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Abstract—In industrial automation systems, deploying the
well-established automation pyramid model is best practice.
However, the trend to massively distributed systems, which are
foreseen to co-operate using standardized protocols and common
semantics, shows the limits of these traditional approaches. In
order to enable for Industry 4.0 compliant solutions, appropriate
means for scalable internetworking have to be developed and
utilized. New modelling technologies have been developed to
represent such distributed automation systems, incorporating a
multidimensional layered approach. At higher hierarchy levels of
these automation models, standardization approaches are quite
common. However, at the field layer there are still many different
field busses, which in most cases do not allow common semantics,
but come along with their own object models. In contrast, the
use of OPC UA at the field level, with its standardized protocol
stack and semantic annotations, would allow for enabling field
devives to fully participate in large scaled systems as Industry
4.0 components. This paper evaluates the potentials and limits of
integrating OPC UA into legacy field devices with limited com-
munication and calculation resources and provides quantitative
measurement results of selected test scenarios.

I. INTRODUCTION

Automation systems, as described in [1], interface the real
physical world by use of sensors and actuators. Automated
control tasks are performed by controllers, while some back-
end devices are used for human supervisory. Whereas the
communication between controllers and backend devices is
usually based on state of the art protocol stacks (having a
bigger footprint, but allowing for added value data processing),
the connection to field devices is still commonly based on field
bus systems (having a much lower footprint, but lacking added
values as complex data structures and semantic annotations).
This leads to the use of gateways between the different parts
of the automation system, which most likely comes along with
loss of information.

Through the recent development of “Internet of Things”,
i.e., bringing the IP stack into field devices (e.g., by using
technologies as 6LoWPAN [2]), the chance to seamlessly in-
tegrate field devices with backend devices emerges. However,
IP is just part of the solution; in order to exchange data from
automation systems of different vendors, semantic annotation
of exchanged data points and standards for describing complex
data structures are necessary. A technology which gained
much attention (e.g., [3]) in this context is “Open Platform
Communications Unified Architecture” (OPC UA) [4]. The
use of OPC UA in all devices of an automation system would
allow for a seamless integration of all parts of the system
without information loss.

However, the use of OPC UA at field level is still not widely
common. Thus, the research work at hand tries to answer
following questions: To what extent are resources used for the
OPC UA information model and basic functionality to work
as specified (including latency issues)? Is the OPC UA meta
model able to represent dynamic field devices and to replace
object models of traditional field buses? Can state of the art
security profiles be provided?

In order to answer these research questions, a protyotype
had to be realized, fulfilling following functional requirements:

• The prototype had to support the address space and node
classes defined in [4]

• The services for reading and writing attributes had to be
fully functional

• The services for managing subscriptions to “monitored
items” had to be fully functional

• A service for calling added value methods including the
exchange of appropriate input and output parameters had
to be fully functional

• Objects from legacy field busses had to be represented
as OPC UA nodes, and creation and deletion had to be
possible at runtime

Additionally, some non-functional requirements had been
defined, concerning resource usage, influence on other (control
and non-control) traffic, security mechanisms, as well as
hard- and software environments, as basis for the prototypical
implementation.

The rest of this paper is organized as follows: Chapter
II gives a short overview of related technologies and their
utilization in research and industry. The prototypical architec-
ture is shown in chapter III, followed by implementation and
validation issues in chapter IV. The results of the conducted
analysis are presented in chapter V. Finally, in chapter VI a
short conclusion is given, and some potential further research
activities are named.

II. RELATED WORK

Distributed automation systems consist of a number of
interlinked devices, i.e., sensors, actuators, controllers, and
backend devices. These devices can be logically grouped along
their degree of abstraction, reaching from concrete physical
interaction with the surrounding world to abstract business ori-
ented systems as enterprise ressource planning (ERP), which
uses data from the underlying systems. This layered system is
usually called “automation pyramid”, as described in [5].



A more complex modelling has been introduced by the
German Electrical and Electronic Manufacturers Association
(ZVEI) named “Reference Architecture Model Industry 4.0”
(RAMI 4.0) [6]. As shown in Fig. 1, it sets up a three-
dimensional layered system consisting of the dimensions ab-
straction layers (from devices to business), hierarchy levels
(from field devices and products to the interconnected world),
as well as product lifecycle. It is designed for scalability, con-
nectivity, and multi-vendor integration [7], thus overcoming
limitations of the classical automation pyramid which is rather
single-vendor.

