
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 3131

Lossless Compression of High-Frequency Voltage and Current Data in Smart Grids

Andreas Unterweger and Dominik Engel

Salzburg University of Applied Sciences,
Josef Ressel Center for User-Centric Smart Grid Privacy, Security and Control

Urstein Süd 1, 5412 Puch/Salzburg, Austria
Email: andreas.unterweger@en-trust.at

Abstract—In smart grids, both, low-frequency and high-
frequency measurements are performed in households for a
variety of use cases. While several compressibility studies of this
data have been conducted in the literature, lossless compression
of high-frequency data has not yet been covered. In this paper,
high-frequency voltage and current data is processed with a
selection of low-complexity compression algorithms to find that
the data are not equally compressible. Further, it is found that
the compression performance varies with resolution as well
as between households and data sets. Nonetheless, the use of
compression is practically viable for the current channels of
the evaluated data sets at 16 and 50 kHz, respectively.

Keywords-Smart Grid; Compression; High Frequency; Volt-
age; Current

I. INTRODUCTION

Intelligent energy networks, or smart grids, are envisioned

to modernize energy systems worldwide, on the one hand

by enabling communication between the involved entities

in the grid, on the other hand by collecting fine-grained

sensor measurements throughout the grid. In smart grids,

the data collection also applies to the low-voltage part of

the grid, which makes smart meters and other measurement

units important components of the smart grid [1]–[3].

The amount of data produced by smart meters is consid-

erable [3], especially due to the vast numbers of meters that

are in the field. At this point in time, the resolution produced

by standard smart meters is rather coarse grained with 15

minute in many countries. There are other measurement

units that will produce higher frequency data, which will be

measured in the range of kilohertz, e.g., phasor measurement
units [4]. Due to the development of information technology,

smart meters will likely be capable of higher-frequency

measurements in the foreseeable future.

As an example for the amount of data accrued in the

grid for such measurements, consider the collection of data

for voltage and current, with 16 bit precision per value

at a frequency of 10 kHz. This will amount to 40 kB/s,

i.e., approx. 39 KiB/s per meter. Transmitting this kind of

data will require considerable bandwidth for the associated

communication links, especially at the receiving, i.e., collect-

ing end. Furthermore, storing the data in an uncompressed

format for 100 million meters would result in approx. 4.559

EiB per year (108 · 40.000 bytes/s · 365 d/a · 3600 s/d ≈

4.559 EiB/a). Although this is only an illustrative example,

the case for compression as a means to address the trans-

mission and storage challenges that are typical for a big data

application [3] is clear.

It comes without surprise that there are thus numerous

suggestions for compressing data in energy metering. In the

area of high-frequency compression, there is an exclusive

focus on lossy compression (e.g., [4]–[7]), which means that

in the decompression process, the data cannot be retrieved

exactly. Depending on the extent of data loss, this of course

may have detrimental effects on some use cases that require

measurement data to be as exact as possible.

Lossless compression can remedy this problem, as it only

aims at utilizing redundancies in the data set to maximize

the entropy of the compressed representation, i.e., after

decompression the exact same data is retrieved. Lossless

compression is mainly proposed for low-frequency data, e.g.,

[8], [9], and, to the best of the authors’ knowledge, has not

been studied in any meaningful way for high-frequency data

sets.

In this paper, the utility of lossless compression algorithms

for high-frequency metering data is investigated. Lossless

compression algorithms allow universal use of the metering

data at a later stage, but still make transmission and storage

feasible in the real world. As meters used in the field

are typically devices of low computing power, suitable

compression approaches need to be economic in terms of

their computational and memory demands. The proposed

methods are applied to publicly available high-frequency

data sets to allow for reproducible results.

The main contributions of this paper are (i) the assess-

ment of lossless compression of high-frequency smart meter

data; (ii) a viability analysis regarding the compressibility

of high-frequency voltage and current data as opposed to

consumption values in Watts or Watt-hours; and (iii) rec-

ommendations on the compression of high-frequency smart

meter data in an environment that is contrained in terms of

both, computational power and transmission bandwidth.

This paper is structured as follows: In Section II, lossless

compression approaches which are designed for operation

on smart meters are presented. In Section, III, the high-

frequency data sets used for the evaluation in Section IV

are described.

3132

II. COMPRESSION APPROACHES

In this section, relevant lossless compression approaches

are presented. The selection of algorithms is based on the

constraints which are typical for smart meters, i.e., low com-

putational power and limited memory. From the available

light-weight approaches, three of those designed explicitly

for the use on smart meters are selected and described below

– A-XDR, LZMH and DEGA coding. This selection is based

on related work [10].

