
1

Understanding Game-Based Privacy Proofs for
Energy Consumption Aggregation Protocols
Andreas Unterweger, Sanaz Taheri-Boshrooyeh, Günther Eibl, Member, IEEE, Fabian Knirsch,
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Abstract—Despite the large number of privacy-preserving
aggregation protocols in the Smart Grid, there is no common
methodology for evaluating and comparing their privacy guar-
antees. Protocol discussion often lacks a formal evaluation of
the proposed privacy guarantees. In order to transfer the well-
established formal methodology of game-based proofs to the
Smart Grid domain, in this paper, we present (i) a game-based
privacy definition which addresses the privacy requirement to
be captured in an aggregation protocol (the definition may be
used or extended for other protocols); (ii) we exemplify our
game-based proof technique for two aggregation protocols, and
(iii) we provide a novel and compact way to visualize and
easily compare the privacy guarantees of different protocols. We
employ two sample protocols that reflect the basis of the most
common approaches currently found in the energy aggregation
literature. In summary, we contribute a guideline on how to
conduct formal evaluations for protocol developers as well as
an easy-to-understand way to assess the privacy guarantees of
different aggregation protocols for non-experts.

Index Terms—Smart Grid, Aggregation, Privacy, Game-based
Proof, Visualization

I. INTRODUCTION

FOR some use cases in the Smart Grid, e.g., grid stability
and load forecasting, the total energy consumption of a

neighborhood, city, or region is needed [1]. While aggregating,
i.e., adding up, the individual consumption values of each
household in an area seems to be a trivial task, straight-forward
summation would expose each household’s contribution al-
though only the sum of all consumption values is needed [2].
This raises privacy concerns [3], especially if smart meters
measure at high resolutions [4].

The concerns lead to a large number of proposals for
privacy-preserving aggregation protocols, e.g., [5]–[8]. Pro-
tocols that protect customer privacy aim at reducing the
data to the required minimum for the purpose of providing
a particular service [9]. For aggregation protocols, this is
reflected by providing data at minimum required spatial or
temporal resolution needed for the use case, e.g., network
monitoring or billing.

While the terms privacy and security are often used incon-
sistently, for the purpose of this paper, privacy is defined as
protecting legally acquired data from illegal or unauthorized
use (e.g., smart meters learning other smart meters’ individual

A. Unterweger, F. Knirsch, G. Eibl and D. Engel are with the Center for
Secure Energy Informatics, Salzburg University of Applied Sciences, Puch
bei Hallein, Austria.
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energy consumption), whereas security refers to an external
attacker affecting correctness (e.g., changing the aggregate).
In this paper, our focus is privacy only. Protocols that protect
customer privacy therefore aim at reducing the data to the
required minimum for the purpose of providing a particular
service [9]. For aggregation protocols, this is reflected by pro-
viding data at minimum required spatial or temporal resolution
needed for the use case, e.g., network monitoring or billing.

Different methods to ensure privacy are used by various
privacy-preserving aggregation protocols, e.g., homomorphic
encryption [10], masking [6], and secret sharing [11]. Despite
the indicated advantages and disadvantages of each method,
choosing a protocol from the wide variety is difficult due to the
vast differences in privacy guarantees that the corresponding
publications make. There are two main reasons for these
differences.

First, different publications assume different adversaries
and adversary capabilities, i.e., who may attack the data to
be aggregated and how. While some authors consider very
powerful adversaries, e.g., one capable of manipulating data
and colluding with other parties participating in the protocol
[12], others only consider a subset of honest parties which
must not collude, e.g., [10], [13]. This makes it very hard to
compare different protocols.

Second, and more importantly, different publications use
different levels of rigor to prove the privacy-preserving prop-
erties of the protocols they propose. “Proofs” range from
short arguments in prose (e.g., [2], [12]) to actual game-
based proofs (e.g., [14]–[16]). On the one hand, this limits
the number of available protocols with rigorous proofs of
their privacy-preserving properties, while, on the other hand,
for non-experts, protocols with in-depth proofs are sometimes
hard to follow (e.g., [6]) and thus difficult to classify in terms
of their exact privacy guarantees.

To make the comparison of privacy guarantees of aggrega-
tion protocols easier, in this paper we present the following:
• First, we provide a rigorous game-based definition of

the required privacy guarantees for aggregation protocols.
Note that, while other proof techniques like simulation-
based proofs also exist [17] in the context of aggregation
protocols, for the sake of presentation and space, we leave
them out of scope and as future work.

• Second, we provide exemplary formal game-based proofs
of sample aggregation protocols, based on our formal
definition and cryptographic methodology.

• Third, we describe privacy levels that reflect different
amounts of effort required to break the privacy of a
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customer participating in an aggregation protocol.
• Fourth, maximal collusion sets are elaborated that define

which maximal subset of actors participating in a protocol
may be adversaries so that a certain privacy level can
still be guaranteed. Adding any other colluding party will
break privacy.

• Fifth, a compact way to visualize the privacy levels
achieved by a protocol, for each maximum collusion set,
is presented. This illustrates how well the privacy offered
by the protocol changes for different adversaries.

The last part of our five-part contribution, supported by the
other four, simplifies the comparison of aggregation protocols
with respect to privacy guarantees. Although there is liter-
ature on game-based proofs for aggregation protocols, e.g.,
[14], [16], such proofs often require advanced cryptographic
knowledge. By contrast, this paper addresses domain experts
with limited cryptographic knowledge, i.e., even those who
are not willing or able to follow the details of rigorous
proofs themselves may (i) assess protocols with proven privacy
guarantees through an easy-to-understand visualization; or (ii),
as protocol designers with more cryptographic knowledge, rely
on our results to prove the properties of their own protocols.

When referring to privacy in the context of energy con-
sumption aggregation, this paper relies on the concept of
unlinkability [18], [19]. Simply put, the privacy of a smart
meter is preserved if an adversary is not capable of retrieving
individual measurements of said smart meter after the aggre-
gation protocol has been executed. As such, we propose an
experiment called unlinkability relying on the very well-known
game-based proof techniques. Our proposed game captures
all the privacy aspects of an aggregation protocol and shall
be treated as a framework to enable a fair and rigorous
privacy comparison among the existing aggregation protocols.
A mathematical and concrete definition of unlinkability will
be provided in the following sections.

