity of the
complete entropy coding step.

In total, the time complexity of an adaptive binary arithmetic
encoder for each input bit is constant, i.e., of time complexity
O(1) with respect to m and n [22]. Hence, processing O(mn)

input bits is of time complexity O(mn). The space complexity
is constant, i.e., O(1) [22].

Summing up the space and time requirements of all
described steps, this yields a total time complexity of O(mn),
which is proportional to the number of input values and their
maximum size in bits and thus equal to, e.g., the time com-
plexity of performing n m-bit additions, i.e., relatively low. The
space complexity is O(m) and therefore not dependent on n,
which enables encoding with very modest space requirements.

Since, decoding involves the inverse operations of the
described encoding steps in opposite order (as explained in
Section IV-G), the time and space complexity of a decoder
are expected to be equal to the encoder’s. In order to avoid
a complete complexity analysis of the decoding process, we
refer to the symmetry of the operations involved to claim this
without explicit proof.

B. Resumability

As load profile data is transmitted extensively in smart grids,
the adequacy of our compression approach for this use-case
has to be assessed. Although effective compression reduces
data size and thus transmission time, it may have undesir-
able side effects compared to uncompressed transmission, for
example when data is lost.

Although our approach does not include native error detec-
tion capabilities, it allows for retransmissions of parts of the
data with very low overhead. This subsection discusses the
conditions under which a lost part of the transmitted data
can be retransmitted so that the transmission process can be
resumed. Furthermore, the retransmission procedure as well
as its overhead are discussed.

The state of the decoder during the decoding process is
limited to a small number of variables. First, the differential
coding step stores one m-bit variable containing the last coded
value, as described in Section V-A. Second, the arithmetic
coder stores three machine-word-sized integers representing
the probability of the symbol zero, the current interval and the
number of bits to be output after the next one, respectively.

Since this information is sufficient to represent the entire
state of the decoder, a decoding process can be resumed by
sending the aforementioned variables. For example, if m = 32
and the machine word size is 16, the decoder state can be
represented by 32 + 3 · 16 = 32 + 48 = 80 bits, or 10 bytes.

Since our compression approach is not able to detect errors,
it relies on an encapsulation format or transmission protocol
to do so. In case of an error, the decoder’s state can be reset to

the last known good state by keeping a copy of the decoder’s
state after each successfully decoded data packet. The retrans-
mission overhead is then equal to the size of the decoder state,
e.g., 10 bytes.

Alternatively, it is possible for the decoder to request the
encoder’s state in order to resynchronize. Since both perform
symmetric operations, their states have to be equal. Note that
they can only exchange their states if the used protocol and
channel allow them to do so.

This allows for resumability, i.e., the possibility to resume
the decoding process at a given point. However, it is not
possible to reconstruct preceding values which have been omit-
ted between the last known good value and the resumed one
(if there are any), since prior decoder states cannot be recon-
structed. However, it is possible to deliberately omit parts of
the data as long as the decoder state required to start decoding
after the omitted parts is available.

If our approach is used in combination with packet-based
transmission, we suggest to add the decoder state to each
packet. This way, the decoder can process each packet inde-
pendently and does not rely on the retransmission of preceding
packets in order to decode the current one. The overhead
should be negligible for typically large packet sizes, e.g.,
1500 bytes for IEEE 802.3 (Ethernet), as well as for practical
values of m and typical machine word sizes.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of our proposed
approach, we analyze its compression efficiency as well as
its processing time for a number of data sets and compare
the results to those of related standards. Before discussing the
results, we describe our implementation and test environment
as well as the used data sets and the related standards used
for comparison.

A. Related Standards

As mentioned above, we use two common uncompressed
data formats for comparison with the proposed method. We
only consider the encoding of the actual payload, i.e., we omit
any encapsulation and/or protocol overhead since this would
bias the results.

The first uncompressed format is described in
IEC 61334-6 [15], which is also referred to as A-XDR
encoding. Although this standard describes a number of
possible encodings for numerical values, we consider the
fixed-length unsigned integer encoding [15, Section VI-A1a]
to be the most practically relevant one due its low per-value
overhead.

As explained above, we omit all encapsulating identifier
and length fields to make the comparison between the our
encoding and the one from A-XDR as fair as possible. This
way, n encoded values with a maximum of m bits size each
require a constant amount of n ·�m/8� bytes or 8n ·�m/8� bits,
as illustrated in Fig. 3(a).

Since A-XDR provides no explicit encoding for floating
point values, all input values to the A-XDR encoding pro-
cess are considered to be integer values. This can be assured
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(a)

(b)

Fig. 3. Encodings of the integer value 123 from related standards.
(a) 16-bit fixed-length unsigned integer A-XDR encoding. (b) ASCII-based
IEC 62056-21 encoding with trailing zero (delimiter).

through a normalization preprocessing step, as described in
more detail in Section VI-B. As this preprocessing step is
part of our proposed compression algorithm anyway, it can
be performed once on the input data instead of once within
each algorithm. This also allows for a fairer comparison of
all evaluated encodings since they are provided with the same
input data.

