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Abstract—Real-world smart contracts which preserve the pri-
vacy of both, their users and their data, have barely been
proposed theoretically, let alone been implemented practically. In
this paper, we are the first to implement a privacy-preserving pro-
tocol from the energy domain as a smart contract in Ethereum.
We elaborate on and present our implementation as well as
our practical findings, including more or less subtle traps and
pitfalls. Despite major optimizations to our implementation, we
find that while it is currently possible, it is not feasible to
implement a privacy-preserving protocol of modest complexity
in the Ethereum blockchain due to the high cost of operation
and the lack of privacy by design.

I. INTRODUCTION

Since the inception of Bitcoin [1], [2], the capabilities
of blockchains have been significantly expanded [3]. Three
noteworthy examples are Zerocash [4], Ethereum [5] and the
protocol proposed by [6]. While Zerocash and the protocol
from [6] extend the privacy properties of blockchains limited
in their computational capabilities, Ethereum allows for much
more complex (Turing-complete) operations, referred to as
smart contracts [7], [8]. However, Ethereum by itself is not
privacy-preserving since all calculations are publicly visible to
all participants, similar to Bitcoin [9].

In [10], an approach for privacy-preserving smart contracts
is presented, but requires a trusted party, which in many use
cases is undesired. As an alternate approach to achieve privacy
for complex operations in existing blockchains, an additional
layer of cryptography can be added [11]. Even though some
authors propose privacy-preserving smart contracts, e.g., [11]–
[13], none of them show practical implementations. While [12]
does not provide an implementation, [11] only discusses a
game of rock-paper-scissors as a toy example and [13] does
not consider privacy.

In this paper, we implement a smart contract from the
energy domain initially proposed in [14], which is both,
privacy-preserving and of a practical level of complexity. This
protocol solves a problem in a way that is representative
for state-of-the-art privacy enhancing technologies, as will
be shown. To the best of our knowledge, ours is the first
paper to describe such an implementation. In order to facilitate
similar implementations for others, we provide insights from
our hands-on experiences in developing and deploying a smart
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contract in the (public) Ethereum blockchain. This includes a
discussion ranging from implementation pitfalls to deployment
and execution costs.

This paper is structured as follows: In Section II, we
describe the privacy-preserving protocol that we implement
in Ethereum in Section III. In Section IV, we summarize
our observations from the implementation and evaluation
processes, before concluding the paper in Section V.

II. PRIVACY-PRESERVING LOAD PROFILE MATCHING

In [14], a protocol for privacy-preserving smart grid tariff-
decisions is described. The protocol allows a customer to
choose an optimal tariff based on their energy consumption
from a variety of tariffs offered by different utility providers.
Among other guarantees, the implementation of the protocol
assures that neither the customer’s energy consumption data
nor their final tariff choice is revealed.

This is achieved by the use of embeddings [15], oblivious
transfer [16], and commitment schemes [11]. Embeddings
allow transforming energy consumption data into a binary
representation that is hard to reverse, but still allows for the re-
quired comparisons. For permanent storage, transparency and
immutability this comparison is handled in a smart contract
which returns (simplified) a once usable pointer to the best-
matching tariff to the customer. Oblivious transfer is then
used (off-chain) by the customer for retrieving the actual
tariff without revealing the decision to the utility provider.
To guarantee non-repudiation, i.e., values that are not fully
revealed at the time of submission cannot be changed later, a
commitment scheme based on cryptographic hashes is used. A
formal description of the protocol can be found in Appendix
A. Further details of the protocol as well as a detailed privacy
analysis can be found in [14], [17].

The smart contract implementing the protocol must be
structured as follows [14]:

• create(sender, energy_data_hash): This method
is called upon the initial creation of the smart contract.
The customer (sender) calculates an embedding of the en-
ergy consumption data used as the basis for matching and
provides the hash to the smart contract as a commitment.