Fig. 1. RAMI 4.0 [8]

Multi-vendor integration, however, raises the need for inter-
operability of data and services within this model [9]. Compo-
nents have to be able to interact in a well-defined manner, thus
evolving to “Industry 4.0” components. This again requires a
common semantic description for interconnected components,
which is called “administration shell” [10] in the context of
Industry 4.0.

For devices belonging to the upper hierarchy levels of the
RAMI 4.0 model (i.e., the more abstract ones), the use of
proper semantic descriptions of exchanged data is already
quite common [5]. Devices in these layers are normally con-
nected via TCP/IP and have enough calculatoric power to cope
with technologies which have a certain footprint. Thus, the use
of loosely coupled systems and service-oriented architectures
(SOA) allows for the exchange of complex structured data [3],
e.g., based on XML.

On the other side, field devices at the lower layers of
the hierarchy often have low-power constraints, narrowband
connectivity, and real-time bounds. The need to “optimize
every bit” hampers the usage of complex and elaborated
communication and data processing technologies. Information
has to be concentrated on a few bits, thus leading to strongly
coupled systems. In the field layer, this is normally done
using field busses [5], which have a limited set of variables,
representing data points in pre-defined “objects models”, e.g.,
Modbus RTU / TCP [11].

In spite of these resource limitations, solutions derived
from “classical” networking gained more interest in recent
years. Many field devices got IP capable, often using IPv6
in conjunction with header compression technologies (e.g.,
6LoWPAN [2]) to use sparse resources efficiently. Also, Ether-
net based technologies can be used to exchange control frames
in a real-time manner, e.g., via Ethernet Powerlink [12].

Thus, the next step is to bring semantics to the field level. As
mentioned, the most promising candidate [13] for this purpose
seems to be OPC UA [4]. OPC UA is a SOA that has been
defined by the OPC Foundation (an industry consortium) as
successor of the classical OPC technology, which is based on
the “Distributed Component Object Model” (DCOM) and thus
limited to Microsoft Windows c©. The idea of OPC was to
provide a standardized “application programming interface”
(API), e.g., for SCADA applications, abstracting concrete
devices via appropriate device drivers.

As for the transport protocol, a binary variant utilizing
TCP/TLS can be used as well as an XML variant utilizing
HTTP. The main innovation for automation systems yet lies
in the definition of an informational meta-model, which allows
to structure a model-world representation of all real-world
devices of an existing automation system. The OPC UA
information model enables a semantic description also of the
according data points, i.e., of the underlying object models of
legacy field busses [1]. Thus, OPC UA is well-suited when it
comes to cascading field busses.

All such individual mappings, e.g., between Ethernet Pow-
erlink and CANopen, are obsolete, once a mapping to a
highly complex information model as provided by OPC UA
is done. The semantic annotation thus allows for usage in
massively distributed multi-vendor RAMI 4.0 environments.
Furthermore, it is considered as important technology in the
smart grid domain, e.g., [14]. However, to be widely accepted
in the automation industry, real-time capabilities are required.
For that purpose, the OPC foundation is working on an exten-
sion of OPC UA to integrate real-time services in combination
with “time-sensitive networking” (TSN), a set of IEEE 802.1
standards, e.g., [15].

Several publications have researched the potential of OPC
UA to get integrated into field devices, e.g., [16] have shown
that integration of an OPC UA server in field devices can
be performed with very low footprint; however, this result
has been achieved by relinquishing dynamic changes in the
information model. In [17], performance issues especially of
the OPC UA security model have been examined, whereas
in [18] Devices Profile for Web Services (DPWS) have been
compared with OPC UA. None of the mentioned publications,
however, have explored the interplay of OPC UA traffic with
real time traffic.

III. PROTOTYPE ARCHITECTURE

In order to answer the aforementioned research questions,
a prototypical solution had to be set up, which served as the
basic platform for all test scenarios described in sections IV
and V.



The prototype was based on an Altera Cyclone I FPGA [19]
equipped with a proprietary 32 bit soft core CPU with a clock
rate of 50 MHz, as well as with 4 MB flash and 2 MB static
Random-Access Memory (RAM). The board was supposed to
be representative for many field devices to justify that results
obtained in the conducted validation scenarios can be taken as
significant for the field level in general.