The second uncompressed format is described in
IEC 62056-21 [13]. It encodes values in data blocks
[13, Section VI-C4] which consist of one or more data lines
[13, Section VI-E1], which themselves contain one actual
value and its corresponding unit each. All data lines consist
of a limited set of printable characters expressed in the ASCII
character set [25].

Again, we only consider the actual payload, i.e., the
ASCII-encoded values and omit the units and other protocol
overhead. Note, however, that one additional byte per value is
required to separate consecutive values due to their variable
length, as illustrated in Fig. 3(b). This is not necessary for our
approach or the A-XDR encoding described above since the
latter uses a fixed number of bytes and our approach implicitly
encodes length information (see Section IV-D).

B. Implementation and Test Environment

We implemented our approach proposed in Section IV in
Python. For the arithmetic coding step, we used D. MacKay’s
implementation1 which is practically identical to the imple-
mentation from [22]. Since MacKay’s implementation operates
on a bit string, the preceding step of our approach, i.e., the
exponential-Golomb coding, outputs such a bit string instead
of the corresponding byte sequence, as opposed to all prior
steps.

In order to make the comparison between our approach and
the ones from related standards fair, we reimplemented the lat-
ter so that they output bit strings as well. Note that, although
this alters the processing time slightly, it still allows compar-
ing the algorithms with respect to the order of magnitude of
processing time.

As described in Section VI-A, some of the algorithms
from related standards are not capable of handling noninteger
(i.e., in this case, floating point) values. To simplify process-
ing and make the processing time comparison fairer, all data
is preprocessed by applying the normalization step described
in Section IV-A. Thus, all algorithms operate on integer input
data. This reduces the processing time of those algorithms in

1http://www.inference.phy.cam.ac.uk/mackay/python/compress/#AC

Fig. 4. Average value size in bits for the MIT (black) and the TUD data
set (gray). The bars indicate the average number of bits per value for those
load profiles which require the minimum and maximum number of bits in
each data set, respectively.

need of preprocessing, but still allows for a comparison with
respect to the order of magnitude of processing time.

Our test environment is a server hosting an
Intel Xeon E5-2620 CPU with six physical cores run-
ning at 2 GHz each. The server runs Ubuntu 12.04.2 LTS
on a 64-bit Linux 3.2.0-48 kernel. We use Python 2.7.3 and
its built-in clock function from the time module to measure
processing times.

C. Data Sets

For our evaluation, we use the MIT and TUD data sets
described in Section III. As the values in the MIT data set are
stored with a precision of 0.01 watts, we normalize them by
multiplying them by 100 as described in Section IV-A. The
values in the TUD data set are already stored as integers and
therefore require no normalization.

For the fixed-length A-XDR encoding we used a bit length
of 32 bits, since this is the smallest whole-byte size which is a
power of two (which is typically used in practice) that allows
covering the whole value range present in the input files.
Similarly, our algorithm uses 32 bit variables for the difference
calculation in the differential coding step (see Section IV-B).

D. Compression

For all load profiles of each data set, we evaluate the aver-
age number of bits required to represent one value. Fig. 4
illustrates this for all tested approaches. Obviously, fixed
length A-XDR coding always requires 32 bits, while the
IEC 62056-21 encoding and our approach requires a variable
number of bits.

It is clear that our approach outperforms the other two by
an order of magnitude. Furthermore, there is no load profile
for which our approach is inferior to one of the other two,
since the maximum number of bits per value required by our
approach is always significantly smaller than the minimum
amount of bits per value required by both, the fixed-length
A-XDR and the IEC 62056-21 encoding.

As the value range of the TUD data set is smaller than the
one of the MIT data set (see Section IV-B), the average number
of bits required per value is significantly smaller for the TUD

http://www.inference.phy.cam.ac.uk/mackay/python/compress/#AC
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Fig. 5. Average value size in bits for each house from the MIT data set.
The bars indicate the average number of bits per value for those load profiles
which require the minimum and maximum number of bits in each house,
respectively.

data set. This reflects in the results for both, our approach and
the IEC 62056-21 encoding, which are variable-length codes.

Since the MIT data set is a collection of load profiles from
multiple houses, it is possible to investigate the differences
between them in terms of compression efficiency. Fig. 5 shows
the average number of bits required per value and house for
each encoding approach.

Again, our proposed compression approach outperforms
the other two by an order of magnitude for each individ-
ual house, revealing that averaging the values per data set
(as shown in Fig. 4) did not conceal any inefficiencies of
our approach. Interestingly, the compression efficiency of our
approach shows a slight correlation with the IEC 62056-21
encoding, albeit inherently not proportional.