• commit(sender, tariff_data_hash): This method
is called after create by each utility (sender) wanting
to offer a tariff. The utility calculates an embedding of
the energy consumption data corresponding to each of its
offered tariffs and submits the hashes as a commitment.
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Fig. 1. Sequence diagram that illustrates the function calls between the
participants of the implemented protocol. * denotes that every utility provider
calls the function.

This method can only be called once per utility for this
instance of the smart contract.

• smopen(sender, energy_data, random_number):
This method is called by the customer (sender) in order
to open the commitment with the required random
number. It is verified whether the commitment is valid
and, if so, the embedded energy data is stored for later
matching.

• uopen(sender, tariff_data, random_numbers):
Similar to smopen, each utility (sender) opens its
commitment.

• evaluate(sender): This is method is called by the
customer (sender) after smopen and uopen have been
called by all participants. The best-matching tariff is
determined using the embedded values and a once-usable
pointer for the oblivious transfer is returned.

The sequence of calls to functions of the smart contract
is illustrated in Figure 1. While the smart contract in [14]
is only provided in pseudo-code, here we describe an actual
implementation in Ethereum in the following section.

III. IMPLEMENTATION IN ETHEREUM

We implemented the smart contract from Section II in So-
lidity 0.4.0 (https://solidity.readthedocs.io/en/develop/), which
allows to design such contracts with public and private meth-
ods and provides a set of basic data types. Programs compile to
EVM (Ethereum Virtual Machine) code that can be deployed
as a smart contract into the Ethereum blockchain [3].

Each smart contract and each caller of such a contract is
assigned a unique address. Smart contracts can communicate
with each other through messages. The caller of a function,
i.e., the sender of a message, is implicitly available in the
function body as msg.sender in Solidity and therefore does
not need to be passed as an additional argument. Thus, the
signatures of the implemented smart contract differ from the
ones from Section II in that they do not need an explicit
sender parameter.

In order to call smart contracts, each party of the protocol
needs to create an Ethereum account. For the proposed pro-
tocol, this means that the customer as well as each individual

utility provider are assigned a unique ID. For privacy, the
customer can either create one account for each execution
of the smart contract or change its ID frequently so that it
cannot be tracked. Conversely, the utility providers should (but
not necessarily need to) re-use their IDs for transparency and
accountability for their offered tariffs.

The data types used in the implemented smart contract are
• uint: a 256-bit unsigned integer type used to store

distance values. When smaller values are stored, types
such as uint8 or uint16 are used;

• bytes32: an array of 32 bytes, i.e., 256 bits, size used
to store the output of a cryptographic hash function;

• string: a character array used to pass error messages in
function return values;

• address: a special data type used to store the address
of a message caller;

• mapping: a hashmap used to store the commitments of
each utility provider’s tariff-related data;

and arrays of the aforementioned types, e.g., bytes32[].
The actual implementation closely follows the pseudo-code

from [14]. Since storing and executing EVM code incurs fees
depending on the data size and type (specified in detail in [5]),
some implementation details differ from the original version
in order to reduce these costs. The three major optimizations
are:

• Use of built-in cryptographic primitives: Since the
EVM provides a relatively cheap instruction for comput-
ing a SHA-3 hash, the latter is used in favor of SHA-
2. The availability of cryptographic primitives for smart
contracts is favorable for the implementation of privacy-
preserving protocols.

• Mathematical tweaks: Calculating the absolute differ-
ence between two binary vectors is equivalent to an
element-wise xor operation. The Hamming distance of
the difference vector can be calculated by counting the
number of bits set to one in this vector, which can be
simplified with a lookup table for groups of elements.
The lookup table size is a trade-off between storage costs
(larger tables require more storage) and execution costs
(larger tables require less lookups and iterations). Using
such mathematical tweaks can be essential to keep costs
low, similar to any other programming language.

• Avoiding unnecessary storage: uopen computes and
saves distances to the customer’s embedding instead of
saving the larger embedding data in a variable and com-
puting the distance at the call of evaluate. Conversely,
evaluate just computes the smallest distance from the
ones stored. This reduces costs since the large embed-
dings (kilobytes in size each) from the utility providers
do not need to be saved in the blockchain. In general,
refining the program flow in order to avoid storage costs
is desirable.