A. A-XDR Coding

A-XDR [11] stores values with a pre-defined length in

binary. Each value uses the same number of bits. Fractional

values, have to be converted to integers before storage [9],

[10]:

v′ = v10d, (1)

where d is the number of decimal places after the decimal

point, v is the fractional value and v′ is the (converted)

integer value that can be encoded by A-XDR.

With a length of 16 bits per value, the ranges [0; 65535] or

[−32768; 32767] can be represented, depending on whether

only positive or positive and negative numbers may occur

in the input. For values with two decimal places, the ranges

change to [0; 655.35] and [−327.68; 327.67], respectively.

While A-XDR is not a compression algorithm per se, it

is one of the simplest possible representations for current

and voltage values and thus serves as a reference point.

Furthermore, it is both, easy to implement and fast to

process, making it suitable for smart meters.

B. LZMH Coding

LZMH coding [8] processes streams of input values char-

acter by character and stores a small history of previously

processed characters in a buffer. Re-occurring groups of

characters are encoded as references to this buffer by spec-

ifying the position and length of the group. The remaining

data is encoded based on the probability of each processed

character – if it occurred often in the input stream so far,

it gets assigned a short representation, otherwise it gets a

longer one.

Since LZMH coding processes the input character by

character, no additional conversions are necessary. The group

matching as well as the probability estimation are trivial

based on the character count from the input, allowing for

low computational complexity. Since the size of the history

buffer is very limited, the memory requirements are also

very low, making LZMH coding suitable for smart meters.

C. DEGA Coding

DEGA coding [9] calculates the differences between two

consecutive values under the assumption that they are small.

If it holds, a short representation is used, while, for large

differences, a longer representation is required. An addi-

tional entropy coding stage further compresses consecutive

representations of very small values.

Like A-XDR, DEGA coding is designed for integer in-

put values, requiring the application of Equation 1 before

processing. The complexity of DEGA coding is analyzed in

detail in [9] – it is designed for use on smart meters.

The efficacy of DEGA coding relies on small differences

of consecutive input values. The original publication [9]

based this core assumption of the algorithm design on

an analysis of the TUD tracebase [12] and MIT REDD

[13] low-frequency data sets. Since this paper uses high-

frequency data as described in detail in the next section, it

is not clear whether the DEGA assumption still holds. Thus,

a discussion of this aspect in the evaluation in Section IV is

required.

III. HIGH-FREQUENCY DATA

In this section, two data sets containing high-frequency

voltage and current data of households are described, both

of which are subsets of the MIT REDD and UK-DALE

data sets, respectively, and dedicated to evaluation purposes.

Furthermore, it is described how the data from these data

sets is pre-processed so that it can be input directly into the

compression algorithms described in Section II. The detailed

commands used for pre-processing are listed in Appendix A

for reproducability.

A. MIT REDD High-Frequency Raw Data

The MIT REDD data set [13] contains a subset of

high-frequency raw data of two houses. For each house,

one voltage and two current channels from the mains are

available. Each channel contains approximately one-and-a-

half hours worth of raw A/D converter data at a sampling

rate of 50 kHz.

The actual ADC values are grouped into 21 files per

channel per house. They are losslessly compressed with

bzip2 (http://bzip.org), i.e., for processing, they have to be

decompressed. Each decompressed file is a sequence of 32-

bit floating-point values in little endian byte order, with

interspersed time stamps. The latter start with four indicator

bytes and contain 8-byte time stamps, i.e., they are 12 bytes

in size each and removed before further processing.

Since the majority of compression approaches described

in Section II have been designed for compressing primarily

consumption values in W or Wh, they have difficulties

processing negative values. The latter occur frequently in

the high-frequency wave form data.

In order to avoid issues involving negative values, for each

file, during processing, the smallest value, i.e., the negative

number with the largest absolute value, is added to each

value of that file. This makes all values positive and therefore

unproblematic for the compression algorithms. Furthermore,

it does not alter to compressibility of the values since their

3133

entropy does not change. Thus, this change does not impact

the results and conclusions of the evaluation in Section IV,

but enables them in the first place.

B. UK-DALE High-Frequency One-Week Data

The UK-DALE data set [14] contains a subset of high-

frequency (diaggregated) raw data of one house (DOI

10.5286/UKERC.EDC.000002). For this house, one voltage

and one current channel are available. Each channel contains

one week of raw A/D converter data at a sampling rate of

16 kHz.