Note that we describe ways to analyze and compare the
privacy guarantees of arbitrary aggregation protocols. We do
not propose an aggregation protocol, but employ two example
protocols, which rely on the building blocks commonly used
by aggregation protocols – homomorphic encryption [10] and
masking [6].

This paper is structured as follows: First, we introduce
some preliminaries in Section II and describe two sample
aggregation protocols based thereon in Section III. Second,
we define games for the privacy of these protocols in Section
IV and subsequently prove and analyze them in Section V.
Finally, in Section VI we present a way to visualize the privacy
guarantees for the analyzed aggregation protocols, before we
conclude our paper in Section VII.

II. PRELIMINARIES

The protocols presented in this paper build on homomorphic
encryption and masking for privacy. In the following, these
basic cryptographic schemes are presented, together with an
overview of the involved parties and their goals.

A. Involved Parties

In aggregation protocols, multiple smart meters (customers)
send measurements (e.g., energy consumption values) to a data
concentrator, who computes the sum of all measurements.
In some protocols, additional parties, e.g., aggregators, are
present. A potential adversary who is capable of taking any
of the participants’ roles tries to find an individual smart me-
ter’s measurement (energy consumption) after the aggregation
protocol is executed (i.e., we do not consider an adversary
affecting the correctness of the protocol by providing incorrect
measurement). The goals of the parties are the following:
• The smart meter does not want to reveal its measure-

ments to any involved party. The privacy of the smart
meter depends on the unlinkability of its measurement
(for the formal mathematical definition, see Section IV).
Each smart meter contributes a protected (e.g., encrypted)
measurement which, together with the contributed mea-
surements of all other smart meters in the network, can
be used by the data concentrator, e.g., for load forecasting
of neighborhoods or cities.

• The data concentrator is capable of computing the sum
of protected measurements (of all smart meters) and gets
the plain result of only the sum, e.g., for load forecasting.
At this point, the goal of the aggregation protocol as well
as our analysis ends. Yet, the data concentrator is not
capable to extract individual measurements from the sum,
if the number of smart meters is large enough [20].

• The aggregator, if present, performs mathematical oper-
ations on the protected measurements, but has no means
to see the bare individual measurements. The aggregator
passes the result of its computations (i.e., the sum of
protected measurements) to the data concentrator.

• The adversary, if present, is capable of taking any role
in the network, i.e., it may be another participating smart
meter (or several), the data concentrator, the aggregator,
or a combination of the aforementioned. The adversary
follows the protocol specifications, i.e., he is honest but
curious [10], and tries to use all collected information to
break the smart meter’s privacy by extracting or comput-
ing its measurement, i.e., by breaking unlinkability.

It is clear that the success of the adversary depends on which
parties he controls and how many. One of the goals of this
paper is to show how to prove the limit (maximal sets) of
parties that the adversary can control without breaking the pri-
vacy of an individual smart meter. More powerful adversaries,
e.g., those who can tap wires and/or disobey the protocol
deliberately [21], may be capable of breaking privacy in cases
an honest-but-curious adversary cannot. However, in our paper,
we do not consider attacks on security and correctness (e.g.,
cybertampering as in [22]), and rather focus on privacy and
analyze two relatively simple example protocols in terms of
their privacy guarantees, i.e., what the limits of an honest-but-
curious adversary are.

B. Homomorphic Encryption

Let ci = Epk(mi) denote the encryption of plaintext mi

with public key pk and Dsk(ci) = mi denote the correspond-
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ing decryption of ciphertext ci with private key sk. For the pur-
pose of this paper, only an additively homomorphic encryption
is needed. For example, for the additively homomorphic Pail-
lier cryptosystem [23], the property Dsk(Epk(m1) · Epk(m2)
mod n2) = m1 +m2 mod n holds, i.e., an operation exists,
that if performed on two ciphertexts in the encrypted domain,
corresponds to an addition of two plaintexts. This allows
aggregating values in the encrypted domain. The Paillier
cryptosystem has already been used in smart grid aggregation
protocols, e.g., [2], [10], [24], [25]. In this cryptosystem, the
multiplication of ciphertexts corresponds to the addition of
plaintexts. The parameter n determines the security of the
scheme and is recommended to be at least 2048 bits [26].

C. Masking
Masking is a lightweight scheme that adds an additive secret

si to a plaintext mi, i.e., m̃i = mi + si mod k. si is a
random number that is uniformly drawn from the full range of
the plaintext values, e.g., 0 . . . k− 1 using a cryptographically
secure random number generator [15]. The random numbers
are constructed in such a way that they either cancel each other
out upon summation, i.e.,

∑
i si mod k = 0, or the sum of

the random numbers is subtracted at the end of the protocol,
i.e.,

∑
i m̃i −

∑
i si mod k =

∑
imi mod k =

∑
imi. For

the last equality to hold, k must be chosen large enough, i.e.
k >

∑
imi. Masking allows to aggregate the data without

revealing individual measurements, but yields the exact result
at the end of the protocol. Masking is proposed for smart grid
applications by, e.g., [6], [14], [27].

III. AGGREGATION PROTOCOLS

This section introduces the sample aggregation protocols
we will analyze. Let the set of N smart meters be denoted
by SM1, . . . ,SMN . A smart meter i measures a value mi

at time t, usually in the range [0, 216 − 1]. Depending on
the protocol, smart meters report their measurements either
to the aggregator A, or the data concentrator DC, or to
other smart meters. In the following, two basic types of
aggregation protocols using (i) homomorphic encryption and a
star network; and (ii) masking and a star and ring network, are
described in detail. For ease of description here, the protocols
are split into three phases, namely initialization, measurement
submission, and aggregation. Measurement submission refers
to sending the measurements for one point in time t, e.g., the
aggregation of values in a 15 minutes interval.