Note that, in addition to these optimizations as well as further
minor optimizations, embeddings are already calculated off-
chain as originally proposed in [14] and therefore induce no



execution costs. In order to illustrate the syntax as well as
the aforementioned optimizations, Appendix B shows sample
code in Solidity for selected portions of the implemented
smart contract. The full source code is available at https:
//www.en-trust.at/downloads/.

To represent embeddings of 8192 bits size in Solidity, there
are several possibilities, e.g., using fixed-sized arrays of base
data types like uint256 or bytes32, both of which are
capable of storing 256 bits. We found that operations on these
types are significantly cheaper than on variable-length types
like string or bytes, which is why we used fixed-sized
arrays of bytes32 for our main computations.

As mentioned above, each operation in the EVM induces
costs in a unit called gas. These costs are a fee paid to
the miner for executing the code of the smart contract.
The fee is payed in the built-in crypto-currency Ether. The
conversion rate between gas and Ether is set by each miner
individually before executing the smart contract. For testing
smart contracts, a test net exists which allows executions
free of charge. In contrast, using the Ethereum blockchain
induces non-negligible costs. Thus, in the following section,
we implemented, deployed and assessed our smart contract in
the (pay-to-use) Ethereum network.

IV. LESSONS LEARNED

This section describes the lessons learned from deploying
the smart contract from Section III to the Ethereum network.
We determine the total amount of fees required to deploy
and run the smart contract with example data from [17].
Furthermore, we report our insights from this experiment with
respect to the practicability of running a privacy-preserving
smart contract in Ethereum.

We used the default tariffs from [17] to get representa-
tive example data for calling the smart contract. For sim-
plicity, each of the three utility providers (denoted U1 to
U3) is assigned two of the six sample tariffs each (de-
noted T1 and T2). The smart contract was deployed into
the Ethereum blockchain in block 4368541 with address
0x45f7e9b2096b995b5082d410470000c0d6626e78. Note
that our smart contract is not limited to specific customers,
utilities or tariffs and is available to anyone for running
the protocol. The source code and tariff data is available at
https://www.en-trust.at/downloads/.

Table I summarizes the processing costs for our experimen-
tal setup in gas as well as the respective value in ETH and e
for convenience. We used http://etherscan.io to determine the
actual gas costs for each call to the smart contract. The cost
for 1 unit of gas was on average 21 Gwei = 21 · 10−9 ETH,
which is also the average gas cost listed by https://ethstats.net/
and others at the time of execution for “fast” processing, i.e.,
the rate at which the transaction only takes little time to mine.
The exchange rate between e and ETH as of October 15,
2017 is 284.00 e/ETH according to https://www.coingecko.
com/en/price charts/ethereum/eur. Note that we execute the
smart contract only once. While future fees (and exchange

rates) may differ, their order of magnitude can be determined
by our experiment.

As can be seen from Table I, the deployment of the smart
contract through create by the customer requires 11.74 e
worth of gas. commit is called by each utility once, as
described in Section II, and costs each utility 0.57 e on
average for two tariffs. smopen is called by the customer at
the price of 4.38 e. Each utility needs to call uopen for each
tariff individually, resulting in costs of 13.61 e on average per
utility. Finally, evaluate is called by the customer at the rate
of 0.32 e. In total, the customer needs to pay 16.44 e and each
of the three utilities pays on average 14.18 e. This results in
total costs of 59.00 e for deploying and executing the smart
contract. While it is clear that this is much more than any
party in this protocol would be willing to pay (to potentially
find a better energy tariff likely to reduce the energy bill by
only a fraction of this amount), these costs may be acceptable
in other use cases.

Even though it may be possible to further reduce the amount
of required gas in our implementation, the actual costs in
e above are at least two orders of magnitude higher than
would be acceptable for this use case. In addition, further
optimizations would be time-consuming and therefore also
cost-intensive, illustrating that the total costs for implementing
and executing privacy-preserving protocols are far too high for
practical use.