The actual ADC values are grouped into 169 files, con-

taining both, voltage and current data. The files are losslessly

compressed with FLAC (https://xiph.org/flac/), i.e., for pro-

cessing, they have to be decompressed and split into the two

individual channels. Both, decompressing and splitting, are

performed using avconv (https://libav.org/avconv.html) from

Libav (https://libav.org/). Each decompressed channel (as a

file) is a sequence of 64-bit floating-point values between -1

and 1.

In order to obtain the actual voltage and current read-

ings from these floating-point values, each value ṽi,j of a

decompressed file i is scaled:

vi,j = 231Δstep · ṽi,j , (2)

where 231 is the number of ADC steps per sign (plus and

minus, yielding a total of 232 ADC steps) and Δstep is the

ADC step size, which is 1.90101491444 · 10−7 V
step for the

voltage channel and 4.9224284384·10−8 A
step for the current

channel, respectively. To avoid issues with negative values,

an offset is added to the scaled values vi,j as described for

the MIT REDD data set above.

IV. EVALUATION

In this section, the evaluation methodology for the com-

pression approaches presented in Section II is explained.

Subsequently, the compression results achieved for the test

data described in Section III are presented. Results on run

time are briefly discussed in Appendix B.

A. Methodology

To evaluate the compression performance of the high-

frequency data, it is processed in three steps as follows:

1) Separation: From the data, the individual channels are

extracted on a file-by-file basis as described in Section

III. This ensures that chunks of approximately equal

size for each channel are available separately for pre-

processing.

2) Pre-processing: The raw channel data consists of

floating-point values which are unsuitable for the

compression algorithms – they are designed to process

input values with a constant number of decimal places.

Thus, as a pre-processing step, all values are con-

verted into a decimal representation with two decimal

places after the decimal point. This process is, in fact,

lossy and can be adapted based on the measurement

precision and/or use case. For this evaluation, 16-bit

precision of the A/D converters is assumed, allowing

for values of approximately ±328 with two decimal

places after the decimal point (see Section II).

3) CSV formatting: The pre-processed values with two

decimal places are stored as CSV (comma-separated

values) files. These files are used as the input for

all compression algorithms so that their compression

performance is comparable. Each CSV file represents

the data of one channel of one file from one data set.

Each pre-processed file i with size si is compressed with

all compression algorithms a, resulting in compressed files

of sizes ŝai . From the compressed sizes, the compression

ratios rai are calculated as

rai =
ŝai
si

(3)

To evaluate the compression performance pa of all files of a

channel for any compression algorithm a, the compression

ratios are combined as follows. As opposed to [9], which

use the arithmetic mean of compression ratios, for this

evaluation, the harmonic mean is used:

pa =
n

∑

i

1
ra
i

, (4)

where n is the number of input files i. This allows for a more

realistic assessment of the overall compression performance

– input files of approximately equal size, but different

compressibility can be compressed by a common ratio (the

harmonic mean, pa) when combined.

In order to evaluate the compression performance at lower

frequencies, e.g., a frequency that is m times smaller, the

input files are processed as described above, but, addition-

ally, m consecutive values vi,j in each file i are combined

using the arithmetic mean

v′i,j′ =

(j′+1)m−1∑

j=j′m
vi,j

m
, (5)

resulting in m′ lower-frequency values v′i,j′ . These values

represent an approximate lower-frequency sampling of the

high-frequency values. To evaluate the lower-frequency sam-

pling, v′i,j′ are stored as CSV and compressed instead of vi,j .

For all evaluations of the compression approaches, the

implementation from [10] is used. All measurements are

carried out on a 64-bit x86 virtual machine running Ubuntu

14.04 on a Linux kernel with version 3.13. All pre-

processing described in Section III and above is carried out

with the latest GNU Coreutils (http://www.gnu.org/software/

coreutils/coreutils.html) available over apt as of March 2016.

3134

B. Results

The compression results for the MIT REDD and UK-

DALE data sets are presented separately. Figure 1 depicts

the median compression ratios for the MIT REDD high-

frequency raw data set channels at different frequencies.

Minimum and maximum compression ratios are indicated

by horizontal bars. Three main observations can be made.