A. Protocol I: Homomorphic Encryption with Star Network
For this type of aggregation protocols, all smart meters

SM1,SM2, . . . ,SMN are arranged in a star network and
report their additively homomorphic encrypted measurements
to an aggregator A. By exploiting the additively homomorphic
property, the aggregator calculates an encrypted sum of the in-
dividual encrypted measurements and forwards this encrypted
sum to the data concentrator DC. The setup is shown in Fig. 1.

a) Initialization: DC generates a pair of public/private
keys for an additive homomorphic cryptosystem (e.g., Paillier
cryptosystem [23]). The public key is shared with all SMi

and A, whereas the private key is kept by DC.

DC

A

SM2SM1
. . . SMN

∏
i ci

c1
c2

cN

Fig. 1. Star network aggregation protocol with homomorphic encryption: Each
smart meter SMi sends its encrypted reading ci to the aggregator A, which
computes the ciphertext product Πici and sends it to the data concentrator
DC, which decrypts this product to obtain the plaintext sum of the readings.

DC

SM2SM1
. . . SMN

m̃1
m̃2

m̃N

S0

S1

SN

Fig. 2. Star and ring network aggregation protocol with masking: Each smart
meter SMi adds a random number si to its reading mi, yielding m̃i that
is sent to the data concentrator DC. Additionally, the random shares are
aggregated by the smart meters and forwarded to data concentrator DC, which
uses the sum of shares to retrieve the plaintext sum.

b) Measurement submission (for each t): Each SMi

encrypts its measurement mi with the public key, yielding
a ciphertext ci = Epk(mi) which is forwarded to A.

c) Aggregation: A computes the encryption of the total
consumption of all smart meters, denoted as M̃ , by calcu-
lating the ciphertext product of the additively homomorphic
encrypted values ci provided by the smart meters by M̃ =∏N
i=1 ci. This value is then forwarded to DC for decryption.
DC calculates the total consumption M by decrypting with its
private key by M = Dsk(M̃) = Dsk(

∏N
i=1 ci) =

∑N
i=1mi.

B. Protocol II: Masking with Star and Ring Network

This type of aggregation protocol is based on masking
instead of additive homomorphic encryption. The protocol is
based on a star and a ring topology. All smart meters and
DC are connected in a ring and star network, and there is no
distinct aggregator. Note that the ring network is only a logical
link and is not necessarily reflected by the physical wiring. In
practice, the end-to-end encrypted ring links can be physically
routed via the data concentrator. The smart meters send their
masked measurements directly to DC in a star network and
they send the shares used for masking hop-by-hop to the
following smart meter in a ring network. The smart meters
aggregate their own share with the received shares and the
last smart meter in the ring forwards the sum of the shares to
DC. The principal setup is shown in Fig. 2.

a) Initialization: For initialization, the smart meters and
DC are arranged in an ordered sending list L that determines
the network (with DC being the first and last one in the sending
list), e.g., L = (DC,SM1,SM2, . . . ,SMN ,DC). This list
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is public and known to all participants. The modulus k is
distributed to all parties.

b) Measurement submission (for each t): Each SMi

draws a random number si uniformly from {0, . . . , k − 1}
using its pseudorandom number generator (as in Section II)
and masks its measurement mi by computing m̃i = mi + si
mod k. The smart meters submit m̃i to DC over the star
topology. Note that at this point DC has no means of retrieving
the aggregate, as only masked values have been received.

In order to allow DC to recover the aggregate, the sum of
random values is sent to DC over the ring network. Therefore,
DC draws a random number s0 = S0 and submits this to
SM1, the first smart meter in the sending list, which forwards
S1 = S0 + s1 mod k (i.e., the sum of the received share
and its own share) to the second smart meter in the sending
list. All following SMi, except the last one act as follows:
Upon receiving Si−1 they calculate Si = Si−1 + si mod k
and forward this to SMi+1. The last smart meter (SMN )
calculates SN = SN−1 +sn mod k and forwards this to DC.

c) Aggregation: Using the obtained masked measure-
ments m̃i, i = 1, . . . , N , the sum of the shares SN =

∑N
i=0 si

mod k and its own share s0, DC gets the total consumption by
calculating M =

∑N
i=1 m̃i − SN + s0 mod k =

∑N
i=1 m̃i −∑N

i=1 si mod k =
∑N
i=1(m̃i − si) mod k =

∑N
i=1mi

mod k =
∑N
i=1mi.

IV. GAME-BASED PRIVACY DEFINITION AND PROOFS

In this section, we introduce the concept of game-based
privacy proofs. These concepts are applied in the next sections
for proving the privacy of the above aggregation protocols.
Additionally, we introduce privacy levels to represent different
privacy guarantees of aggregation protocols.

A. Game-Based Privacy Definition

In aggregation protocols, the privacy concern is to keep
the confidentiality of individual measurements of smart me-
ters while enabling the energy supplier to learn only the
sum of the measurements M . Although information about
an individual household’s consumption could be mined from
M , the question of which information can be mined exactly
from the aggregate is not tackled in this paper, since the
protocol’s goal is to provide M in the first place. Privacy is
only considered in terms of recovering exact measurements of
individual smart meters, unlike, e.g., differential privacy [28].
Furthermore, correctness guarantees of aggregation protocols
against malicious parties are out of the scope of this paper.

We model the unlinkability of the individual measurements
of smart meters in the form of a game named smart meters’
data unlinkability. The game is played between two parties
named challenger and adversary. The challenger is an abstract
entity, i.e., not an actual participant in the aggregation protocol.
It represents all parties not controlled by the adversary, i.e.,
the challenger formally controls the entities who are concerned
about their privacy and hence act honestly. The adversary is the
party who acts on behalf of entities who aim at violating the
privacy objective of the system (that is, they want to discover
the individual consumption of smart meters).

Thus, in the game, we split the entities involved in the
aggregation protocols (i.e., smart meters, the data concentrator,
and the aggregator) into two disjoint subsets: the entities
controlled by the challenger, which are called honest, and the
ones controlled by the adversary, which are called dishonest or
colluding set. In our game definition, we consider smart me-
ters’ dishonesty, unlike prior works [14], [16]. The adversary
is assumed to have all the secret information of the entities
under its control, as does the challenger.