Despite the popularity of Ethereum, we would like to
point out that this issue is not specific to Ethereum. There
are privacy-preserving blockchains, e.g., HAWK [10], but
no public implementation of them is available at the time
of writing (October 2017). We expect the costs to decrease
significantly when using blockchains which provide privacy
by design, since many computations are performed implicitly.

It is crucial to note that our conclusions regarding costs
are also not specific to the protocol from [14] that we
implemented. The embeddings used therein are comparable
to state-of-the-art cryptography in the energy domain [18],
[19] in terms of ciphertext size and complexity. For example,
comparisons to the more commonly used Paillier cryptosystem
[20] as in [14], [17] show that embeddings require fewer com-
putations and less overhead, i.e., the costs for using the Paillier
cryptosystem or similar privacy-preserving technologies are
expected to be even more costly than the embeddings used in
our evaluation.

Although it may be possible to redesign the protocol,
e.g., such that uopen can be performed once for multiple
customers, this would impact privacy and a rigorous secu-
rity re-evaluation of the protocol would be required. We do
not consider it to be feasible to modify proven and well-
tested protocols so that they minimize (gas) costs. Thus, we
conclude that it is currently not feasible to use Ethereum to
implement state-of-the-art privacy-preserving protocols. This
may change in the future, if more cheap EVM instructions
for cryptographic primitives, like the one for built-in SHA-
3 computation, are offered. Until then, the costs exceed any
practical bounds for many potential use cases.



TABLE I
COSTS FOR GAS FOR EACH FUNCTION OF THE IMPLEMENTED SMART CONTRACT FOR THE DEFAULT TARIFFS USED FOR EVALUATION [17]. THE GAS

PRICE IN ETH AS WELL AS THE CONVERSION RATE FROM ETH TO e IS FROM THE DATE OF EXECUTION, SUNDAY, OCTOBER 15, 2017.

Method Gas U1T1 Gas U1T2 Gas U2T1 Gas U2T2 Gas U3T1 Gas U3T2 Price (ETH) Price (e)
create 1967802 0.041 323 842 11.74
commit 96114 96114 96114 0.006 055 182 1.72
smopen 734762 0.015 430 002 4.38
uopen 1138523 1161962 1144225 1146476 1114087 1141398 0.143 780 091 40.83
evaluate 54418 0.001 142 778 0.32

Sum 0.207 731 895 59.00

Apart from costs, we observed the following traps and
pitfalls that we would like to share with future developers
of privacy-preserving smart contracts:

• Determining gas limit: Each call to a smart contract is
assigned a caller-specified gas limit, which, once reached,
terminates the execution of the EVM. Since the amount of
gas the caller is willing to spend determines whether and
when a transaction is executed by a miner, in practice, it
is hard to set proper limits. One needs to find a tradeoff
between cost-effectiveness and throughput. Since gas is
a non-refundable fee to the miner, setting the gas limit
too low results in a costly and aborted function call.

• Undocumented language limitations: At the time of
writing (October 2017) Solidity comes with a number
of limitations, only some of which are documented.
Examples are very limited stack size, which is problem-
atic when dealing with multiple ciphertext variables, e.g.
embeddings;

• Handling large data: Ethereum is not inherently de-
signed to handle larger amounts of data within smart
contracts. As discussed above, custom solutions for this
are necessary, which might be cost intensive.

• Transaction delay: Despite the high gas price, it takes
between around 2 and 15 minutes for each transaction
to be confirmed. Reducing the gas price and limit would
increase this delay further, which would be unacceptable
for this use case. Conversely, increasing the gas price and
limit would make the transactions even more expensive
without significantly reducing the delay.

• Staging costs: Transitioning from a development en-
vironment (test network) to the productive Ethereum
blockchain is very convenient and greatly simplifies
testing in advance to deployment. However, costs can
differ significantly between the two networks, making
cost estimations difficult. In our example, the total costs
increased by about 16.66% during staging.