First, DEGA coding (Unterweger15a [9], black) out-

performs the other approaches in terms of compression

performance. This is true for the voltage channel (top,

filled triangles) and both current channels (middle, filled

rectangles and bottom, filled circles) as well as for all

resolutions but 100 Hz. The relative performance of LZMH

coding (Ringwelski12a [8], dark grey) and A-XDR (light

grey) is comparable to what has been found in prior work

[10].

Second, there is a performance difference between the two

houses, 3 (left) and 5 (right). While the voltage channels

(top, filled triangles) are practically identical in terms of

compression ratio, the two current channels (middle, filled

rectangles and bottom, filled circles) are different. Although

the shape of the curves is similar, the absolute values differ.

Due to the logarithmic scale, the differences appear smaller

than they are. However, the differences between the houses

are relatively small, i.e., the compression performance of the

respective channels is similar.

Third, the performance of all compression algorithms

– DEGA coding (Unterweger15a [9], black) and LZMH

coding (Ringwelski12a [8], dark grey) – depends on the

resolution in a similar way: For very high frequencies (50

kHz), compression performance is good, i.e., around a com-

pression ratio of 10 for the current channels, and decreases

with frequency until around 500 Hz. This shows that the

data contains little to no noise, i.e., it is compressible at

its original resolution, and that the decrease in compression

performance is due to an decrease of temporal correlation

at lower resolutions.

At a frequency of 100 Hz, the compression ratio in-

creases again, but much more significantly for LZMH coding

(Ringwelski12a [8], dark grey). Since 100 Hz is just below

the required sampling frequency of a 50 Hz signal [15],

the inherent band limitation decreases the signal entropy in

the time domain, thus making it more compressible. This

effect becomes stronger for frequencies below 100 Hz (not

depicted). Note that all results at frequencies of 100 Hz and

below are irrelevant in practice since subsampling renders

most of the data useless. However, these frequencies are

useful when the data at hand is accumulated instead of

sampled, as analyzed in [8]–[10].

The results for the second data set, the UK-DALE high-

frequency one-week data set, are depicted in Figure 2.

The compression performance depends on the resolution

(frequency) of the input data in relatively the same way

as for the MIT REDD high-frequency raw data set, with

the exception of low frequencies, which are not practically

relevant, as explained above. Again, DEGA coding (Un-

terweger15a, black) outperforms the other approaches. Two

additional observations can be made.

First, there is a significant difference between the voltage

(left) and current channels (right) – the voltage channel is

less compressible. This can also be observed for the MIT

REDD high-frequency raw data set (see Figure 1), albeit

to a smaller extent. This result, which is due to the lower

entropy of the current channel, may either be explained by

voltage spikes due to inductive loads or by the influence of

other households on the same transmission line – changes

in these other households leads to an addition of noise to

the voltage channel, thereby increasing the entropy of each

household, while decreasing the entropy overall, i.e., for all

households on a transmission line. A detailed analysis of the

causes, however, remains future work.

Second, comparing channels of the same type (e.g., volt-

age only) between the UK-DALE high-frequency one-week

data set (Figure 2) and the MIT REDD high-frequency

raw data set (Figure 1) reveals about the same level of

change as is observed for channels of the same type between

different houses of the MIT REDD high-frequency raw data

set. This allows for the conclusion that the data-dependent

compression ratio variability is non-negligible.

V. CONCLUSION

The compressibility of high-frequency voltage and current

measurements has been studied for a number of smart-meter-

specific compression algorithms. Three main results can be

highlighted. First, current data can be compressed signifi-

cantly better than voltage data. Second, the results depend

on the resolution of the data, where a higher frequency yields

a better compression ratio (90% data reduction for voltage

data) – excluding any resolutions below the practically

relevant sampling limit. Third, the compression algorithm

proposed by Unterweger and Engel [9] outperforms the

others for high-frequency data. In summary, compressing

data from current channels with this approach is feasible

at high frequencies, while compressing data from voltage

channels is likely not worth the effort due to the small

compression ratio given the required computation time.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry of

Science, Research and Economy and the Austrian National

Foundation for Research, Technology and Development is

gratefully acknowledged.

REFERENCES

[1] Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis,
M. Sooriyabandara, Z. Zhu, S. Lambotharan, and W. H.
Chin, “Smart grid communications: Overview of research
challenges, solutions, and standardization activities,” IEEE

3135

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

Figure 1. Compression performance of different algorithms for houses 3 (left) and 5 (right) from the MIT REDD high-frequency raw data set: The results
for voltage channels (top, filled triangles) differ from those for current channels 1 (middle, filled rectangles) and 2 (bottom, filled circles). The results also
differ between the two houses, but not for all channels.