In general, when the data concentrator is adversarial, inde-
pendent of the aggregation protocol, the number of dishonest
smart meters is limited to be at most N−2. It cannot be N−1
(meaning all but one smart meter are dishonest), since, in that
case, the adversary could simply retrieve the consumption of
the single honest smart meter by subtracting the consumption
of the dishonest smart meters from the final aggregation value.
Therefore, we assume that at least two smart meters, SMi and
SMj , where 1 ≤ i 6= j ≤ N , are honest.

The definition of unlinkability states that even when the
adversary knows the individual measurements of the two
honest smart meters independently, it cannot know which
meter had which one of those known measurements after
the aggregation protocol has been executed. The adversary’s
failure in the game indicates the privacy of that aggregation
protocol against the presumed colluding set. Accordingly, in
a game-based proof, we measure the privacy of the aggre-
gation protocol by assessing the success probability of the
adversary. This probability states how likely the adversary is
to actually find the correct value of an individual smart meter’s
measurement, i.e., to break unlinkability and thus privacy. This
is a very powerful honest-but-curious adversary: the adversary
knows the individual measurements, but cannot link those
measurements to the correct smart meter much better than
random guessing. Since there are two honest smart metes (as
the minimum requirement discussed above), random guessing
has a probability of one half (0.5) of being correct.

In this paper, we consider full control of the adversary
over his colluding set. One may assume different types of
control, e.g., the adversary may only know the measurements
of the smart meters, but not their internal states (e.g., their
random choices) during the execution of protocols. It is
straightforward to adapt our privacy definition to cover other
levels of adversarial control.

Formally, the smart meters’ data unlinkability game
ΓUnlinkAdv (λ) for an aggregation protocol and an adversary Adv
is defined as:

1) The initialization part of the aggregation protocol is run.
2) Adversary Adv outputs a pair of measurements m0,m1

within the measurement domain.
3) A random bit b ∈ {0, 1} is chosen by the challenger Ch.

Then Ch assigns mb to SMi and mb̄ to SMj .
4) The remaining parts of the aggregation protocol are

executed. Using the obtained data, the adversary Adv tries
to determine b. His guess is denoted as b′.

5) The adversary outputs b′ and wins if and only if his guess
is correct, i.e., b = b′. In this case, the output of the game
is defined as 1, and 0 otherwise.
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Intuitively, an aggregation protocol provides smart meters’
data unlinkability if an adversary has only a negligibly higher
winning probability than random guessing, i.e.,

Pr[ΓUnlinkAdv (λ) = 1] = 1
2 + ε

Both, ε, which is non-negative, and the protocol Γ depend on a
security parameter λ. λ is an integer value that is set when the
scheme is initialized and is usually viewed as the length of the
key (e.g., the recommended key length of the AES encryption
scheme is at least 128 bits [29]). For the aggregation protocols
described earlier, λ can be seen as the length of the encryption
key in the homomorphic encryption protocol, and the length
of the modulus k in the masking protocol, respectively. The
running time of parties and the success probability of the
adversary are all expressed as functions of λ. In particular, an
aggregation protocol is privacy-preserving if an adversary that
runs in time polynomial in λ wins the unlinkability game with
an advantage (ε in the above formulation) that is no better than
negligible in λ. ε can be made arbitrarily small by using large
security parameters. The formal definition of this statement
follows.

Definition 1: An aggregation protocol provides computa-
tionally hard smart meters’ data unlinkability if for all proba-
bilistic polynomial-time (PPT) adversaries Adv there exists a
negligible function negl(λ) such that:

Pr[ΓUnlinkAdv (λ) = 1] = 1
2 + negl(λ)

Definition 2: A function f(·) is called negligible if for all
positive polynomial functions g(·) there exists a constant K
such that for all real numbers k > K, f(k) < 1

g(k) holds.
The stronger guarantee where ε = 0 holds for computationally
unlimited adversaries and is called information-theoretic smart
meters’ data unlinkability.

B. Game-Based Proofs

As stated above, an aggregation protocol is defined as
privacy-preserving if the adversary can win the unlinkability
game only with negligible advantage. The idea of game-
based proofs is not to directly prove the privacy definition,
but instead to construct a reduction that reduces winning
the unlinkability game to winning a low-level game. If the
latter is only possible with negligible probability due to the
properties of the underlying problem, the former is also only
possible with negligible probability. Figure 3 demonstrates
the high-level idea of a reduction proof [30]. The sample
problem ΓX indicates the low-level problem. Simply put, the
aim of a reduction proof is to show that there is an efficient
ADV who can solve any instance of ΓX by a polynomial
number of operations and calls to the black box adversary
Adv (where Adv is able to break the data unlinkability game).
Such reductions are in essence similar to NP-completeness
type of reductions. Yet, additionally, ADV must construct
Adv’s input in an indistinguishable manner and solve ΓX with
an advantage similar to the advantage of Adv in breaking
the unlinkability game. As defined above, “breaking” the
unlinkability game means that Adv guesses the bit value b
correctly.

ADV = Ch

CH

Outer game
ΓX

Break
outer game

Adv

Inner game
ΓUnlinkAdv (λ)

Break
inner game

Fig. 3. Overview of a security proof by reduction: The outer adversary ADV
can break the low-level game ΓX by using the inner adversary Adv who
breaks (wins) the data unlinkability game ΓUnlink

Adv (λ), which is based on
the low-level game.

In the case of aggregation protocol I, the low-level problem
is the chosen plaintext security of the homomorphic cryptosys-
tem. In the case of protocol II, it is the indistinguishability of a
pseudorandom generator from a truly random generator. These
low-level problems are defined later in this section.

More precisely, the underlying security mechanism is for-
mulated as an outer game in a reduction, where an outer adver-
saryADV calls the adversary Adv of the unlinkability game as
his subroutine by simulating the role of the challenger Ch for
him. By doing this, ADV benefits from Adv’s winning power
to break the security of the underlying security mechanism,
i.e., winning the outer low-level game which he plays with
the outer challenger CH. Since Ch = ADV , only these three
parties (CH, ADV , Adv) are involved. Note that Adv is free
to perform any internal computation in order to win this game.