As the load profiles of each house from the MIT data set cor-
respond to one channel each, it is possible to investigate their
individual compression performance. Fig. 6 shows the average
bit length per value for each channel of each house. Note that
the channel labels are taken directly from the MIT data set’s
companion files and have not been modified, i.e., corrected
orthographically.

For almost all individual channels, i.e., load profiles, our
compression approach is significantly superior to the other
two. Although, it is not always more efficient by an order
of magnitude, it is at least twice as efficient for all channels.

One advantage of our approach becomes clear for chan-
nels which are typically constant or quasi constant over long
periods of time, e.g., the oven and stove channels in house 1
(top left). Since the load on such a channel typically changes
rarely and rapidly, the number of zero and small differences
(due to noise and measurement inaccuracies) is very high,
allowing our approach to effectively compress the data.

However, channels with relatively unpredictable load behav-
ior, like the mains of all houses, can still be compressed very
efficiently as compared to the other two encodings. The same
is true for channels with low variable load, like the kitchen
outlets of all houses, showing that our proposed approach
is able to compress these types of load profiles efficiently
as well.

Although, our approach achieves better compression per-
formance for channels with relatively small changes between

values, the employed exponential-Golomb code and arithmetic
coding still allow for sufficiently good compression in cases
of larger changes between values. This is mainly due to the
fact that the length of exponential-Golomb codes (in bits)
only increases logarithmically with increasing input values,
i.e., increasing value differences in our method. Thus, only
very large value differences would generate notably longer
codewords and thereby impact the compression performance
significantly, which is a practical feature of our proposed
approach.

E. Processing Time

Fig. 7 shows the average number of microseconds required
to encode one value with each approach for the MIT (black)
and the TUD data set (gray), respectively. As explained in
Section VI-B, our implementation only allows assessing the
order of magnitude of the processing times.

Thus, it cannot be asserted that our approach is significantly
faster than the other two. However, it requires about the same
order of magnitude in terms of processing time per encoded
value, hence being comparable to both, fixed-length A-XDR
and IEC 62056-21 encoding.

Since all variable-length coding approaches depend on the
actual size of their input values, both, our approach and the
IEC 62056-21 encoding, clearly require less time per value
on average for the TUD data set than they do for the MIT
data set. This is clear, since the latter’s value range is larger.
This confirms the linear dependency of both approaches to the
input bit length, allowing for faster processing of small input
values.

Note that further investigations, e.g., per house or per chan-
nel of the MIT data set, are not meaningful due to the limited
measurement accuracy. This is supported by the difference
between the average processing times of the MIT and the
TUD data set for the A-XDR encoding, which should be zero
in theory assuming a perfect implementation and execution
environment, since A-XDR is a fixed-length code.

VII. FUTURE WORK

Our approach has been shown to perform very well in
terms of compression efficiency, but there is still room for
improvement. For example, signal characteristics like peri-
odicity could be exploited as most load profiles tend to
exhibit weekly, daily or even hourly patterns based on the
types of appliances and users. By forming a prediction
signal from the last week, day or hour, respectively, one
could encode the difference between the current data val-
ues and the predicted ones instead of encoding consecutive
value differences, thereby further increasing compression effi-
ciency. It should also be possible to combine these two
approaches.

Another issue to be addressed is the diversity of the evalu-
ated load profiles. Although the amount and diversity of load
profiles from the MIT and the TUD data set are already very
high, it would be desirable to have a larger amount of real-
world test data available in order to extend the results of this
paper. This does not only include data from different sources,
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Fig. 6. Average value size in bits for each channel of each house from the MIT data set (top left: house 1; top right: house 2; etc.). Each channel corresponds
to one load profile.
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Fig. 7. Average encoding time per value for the MIT (black) and the TUD
data set (gray). The bars indicate the average number of microseconds per
value for those load profiles which require the minimum and maximum time
in each data set, respectively.

but also different granularity, e.g., a sampling time of minutes
or even hours. This way, the compression efficiency could be
evaluated more thoroughly.

Finally, the overhead introduced by using our proposed
resumability feature has to be evaluated thoroughly. This does
not only include analyzing the overhead for different loss rates,
but for different link types and protocols as well. Since such
an analysis is beyond the scope of this paper, it remains future
work.

VIII. CONCLUSION

We proposed a compression approach tailored for the
requirements of load profile data transmission in smart meter-
ing. We showed that our approach allows for resumability
with very low overhead, which enables it to operate in
error-prone transmission lines in smart grids. Even with pro-
viding resumability, our approach has been shown to maintain
the same compression results as standard compression algo-
rithms, which do not provide this important feature. Currently
employed state-of-the-art transmission encodings are outper-
formed by an order of magnitude in terms of compression
performance without significantly impacting the processing
time required for the encoding process. In summary, the pro-
posed approach is ideally suited for compression of smart
meter load data as it delivers competitive compression results
with low computational complexity, low memory require-
ments, low overhead for initialization and the ability to resume
after interruption.
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