Communications Surveys and Tutorials, vol. 15, no. 1, pp.
21–38, 2013.

[2] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid - The
new and improved power grid: A survey,” IEEE Communi-
cations Surveys and Tutorials, vol. 14, no. 4, pp. 944–980,
2012.

[3] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile
Networks and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[4] P. H. Gadde, M. Biswal, S. Brahma, and H. Cao, “Efficient
Compression of PMU Data in WAMS,” IEEE Transactions
on Smart Grid, 2016, to appear.

[5] X. Tong, C. Kang, and Q. Xia, “Smart Metering Load Data

Compression Based on Load Feature Identification,” IEEE
Transactions on Smart Grid, 2016, to appear.

[6] J. C. S. de Souza, T. M. L. Assis, and B. C. Pal, “Data
compression in smart distribution systems via singular value
decomposition,” IEEE Transactions on Smart Grid, 2015, to
appear.

[7] J. Cormane and F. A. d. O. Nascimento, “Spectral shape
estimation in data compression for smart grid monitoring,”
IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1214–
1221, 2015.

[8] M. Ringwelski, C. Renner, A. Reinhardt, A. Weigel, and
V. Turau, “The Hitchhiker’s guide to choosing the compres-
sion algorithm for your smart meter data,” in 2012 IEEE Inter-

3136

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

 1

 10

 100

 100 1000 10000 100000

Co
m

pr
es

si
on

 ra
tio

Frequency [Hz]

A-XDR
Ringwelski12a

Unterweger15a

Figure 2. Compression performance of different algorithms for the volts (left) and amps channels (right) from the UK-DALE high-frequency one-week
data set: The results between channels differs, but the resolution dependency is similar to that observed for the MIT REDD high-frequency raw data set
in Figure 1.

national Energy Conference and Exhibition (ENERGYCON),
sep 2012, pp. 935–940.

[9] A. Unterweger and D. Engel, “Resumable Load Data
Compression in Smart Grids,” IEEE Transactions on Smart
Grid, vol. 6, no. 2, pp. 919–929, 2015. [Online]. Available:
http://dx.doi.org/10.1109/TSG.2014.2364686

[10] A. Unterweger, D. Engel, and M. Ringwelski, “The Effect
of Data Granularity on Load Data Compression,” in
Energy Informatics - 4th D-A-CH Conference, EI 2015,
Karlsruhe, Germany, November 12-13, 2015, Proceedings,
ser. Lecture Notes in Computer Science, S. Gottwalt,
L. König, and H. Schmeck, Eds., vol. 9424. Springer,
2015, pp. 69–80. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-25876-8{ }7

[11] “Distribution Automation Using Distribution Line Carrier
Systems – Part 6: A-XDR Encoding Rule,” 2000.

[12] A. Reinhardt, P. Baumann, D. Burgstahler, M. Hollick,
H. Chonov, M. Werner, and R. Steinmetz, “On the Accuracy
of Appliance Identification Based on Distributed Load Me-
tering Data,” in Proceedings of the 2nd IFIP Conference on
Sustainable Internet and ICT for Sustainability (SustainIT),
2012, pp. 1–9.

[13] J. Kolter and M. J. Johnson, “Redd: A Public Data
Set for Energy Disaggregation Research,” in Workshop on
Data Mining Applications in Sustainability (SIGKDD), aug
2011, pp. 1–6. [Online]. Available: http://redd.csail.mit.edu/
kolter-kddsust11.pdf

[14] J. Kelly and W. Knottenbelt, “The UK-DALE dataset,
domestic appliance-level electricity demand and whole-
house demand from five UK homes,” Scientific Data,
vol. 2, p. 150007, mar 2015. [Online]. Available: http:
//dx.doi.org/10.1038/sdata.2015.710.1038/sdata.2015.7

[15] A. V. Oppenheim, Discrete-Time Signal Processing, ser. Pear-
son Education Signal Processing Series. Pearson Education,
1999.

APPENDIX A.

PRE-PROCESSING COMMANDS

This appendix describes the exact algorithms used to pre-

process the data of the MIT REDD high frequency raw and

UK-DALE high-frequency one-week data sets. The common

commands to offset negative values are listed separately. All

code is provided in the form of GNU Bash (https://www.gnu.

org/software/bash/) commands using the software mentioned

in Sections III and IV.