In the provided reduction proofs, three properties are shown:
(i) the reduction, i.e., how ADV uses the success power of
Adv to break the underlying security mechanism accompanied
by a proof that ADV obtains non-negligible advantage in case
Adv has non-negligible advantage; (ii) ADV simulates the
role of a challenger for Adv indistinguishable from a real
challenger. This involves ADV performing initialization, mea-
surement submission and aggregation indistinguishable from
Ch. In other words, it involves Adv having indistinguishable
views when working on his own and when used by the inner
game. If ADV behaves differently from Ch, it must be shown
that Adv can distinguish this behavior with at most negligible
probability. (iii) ADV runs in polynomial time also simulating
the inner game for Adv. In the reduction proofs below this is
always fulfilled and will not be shown, since Adv is assumed
PPT and the reduction itself only involves simple computations
and sending of messages.

In the following, we provide the security game of the under-
lying schemes, i.e., the CPA security game of the encryption
scheme and the indistinguishability game of the pseudorandom
generator. We will use these definitions in Section V for
reductions.

Chosen plaintext attack (CPA) security game
Consider the following game ΓCPAADV(λ) which is defined for a
public key encryption scheme π, consisting of key generation,
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CH ADV
1) Generate keys pk, sk

pk

2) Choose
−→
M0 and

−→
M1−→

M0,
−→
M1

3) Select random bit B

4) Epk(
−−→
MB)

5.) Choose B′

B′

If B′ = B, ADV wins.

Fig. 4. Overview of the steps of the CPA game ΓCPA
ADV (λ). Since the adversary

is a black box, it is unspecified how he internally chooses
−→
M0,

−→
M1 and B′.

encryption, and decryption [30]. A visualization of the steps
is additionally provided in Fig. 4.

1) Challenger CH runs the key generation with the security
parameter λ and obtains public and private keys pk and
sk, respectively. ADV is given the public key pk.

2) ADV outputs two sets of messages−→
M0 = (m0,1, ...,m0,q),

−→
M1 = (m1,1, ...,m1,q)

of equal size1, i.e., |
−→
M0| = |

−→
M1| = q and

∀i ∈ {1, ..., q} : |m0,i| = |m1,i|.
3) A random bit B ∈ {0, 1} is chosen by CH.
4) CH sends the encryption of

−−→
MB , i.e., Epk(

−−→
MB) =

(Epk(mB,1), ..., Epk(mB,q)) to ADV who constructs B′.
5) ADV outputs B′. If B = B′, ADV succeeds and the

output of the game is 1 and 0 otherwise.
Definition 3: A public key encryption scheme π has CPA

security if for all PPT adversaries ADV , there exists a negli-
gible function negl(λ) such that

Pr[ΓCPAADV(λ) = 1] = 1
2 + negl(λ).

Pseudorandom generator [30]
Intuitively, a pseudorandom number is a deterministically
created number s ∈ {0, 1}k that is indistinguishable from
a truly random number r ∈ {0, 1}k. Consider the following
game where the adversary, modeled as a PPT distinguishing
algorithm ADV , is given a number S that depends on two
equally likely values of B: (i) S=s, if B = 1; (ii) S=r, if B
= 0. The pseudorandom number s = P (u) is created by a de-
terministic, polynomial-time function P : {0, 1}λ → {0, 1}k
with λ < k given a uniformly random seed u ∈ {0, 1}λ. P is a
Pseudorandom Generator (PRG), if for all PPT distinguishers
ADV that output a guess B′ = ADV(S) for B, we have:

|Pr[B′ = 1|S = s]− Pr[B′ = 1|S = r]| = negl(λ).

This also holds for sequences ~S=(si)i∈I .

C. Privacy Levels

We group privacy levels provided by the protocols by
analyzing the hardness of the underlying problem. Some

1Most encryption schemes used in practice reveal the size of the messages;
hence the equal size requirement. For CPA security, single message security
implies security for multiple messages [30].

problems are information-theoretically hard to solve (e.g., one-
time pads). Other problems can be solved, but only with
unrealistically high computational power (e.g., factorization
of integers with only large prime factors).

For this latter type of privacy, we consider an adversary
whose computational power is limited to being probabilistic
polynomial time (PPT), and whose advantage for a privacy
break is negligible (see [30] for more details and a motivation
for the consideration of these properties). This means that a
break can occur, but the probability of a break gets arbitrarily
small for a sufficiently large security parameter λ, practically
represented, e.g., by the bit length of a key. Summarizing,
often computational security is achieved, meaning that for a
sufficiently large security parameter, a computationally limited
adversary can break privacy with only negligible probability.

In addition to low-level problems that are hard to solve
in polynomial time, there are problems whose hardness is
not well-analyzed and may rely on heuristics. We group
the problems that the adversary has to solve in order to
break privacy into different privacy levels, and present them
from hardest (the strongest privacy guarantees) to easiest (the
weakest privacy guarantees):

• Information-theoretic: Problems that cannot be solved
even with infinite computing power, e.g., secret sharing
[31] or the problem of obtaining data which is physically
inaccessible (like an honest-but-curious smart meter can-
not access data from the data concentrator in Protocol
II). Information-theoretic smart meters’ data unlinkability
means that the advantage of the adversary in winning the
unlinkability game is exactly zero.

• Computationally hard: Problems that can be solved only
with an amount of computing power which is unrealis-
tically high in the foreseeable future, e.g., homomorphic
encryption [23] (as employed by Protocol I) with large
modulus sizes (in general a large security parameter λ).
Analogously, RSA with a 2048 bit modulus is considered
secure until 2030 [32].

• Heuristic: Problems that are not trivial to solve in
general, but may be easy for some hard-to-define cases
or input data. For example, extracting (disaggregating)
one distinct measurement md from an aggregation result
M = md +

∑
imi depends on the distribution of the

measurements [20].

Each privacy level gives hardness guarantees about the
problem the adversary has to solve in order to break privacy.