In summary, smart contracts are a promising way to im-
plement complex privacy-preserving protocols without the
need to rely on a single trusted third party. However, for
practical use, there are still many limitations to overcome,
especially when advanced state-of-the-art privacy-enhancing
technologies are required for the use case. This shows that
a blockchain that has not been designed with privacy in

mind cannot be extended with privacy-enhancing technologies
without imposing significant additional costs.

V. CONCLUSION

In this paper, we presented the implementation of a tariff
matching protocol from the energy domain in Ethereum. We
highlighted the availability of certain cryptographic primitives
in Solidity and discussed the contrasting lack of privacy
by design. Even though we optimized our implementation
with off-chain pre-computations and on-chain gas-reducing
data handling, we found that the costs for deploying and
executing the implemented smart contract are at least two
orders of magnitude higher than would be acceptable for
the use case. This allows for the conclusion that in order to
implement practical privacy-preserving smart contracts, either
the price for privacy-preserving operations in Ethereum needs
to become significantly cheaper or both, the capabilities and
availability of other blockchains with privacy by design have
to increase significantly.
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APPENDIX A
DETAILED PROTOCOL DESCRIPTION

This section describes the protocol from [17] formally.
Let the set of participating utilities be denoted as U .

Each utility u ∈ {1, . . . , |U|} has a list of tariffs Tu,l with
corresponding template load profiles Lu,l (denoted as set Lu,
where utilities can have different numbers of load profiles
l ∈ {1, . . . , |Lu|}). In order to keep the template load profiles
private, each utility calculates an embedding L̃u,l ∈ {0, 1}m
for each of its original template load profiles Lu,l ∈ Rk:

L̃u,l =

⌈
A · Lu,l + W

∆

⌉
mod 2 (1)

A is a random m×k matrix with i.i.d. Gaussian elements with
mean 0 and variance σ2, and W is a random m-dimensional
vector with i.i.d. uniform elements in the range [0,∆]. ∆ is
both, a quantization and a security parameter, and described
in detail in [21], [22]. The values of k and m are 96 and 8192,
respectively.

Similar to the utilities, the customer calculates an embed-
ding from its load profile forecast F, denoted as F̃.

In order to find the best matching tariff, the template load
profile with the smallest normalized Hamming distance to the
forecast is determined, yielding the template (once usable) load
profile index l∗ as well as the corresponding utility index u∗:

(u∗, l∗) = argmin
u,l

||F̃− L̃u,l||1. (2)

This is possible due to the distance-preserving property of the
embeddings [21], where the Euclidean distance of the original
data vectors is proportional to the normalized Hamming dis-
tance of the embedded vectors with a configurable small error
ε, i.e.,

||F̃− L̃u,l||1 ∼ ||F− Lu,l||2 + ε. (3)

The indices u∗ and l∗ can be shuffled in order to avoid the
collection of statistics that could break privacy.

After the customer has received both indices, it can con-
tact the corresponding utility u∗ and use a one-out-of-many
oblivious transfer for retrieving the actual tariff information
without revealing the decision to the utility at this time [16].
Since this part of the protocol is not intended to be handled
via a blockchain [14], it is not detailed here.

APPENDIX B
SAMPLE CODE

The following sample code shows an optimized version of
calculating the Hamming distance required by the evaluate

function of the implemented smart contract.
//Hamming distance for all 4-bit patterns.
uint8[16] map = [0, 1, 1, 2, 1, 2, 2, 3,

1, 2, 2, 3, 2, 3, 3, 4];

//Computes Hamming distance of two 8192-bit
//binary vectors.
function getDistance(bytes32[32] memory f,

bytes32[32] memory l)
internal view returns (uint16)

{
uint16 distance = 0;
for (uint8 i = 0; i < 32; i++) {
bytes32 xor = f[i] ˆ l[i]; //Bit-wise XOR
for (uint8 ii = 0; ii < 32; ii++) {
//Process upper+lower nibble separately.
distance += map[(uint8(xor[ii] & 0xf0))

>> 0x04];
distance += map[uint8(xor[ii] & 0x0f)];

}
}
return distance;

}
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