A. MIT REDD High-Frequency Raw Data

The code in Listing 1 converts one

file of one channel of one house, e.g.,

house_3/current_1/1303091049.bz2, the path

of which is stored in the variable inputfile, into a

CSV file, the path of which is specified in the variable

outputfile.

1bzip2 -dkc "$inputfile" | \
2 hexdump -ve '1/1 "%.2X"' | \
3 sed 's/74696D65................//g' | \
4 xxd -r -p | \
5 od -f -An -w4 -v | \
6 sed 's/,/\./g' | sed 's/ //g' | \
7 awk '{ printf("%.2f\n", $1); }' | \
8 sed 's/-0\.00/0\.00/g' > \
9 "$outputfile" 2>/dev/null

Listing 1. Pre-processing commands to convert an input file of the MIT
REDD high-frequency raw data set to a CSV output file with two decimal
places for compression.

In short, the input file is decompressed (line 1), time stamps

are removed (lines 2-4), the data values are formatted as

decimal numbers in ASCII (line 5) and this output is cleaned

so that it resembles the content of a valid CSV file (lines 6-

8). This content is stored in the output file (line 9). A more

detailed explanation follows.

3137

In line 1, the input file is decompressed (d parameter)

to stdout (c parameter) with bzip2. The input file is not

deleted (k parameter). The decompressed output, a sequence

of floating-point values with interspersed time stamps is

piped to hexdump in line 2.

hexdump formats the individual bytes as two upper-case

hexadecimal digits per byte (e parameter with a printf -like

format string). Values are formatted as one single string

of digits (iteration count/bytecount notation) for easier

subsequent filtering. Repeating data is displayed instead of

producing * characters in the output stream (v parameter).

This data is passed to sed in line 3.

sed filters the time stamps. All instances (g suffix) of

four indicator bytes (74696D65 hexadecimal), followed by

an eight-byte timestamp (16 arbitrary hexadecimal digits)

are substituted (s prefix) by an empty string, eliminating all

time stamps from the data. The remaining data values are

piped to xxd in line 4.

xxd re-converts (r parameter) the continuous input (p pa-

rameter) of hexadecimal characters to floating-point values.

After line 4, the content of the pipe is a stream of floating-

point values without time stamps. Each value is four bytes

in size.

In line 5, the single-precision floating point values (f
parameter) are formatted as decimal numbers with od.

No address offset information (An parameter) is printed

and line breaks are introduced after every four bytes (w4
parameter), i.e., after each input value. This yields an output

stream of formatted decimal values, separated by line breaks.

Repeating data is, again, displayed instead of producing *

characters in the output stream (v parameter). This data is

passed to sed in line 6.

The first call to sed substitutes (s prefix) all (g postfix)

decimal commas by decimal points in case a german locale

is used – the subsequent calls require decimal points in

order to properly recognize decimal values. Similarly, the

second call to sed removes all white space. The remaining

formatted decimal values are piped to awk in line 7.

awk prints the first (and only) input value of each line

($1) as a decimal number with two decimal places using its

printf command and the corresponding format specifier.

This results in the rounding of all floating-point values to

exactly two decimal places. Any two values are separated

by a line break, making the output valid CSV file content

with one column of values.

In line 8, sed substitutes (s prefix) all (g postfix)

occurrences of -0.00 by 0.00. This helps verfification after

compression, since the two values are indistinguishable. The

still format-compliant CSV file content is finally redirected

(> operator) to the output file in line 9.

The error output is suppressed, i.e., redirected to

/dev/null. In case errors occur, the $? variable is set to

a non-zero value, which can be checked after the execution

of Listing 1.

B. UK-DALE High-Frequency One-Week Data Set

Before pre-processing data files from the UK-DALE high-

frequency one-week data set, the ADC step sizes for the

voltage and current channels need to be extracted from the

included calibration.cfg file. The extraction is shown

in Listing 2. It assumes that the path to the data set is stored

in the variable data_dir.

1channels=("volts" "amps")
2declare -a conversion_factors
3for channel in "${channels[@]}"
4do
5 conversion_factors[$channel]=\
6 `cat "$data_dir/calibration.cfg" | \
7 grep 'ˆ'$channel | \
8 grep -o '= .*$' | sed 's/= //'`
9done

Listing 2. Extraction of the ADC step sizes for the voltage and current
channels from the UK-DALE high-frequency one-week data set.

In line 1, an array with the two channel names is declared.