Moreover, an adversary may, in general, represent multiple
parties in a protocol, i.e., by collusion. Thus, it is necessary to
define privacy as a set of colluding parties which still gives a
certain privacy guarantee that can be specified by a privacy
level. If more parties collude, the privacy level potentially
decreases. If different parties collude, the privacy level may
change. In summary, privacy is specified by the maximal set(s)
of colluding adversaries that cannot break the corresponding
privacy game. For some low-level problems, the adversary
needs to be computationally limited, which can be handled
by choosing a sufficiently large security parameter.
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V. GAME-BASED PRIVACY ANALYSIS

In this section, the privacy properties of the discussed
aggregation protocols are proven formally. The task of the
privacy analysis is to find the maximal set(s) of colluding
adversaries that cannot break the corresponding privacy game.
We assume secure and authenticated communication channels
between parties throughout the paper.

Note that, while the following security proofs are presented
for the maximal set of colluding adversaries, it is easy to verify
that the protocol guarantees privacy under any subset of the
given collusion set. This is the case since making the collusion
set smaller always upholds the guarantees.

A. Privacy Analysis of Aggregation Protocol I

For Protocol I, three colluding sets are considered. In the
first case, the aggregator and N − 2 smart meters collude:
Adv = {A,SMl; l /∈ {i, j}}, Ch = {DC,SMi,SMj}.
In the second case, the data concentrator and N − 2 smart
meters collude: Adv = {DC,SMl; l /∈ {i, j}}, Ch =
{A,SMi,SMj}. In order to illustrate that the adversarial
set is maximal, it is finally shown that the collusion of the
aggregator, the data concentrator, and N − 2 smart meters
leads to a privacy break.

1) Privacy against the aggregator and N−2 smart meters:
Adv = {A,SMl; l /∈ {i, j}} and Ch = {DC,SMi,SMj}.

Theorem 1: If the encryption scheme π has CPA security,
then Protocol I provides smart meters’ data unlinkability
against the data aggregator and N − 2 smart meters.
Proof: (i) First, we show the reduction (how ADV calls Adv
as his subroutine to succeed in CPA security game) and then
prove that ADV has non-negligible advantage in case Adv has
non-negligible advantage.

1) In the outer CPA game, ADV is given the public key, i.e.,
pk (from CH) which he passes to Adv in the initialization
phase of the inner unlinkability game.

2) In the inner game, Adv outputs two measurements m0

and m1 of the same size to Ch = ADV , who sends the
messages

−→
M0 = (m0,m1) and

−→
M1 = (m1,m0) to CH.

Note that
−→
M0 and

−→
M1 only differ in terms of their order.

3) CH selects B, encrypts the corresponding message
−→
C :=

Epk(
−−→
MB) := (Epk(mB), Epk(mB̄)) and sends it to

ADV . Through that, ADV receives the two ciphertexts
since

−→
C = (cB , cB̄), so the order depends on B. ADV

then associates cB with SMi and cB̄ with SMj .
4) Adv and ADV run the measurement submission (with cB

used by SMi and cB̄ used by SMj). There, the adversary
(since it controls A) gets the ciphertexts cB and cB̄ .
ADV also runs the aggregation with Adv.

5) Adv outputs a bit b′. ADV outputs the same bit as Adv,
i.e., B′ = b′. If B = B′, ADV succeeds and the output
of the game is 1, and 0 otherwise.

Now we show that ADV wins exactly when Adv wins, i.e.,
ADV has non-negligible advantage if Adv has non-negligible
advantage. Due to the definition of winning the CPA game
and the choice of B′ as b′ in step 5,

Pr[ΓCPAADV(λ) = 1] = Pr[B = B′] = Pr[B = b′].

Since
−→
C was chosen as (Epk(mB), Epk(mB̄)) in step 3, by

comparison with step 3 of the unlinkability game, B = b, so

Pr[ΓCPAADV(λ) = 1] = Pr[b = b′] = Pr[ΓUnlinkAdv (λ) = 1].

(ii) After the reduction, Adv has the public key, the measure-
ments of {SMl; l /∈ {i, j}}, the ciphertexts cB and cB̄ as
well as the product of all ciphertexts. Since Adv does not
have the private key, the knowledge about the ciphertexts is
of no use for him. In fact, due to the CPA security of the
encryption scheme, it is computationally hard to distinguish
between the encryption of different measurements i.e., cB and
cB̄ . (iii) Since Adv is assumed PPT and the reduction has little
overhead, ADV is also a PPT adversary. �

2) Privacy against the data concentrator and N − 2
smart meters: Adv = {DC,SMl; l /∈ {i, j}} and Ch =
{A,SMi,SMj}. A game-based reduction to the CPA game
cannot be given since ADV needs the private key to fulfill
his role as DC which decrypts the product of the ciphertexts.
However, in the outer game he is only allowed to have the
public key. Although the game-based reduction does not work,
information-theoretic privacy guarantee is proven below.

Theorem 2: Protocol I provides information-theoretic smart
meters’ data unlinkability against the data concentrator and
N − 2 smart meters.
Proof: The proof shows information-theoretic privacy, i.e.,
given the obtained information during the protocol, the success
probability of Adv in the unlinkability game ΓUnlinkAdv (λ) must
be exactly 1

2 . Stating step 4 in more detail, the challenger
submits encrypted measurements for two honest smart meters
SMi and SMj . The adversary also submits encrypted mea-
surements for its own N−2 smart meters SMl, l 6= i 6= j. The
challenger multiplies the encrypted measurements and sends
the aggregated value to Adv who decrypts the aggregated
value and only learns the sum of all N measurements, i.e.,
M =

∑N
i=1mi. Thus, at the end of this step, Adv can

determine b′ based on M only. So the success probability given
the obtained information is

Pr(b′ = b|M) =
Pr(b′ = 1, b = 1,M) + Pr(b′ = 0, b = 0,M)

Pr(M)
.

Next, we consider the chain rule of conditional probabilities

Pr(b′, b,M) = Pr(b′|b,M) · Pr(M |b) · P (b).

Now the three terms are treated separately: (a) Adv needs
to determine b′ based on the available information (i.e., M ,
not b), so Pr(b′|b,M) = Pr(b′|M); (b) due to the commuta-
tivity of the summation and the correctness of the additively
homomorphic encryption scheme, M does not depend on the
assignment of m0 and m1 to SMi and SMj , respectively (i.e.,
on b). Therefore P (M |b) = P (M); (c) b is chosen uniformly
by Ch, so P (b) = 1

2 . This leads to

Pr(b′, b,M) = Pr(b′|M) · P (M) · 1

2
.

Plugging this term into the nominator terms above leads to

Pr(b′ = b|M) =
1

2
(Pr(b′ = 1|M) + Pr(b′ = 0|M)) =

1

2
.
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�
It should be noted that Adv can always calculate m0 +m1 as
M −

∑
l,l 6=i 6=jmi, but can not determine how each measure-

ment is linked to SMi and SMj .
3) Privacy violation by the data concentrator, the aggre-

gator, and N−2 smart meters: To show the privacy violation,
one needs to provide the code for a PPT Adv who achieves
non-negligible advantage. For Adv = {DC,A,SMl; l /∈
{i, j}} and Ch = {SMi,SMj}, the privacy violation of the
honest smart meters’ data can be easily proven formally with
the unlinkability game as follows.

Theorem 3: Protocol I does not provide smart meters’ data
unlinkability against the data concentrator, aggregator and N−
2 smart meters.

Proof: To show that a case where the protocol does not
provide unlinkability, we provide a polynomial-time adversary
that wins the unlinkability game with non-negligible advan-
tage.

1) During initialization, Adv as DC generates the key pair.
2) Adv outputs a pair of measurements m0,m1.
3) A random bit b ∈ {0, 1} is chosen by Ch who then

assigns mb to SMi and mb̄ to SMj .
4) During measurement submission Adv as A receives

the individual encrypted measurements including ci =
Epk(mB) and cj = Epk(mB̄) from smart meters i and
j, respectively.

5) As DC, Adv can decrypt ci and set

b′ =

{
0 if Dsk(ci) equals m0

1 if Dsk(ci) equals m1

Success Probability: b = 0⇔ m0 is assigned to SMi in step
3 ⇔ Dsk(ci) = Dsk(Epk(m0)) = m0 ⇔ b′ = 0, so due to
correctness of the underlying encryption scheme, Adv always
wins the game, i.e., Pr[ΓUnlinkAdv (λ) = 1] = 1. That is, the
advantage of the adversary is non-negligible i.e., ε = 1− 1

2 =
1
2 . �

B. Privacy Analysis of Aggregation Protocol II

For Protocol II, two colluding sets are considered. In the
first case, the data concentrator acts as the sole adversary. This
adversary is maximal, as in the second case, it is shown that a
single colluding smart meter can help the data concentrator to
break the privacy of one honest smart meter in a special case.

1) Privacy against the data concentrator: For Adv =
{DC} (i.e., Adv has no control over any smart meter) and
Ch = {SM1, . . . ,SMn}, privacy depends on the indistin-
guishability property of the PRG and is computationally hard.

Theorem 4: Creating the shares for masking using a PRG
P , aggregation protocol II provides data unlinkability against
the data concentrator.

Proof: Now we consider ADV playing an outside game.
In the outer game (which is the indistinguishability of the
PRG), ADV is given a vector ~S = (si, sj) of two strings
which are either pseudorandom (if B = 1) or truly random
numbers (if B = 0). With ADV playing the role of Ch
in the unlinkability game we construct a PPT distinguisher
ADV who can distinguish a PRG from a truly random

generator if Adv wins the data unlinkability game with non-
negligible advantage. The intuition behind the proof is that if
~S contains pseudorandom numbers, then the inner protocol is
the unlinkability game which can be won by Adv.
(i) We consider the following reduction:

1) The initialization is executed. The adversary Adv, i.e.,
the data concentrator, decides on the sending list L.

2) Adv outputs a pair of measurements m0,m1.
3) A random bit b ∈ {0, 1} is chosen by Ch (who is ADV)

who then assigns mb to SMi and mb̄ to SMj .
4) Adv delivers a random number S0. Having used si and sj

as the shares for masking the measurements of SMi and
SMj , respectively, Ch submits all masked measurements.
Adv then receives all masked measurements including
m̃i = mb + si, m̃j = mb̂ + sj and the sum of masking
values SN = S0 +

∑N
t=1 st.

5) Adv outputs a bit b′. ADV sets B′ = ADV(~S) =
1 ⇔ b′ = b, i.e. ADV guesses that he received a
pseudorandom string ~S = (si, sj) exactly when Adv
wins.

(ii) After the reduction (step 4), Adv has received the same
information as in the standalone unlinkability game apart from
S0 = s0 which is only an independently created random share.
(iii) Since B = 1 ⇔

→
S = (si, sj) this case corresponds to

the protocol where pseudorandom shares are used. Due to the
choice of B′ in step 5 and assuming an advantage for Adv in
winning the unlinkability game yields

Pr[B′ = 1|B = 1] = Pr[b′ = b|
→
S = (si, sj)] = 1

2 +advantage

If
→
S contains truly random values

→
S = (ri, rj), the

adversary Adv does not obtain [15] any information regarding
b and hence wins the unlinkability game with probability 1

2 :

Pr[B′ = 1|B = 0] = Pr[b = b
′ |
→
S = (ri, rj)] = 1

2 .

Combining the preceding two equations we directly obtain the
desired result

|Pr[B′ = 1|B = 1]− Pr[B′ = 1|B = 0]| = advantage.

Recalling that if advantage is non-negligible then ADV
distinguishes between a pseudorandom generator and truly
random one. Since this contradicts the security of the PRG, we
conclude that advantage must be negligible. Thus, aggregation
protocol II provides smart meters’ data unlinkability. �

2) Privacy violation by the data concentrator and a single
smart meter: For Adv = {DC,SMN−1}, the privacy of
smart meter N can be broken. This can be shown directly
using the unlinkability game with SMi = SMN as follows.

Theorem 5: Protocol II does not provide smart meters’ data
unlinkability against the data concentrator and a single smart
meter.

Proof: The first 3 steps of the game run unchanged (see
Section V-B1).

4) During measurement submission, SMN−1 being con-
troled by Adv sends SN−1 to SMN who sends m̃N =
mN + sN mod k to DC and also SN = SN−1 + sN
mod k to DC . Thus, Adv has m̃N , SN−1 and SN and
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calculates m̃N−(SN−SN−1) mod k = mN +sN−sN
mod k = mN mod k = mN , since k is chosen bigger
than M =

∑
lml and therefore also bigger than mN .