In line 2, an associative array (a parameter) is declared to

store the ADC step sizes for each of these channels. In lines

3-9, for every channel name from the array, the ADC step

size is extracted from the calibration.cfg. A detailed

explanation of these lines follows.

In line 5, the ADC step size for one channel on the left

side of the equation is stored in the associative array declared

in line 2 with the channel name as the key. The actual ADC

step size is determined on the right side of the equation by

the execution of the command (enclosed in `` characters)

between lines 6 and 8.

Using cat, the calibration.cfg file is piped to

grep in line 7. The file has an INI-file-like structure with

additional spaces around the = signs. There is only one cal-
ibration section with three variables – volts per adc step,

phase difference and amps per adc step. The first and the

last need to be extracted.

In line 7, the correct line is extracted by searching for

the channel name directly after the line start (ˆ character).

This line is processed by grep in line 8, where only (o
parameter) the = sign and all following characters (.*
specifier) are extracted. Finally, sed substitutes (s prefix)

the = sign and any superfluous white space by an empty

string, leaving the actual value, i.e., the ADC step size of

the channel.

With the information about the ADC step sizes being

extracted, pre-processing can be performed on a file-by-

file basis. The code in Listing 3 converts one file, e.g.,

vi-1407520800_943011.flac, the path of which is

stored in the variable inputfile, into two CSV files,

the path prefix of which is specified in the variable

outputfile – for the two channels, volts and amps are

appended to this path, respectively.

3138

1avconv -i "$inputfile" -filter_complex \
2 'channelsplit=channel_layout=2[FL][FR]' \
3 -map '[FL]' -f f64le "tempvolts" \
4 -map '[FR]' -f f64le "tempamps" > \
5 /dev/null 2>&1
6for channel in "${channels[@]}"
7do
8 cat "temp$channel" | \
9 od -t f8 -An -w8 -v | \

10 sed 's/,/\./g' | sed 's/ //g' | \
11 awk '{ printf("%.2f\n", $1 * 2ˆ31 * ' \
12 ${conversion_factors[$channel]}'); }' | \
13 sed 's/-0.00/0.00/g' > \
14 "${outputfile}_$channel" 2>/dev/null
15 rm -f "temp$channel"
16done

Listing 3. Pre-processing commands to convert an input file of the UK-
DALE high-frequency one-week data set to a CSV output file with two
decimal places for compression.

In short, the pre-processing consists of two code parts: In

lines 1-5, the input file is decompressed and split into the

voltage and the current channel. In lines 6-16, a CSV file is

created from the values of each channel similar to Listing

1. A more detailed explanation follows.

In line 1, the input file is fed into avconv and a filter

chain (filter_complex parameter) for separating the

two channels (channelsplit filter) is set up in line 2.

The channel layout is specified as 2-channel audio with

a front-left (FL specifier) and a front-right (FR specifier)

channel.

Since the voltage data is contained in the left channel and

the current data in the right one, the split channels are, in

lines 3 and 4, mapped (map parameters) separately to two

files named tempvolts and tempamps, respectively. The

format (f parameter) of the values in these files is specified

as 64-bit floating-point with little endian byte order (f64le
specifier).

The standard (console) and error output (2> operator)

is combined (& operator with 1 specifier for stdout) and

ignored by redirecting it to /dev/null in line 5. The error-

handling code is omitted here for the sake of readability. At

the end of line 5, there are now two temporary files with

64-bit floating-point values in the range between -1 and 1.

In lines 6-16, each channel is processed separately. The

temporary file corresponding to the processed channel is

output with cat in line 8 and piped to od in line 9. Similar

to line 5 in Listing 1, this formats each 8-byte floating point

value (t parameter with f8 format specifier) as a decimal

number and puts a line break after every 8 input bytes (w8
parameter), i.e., after every data value.

The formatting and cleaning to produce CSV-compliant

output in lines 10-14 is identical to lines 6-9 of Listing 1,

with the exception of two additional multiplications in lines

11 and 12. Here, the values in the range between -1 and 1

are converted to voltage and current values, respectively, by

applying Equation 2. The value of Δstep, which depends

on the channel, is read from the associative array created in

Listing 2 with the channel name as key.

Finally, in line 15, the temporary file with intermediate

values for the channel is removed using rm. After line 16,

there are two CSV files – one with the voltage readings and

one with the current reading of the input file. The output file

paths are based on the path specified in the outputfile
variable and postfixed with volts and amps, respectively.