5) Adv then sets

b′ =

{
0 if mN = m0

1 if mN = m1

Thus, b = 0 ⇔ m0 is assigned to SMi = SMN in step 3
⇔ mN = m0 ⇔ b′ = 0, so b = b′, i.e., Adv always wins the
game. �

Similarly, it can be shown that Adv = {DC,SM2} can
break the privacy of SMi = SM1. Analogously, with two
colluding smart meters SMi−1 and SMi+1 (in addition to
DC), the privacy of any smart meter SMi can be broken.

VI. VISUALIZATION

In this section, we propose a method to visualize and
compare the privacy guarantees of aggregation protocols. We
exemplify this visualization by depicting the privacy guaran-
tees of the two aggregation protocols analyzed in this paper
and provide an exemplary comparison of the two.

A. Visualization of Privacy Guarantees

In this section, we develop an intuitive graphical way to
illustrate the privacy guarantees of aggregation protocols. We
explain the visualization and exemplify it for the protocols
presented in Section III. This visual representation is an
alternate way of presenting the results of the proofs from
Section V, but can be read and understood independently. Our
visualization enables a quick and easy comparative analysis.

Fig. 5 (right) shows the colors used to illustrate the different
privacy levels introduced in Section IV-C. The remainder
of the figure (left) illustrates the privacy guarantees for the
analyzed protocols from Section V with different maximal
collusion sets. For each protocol, different sets (rows) of
colluding parties (columns) are shown. Each row illustrates
the maximum number of members from each party for which
privacy at the respective level (color) is guaranteed for all
honest parties.

B. Protocol Comparison based on the Privacy Visualization

For the aggregation protocol using homomorphic encryption
(top panel), N−2 smart meters and the aggregator may collude
(collusion set 2) so that attacks on privacy are polynomially
hard (dark gray) as shown for Protocol I in Section V-A1.
Alternatively, N − 2 smart meters and the data concentrator
may collude (collusion set 1) to provide information-theoretic
privacy guarantees (Section V-A2). If more parties collude,
these guarantees cannot be upheld (Section V-A3). Thus, the
presentation covers maximal collusion sets. This is shown in
Sections V-A1, V-A2 and V-A3.

Similarly, for the aggregation protocol using masking (bot-
tom panel), an adversary controlling N − 1 smart meters
(collusion set 1) still allows for information-theoretic privacy
guarantees for the remaining single honest smart meters’ data.
Intuitively, when DC is honest, no malicious party gets any

quantity related to the measurement of the honest smart meter
(Fig. 2, a formal proof is omitted due to lack of space). This
guarantee cannot be upheld if any additional collusions occur.
In an alternate adversarial constellation where only the data
concentrator is dishonest (collusion set 2), privacy can only be
guaranteed against a PPT adversary (Section V-B1), but not
against additional dishonest smart meters (Section V-B2).

The visualization of the two aggregation protocols in Fig.
5 makes it easy to compare them in terms of their privacy
guarantees. While the protocol relying on homomorphic en-
cryption (top panel) is in any case secure against N − 2
dishonest smart meters, this protocol also has an additional
party, the aggregator, that could be potentially dishonest. In
Protocol I, collsion of DC or A with N −2 smart meters does
not break privacy. In contrast, in Protocol II, no aggregator is
used, but privacy is broken if DC and one SM are dishonest.
Thus, in a setting that smart meters are considered trustworthy
(i.e., do not collude with DC or A, e.g., in common scenarios
where smart meters are sealed and tamper resistant), one may
prefer protocol II over protocol I. In fact, if we disregard
the adversarial control over the smart meters, then Protocol
II provides privacy without employing an extra aggregator
(which is an advantage over Protocol I which requires an
aggregator).

Conversely, if smart meters are more likely to be controlled
by the adversary (e.g., when they can be manipulated in an eas-
ier way than DC, which is located in a secured facility outside
customer premises), then Protocol I is a better alternative to
Protocol II since Protocol I is able to guarantee computational
privacy against coalition of N − 2 smart meters with DC (or
A), whereas this privacy level is not achievable in Protocol II.

Thus, the visualization allows to draw the following con-
clusions: Protocol I (using homomorphic encryption) requires
an additional aggregator, but is preferred in terms of privacy
when smart meters are considered less trustworthy. Conversely,
Protocol II (employing masking) is preferred when an extra
entity (the aggregator) is undesired.

In summary, the proposed privacy visualization method
allows illustrating and comparing the privacy guarantees of
different protocols in a compact and graphical way. For each
protocol, the maximum collusion sets and the associated
privacy level are displayed from highest to lowest privacy
level. For convenience, we provide a LATEX package to pro-
duce privacy visualizations like in Fig. 5. The package can
be downloaded from https://www.en-trust.at/downloads/ and
freely used if attribution is given, i.e., this paper is cited.

VII. CONCLUSION AND OUTLOOK

This paper serves as a guideline on how to prove, visualize
and compare the privacy guarantees of aggregation protocols.
For two example protocols, our approach was applied, i.e.,
game-based proofs were elaborated and the results were vi-
sualized. It was illustrated how different collusions of parties
participating in the respective protocols impact privacy and
how privacy guarantees vary between protocols. In summary,
this paper provides a basis for both protocol designers and
implementers to evaluate the privacy impact of different ag-
gregation protocols.
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Protocol I SM 1..N DC AMax. collusion set
N − 2Collusion set 1
N − 2Collusion set 2

Protocol II SM 1..N DCMax. collusion set
N − 1Collusion set 1

Collusion set 2

Information-theoretic
Computationally hard

Heuristic

Fig. 5. Privacy visualization for the presented protocols: The row color indicates the privacy level achievable when all colored entities of the row collude,
e.g., N −2 smart meters and the data concentrator (first row in the first panel). Columns indicate entities and colors privacy levels as illustrated in the legend.

Although this paper focuses on privacy only, it is planned
to construct an extended version for security and correctness
proofs for energy consumption aggregation protocols so that
more powerful adversaries can also be treated.
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