C. Common Commands for Offsetting Negative Values

The code in Listing 4 converts a CSV file, the path of

which is stored in the variable inputfile, into another

CSV file, the path of which is stored in the variable

outputfile, such that there are no negative values in

the output file without changing the entropy.

1min=`sort -n "$inputfile" | head -1`
2awk '{ printf("%.2f\n", $1 - '$min') }' \
3 "$inputfile" > "$outputfile"

Listing 4. Offsetting of negative values for CSV files for compression.

In line 1, the smallest value from the input file is stored in

the variable min through command execution (enclosed by

`` characters). This value is obtained by sorting the input

file with sort numerically (n parameter) and extracting the

first line (1 parameter) of the sorted output with head.

In line 2, the minimum value is subtracted from all values

of the CSV input file using awk. Since the variable min
which stores the minimum value is negative, this operation

results in offsetting each value. More precisely, the first

(and only) value in each line ($1 variable) is offset by the

minimum (to a value of zero or greater) and printed with

two decimal places using awk’s printf command and the

corresponding format specifier. The output is the content of

a CSV file with one column, containing the offset values.

In line 3, this content is redirected to the output CSV

file using the > operator. If any of the input files from the

pre-processing steps are used, the output file is an offset

variation of this input file, containing only positive values,

but the same number of decimal places without any change

in entropy.

APPENDIX B.

RUN TIME RESULTS

The methodology from [10] is used to measure the run

time of the compression approaches for comparison. The

measurements are limited to houses 3 and 5 of the MIT

REDD high-frequency raw data set. The same hardware and

software are used to enable a meaningful comparison.

Figure 3 shows the average run time per value for all

compression approaches described in Section II. The results

are shown per channel, with horizontal bars denoting the

3139

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A-XDR Ringwelski12a Unterweger15a

Av
er

ag
e

ex
ec

ut
io

n
tim

e
pe

r v
al

ue
 [μ

s]

Algorithm

current_1
current_2
voltage

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

A-XDR Ringwelski12a Unterweger15a

Av
er

ag
e

ex
ec

ut
io

n
tim

e
pe

r v
al

ue
 [μ

s]

Algorithm

current_1
current_2
voltage

Figure 3. Run time of different algorithms for houses 3 (left) and 5 (right) from the MIT REDD high-frequency raw data set: The results are comparable
to the results from [10] for low-frequency consumption data.

minimum and maximum run times, respectively. Three con-

clusions can be drawn from the results.
First, apart from A-XDR, the channel type – voltage (no

marker) or current (filled rectangles and circles) – has an

impact on the run time. This is due to the fact that the

voltage channels contain larger values, thus taking more time

to process. For A-XDR, this effect is practically negligible

since the number of operations per input character is small

in comparison to LZMH coding (Ringwelski12a [8]) and

DEGA coding (Unterweger15a [9]).
Second, there is a performance difference between the two

houses, 3 (left) and 5 (right). This shows that different signal

characteristics impact the run time per value, although the

values only differ little for most channels, e.g., the voltage

channels are practically identical in terms of run time for

both houses. LZMH coding (Ringwelski12a [8]) is most

sensitive to changes in input data characteristics – the run

time for the current channels differs by up to 25% between

the two houses. This means that special care and additional

spare resources are required when using LZMH coding for

high-frequency data compression.
Third, the results shown in Figure 3 are comparable

to the results from [10] which applied the compression

algorithms to low-frequency consumption data. A-XDR con-

suming around 1 μs per value and DEGA coding (Un-

terweger15a [9]) consuming around 2 μs for the current

channels are practically identical results; only the voltage

channels require about 50% more processing time for DEGA

coding, with slightly higher differences for LZMH coding

(Ringwelski12a [8]). However, all results have the same

order of magnitude as in [10].
In summary, high-frequency voltage and current data take

roughly the same amount of time per value to compress as

low-frequency consumption data. This is an important design

consideration for smart meter compression. However, with

the data at hand having a 50 kHz sampling rate, the total

time required for compression is non-negligible.
Although all channels can be processed (with all algo-

rithms) in real time on a desktop CPU (a maximum of 3.5

μs per value for 50000 values times 3 channels requires 525

ms of run time per second), it is not likely that a smart

meter is able to compress 50 kHz data in real time for

now. In a few years’ time, however, this may be feasible.

In contrast, on storage and processing servers, processing

capabilities are likely sufficient as of right now. However,

further optimizations of the implementations are desirable

given the potential scale of the data.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