As operating system, FreeRTOS [20] was chosen as it pro-
vides real-time capabilities, has very low resource needs, and
is open source. FreeRTOS basically consists of a CPU specific
porting, a task scheduler which allows for pre-emption, and
an API. However, in order to better support the envisaged test
scenarios, some additional functionality had to be added, as
shown in Fig. 2: First, a real-time clock had been implemented
to provide time stamping with 100 ns accuracy; additionally,
NTP synchronization was integrated. Second, a command line
interface (CLI) had been realized to be able to control the test
runs as needed. Finally, a dynamic memory allocator had been
added for storing OPC UA nodes at run-time.

Fig. 2. Software Components on Altera Cyclone Platform

The prototype platform already came along with a MAC
controller supporting Ethernet Powerlink [12]. Ethernet Pow-
erlink enables a co-existance of real-time and none real-
time traffic; as OPC UA currently lacks real-time capabilities,
the prototype had to use the asynchronous parts of Ethernet
Powerlink. Consequentely, the chosen setup was independent
on all parallel real-time communication.

As the binary transport version of OPC UA requires a
TCP/IP stack, the FreeRTOS+TCP [21] stack in version
160112 was added to the existing configuration. This stack
supports Address Resolution Protocol (ARP) and Dynamic
Host Control Protocol (DHCP). To bind the TCP/IP stack
to the already existing MAC driver, a porting layer had to
be implemented, which receives frames from the driver and
proceeds them to the TCP/IP stack. For sending frames, they
must be forwarded to the Ethernet Powerlink stack to ensure
that they are sent in the appropriate time slot.

Furthermore, the OPC UA server itself, along with mbed
TLS (formerly known as PolarSSL) [22] to allow for encrypted
communication, had to be integrated in the prototypical setup.
The OPC UA stack was provided by Unified Automation
under the label “High Performance OPC UA SDK” [23]. It
is written in C and is intended for usage in low-resource
embedded systems. Again, a porting layer had to be provided
to link the OPC UA stack to the prototype’s operating system,
which includes access to RTOS’s thread synchronization and
security features. Also, the basic networking functionalities are
integrated via a porting layer. Thereby, the callback interface of
FreeRTOS+TCP was linked to the asynchronous network API
of the Unified Automation stack for allowing non-blocking
communication.

As the core component of the test setup, the OPC UA
stack had to be equipped with several “data providers”, i.e.,
components which provide data from one or more defined
“name spaces” to the OPC stack. The name spaces have to
be used to separate different application’s naming of unique
data points from each other. The OPC UA stack comes along
with an integrated data provider with a pre-defined name
space, called the “Name Space 0 Provider”, which is used
pre-dominantely for accessing static elements of the OPC UA
address space in the device’s Read-Only Memory (ROM).

For using this setup as testbed of OPC UA integration in
field devices, two other data providers had to be implemented.
First, a test provider was used to add validation nodes to the
OPC UA address space. Second, the “Object Dictionary” data
provider is used to provide the data from Ethernet Powerlink’s
object dictionary to the OPC UA server. This data provider is
crucial for the test system’s efficiency; especially the storage
utilization is dependent on the concrete implementation, as
will be shown in the next section.

IV. IMPLEMENTATION OF OBJECT DICTIONARY PROVIDER

The simplest way to implement a data provider for the
Ethernet Powerlink object model would be to define one
additional OPC UA node for each object by using already
integrated standard libraries. However, the Ethernet Powerlink
device allows for 253 additional hardware modules extending
the system under test, each of which containing 45 or more
objects. As one OPC UA node which is administered by
standard libraries requires at least 92 Byte of RAM, the total
RAM utilization would sum up to a minimum of 253∗45∗92 =
1.047.420 Byte [1], which consumes about the half of the
available RAM. Thus, for the implementation of the prototype,
a more efficient solution had to be found.

For doing so, the necessary data had to be provided dynami-
cally, e.g., when an OPC UA client browses the instance of the
information model. As all Ethernet Powerlink objects can be
identified by a two Byte “index” and a one Byte“subindex”, a
three Byte “Node-ID” can be calculated via the simple formula
Node − ID = index ∗ 256 + subindex. With this Node-ID,
OPC UA can identify and address each node; all other data
can be provided by the data provider just at the time of the
query.



When these nodes are added into the OPC information
model, they have to be placed at a suitable position of the
existing object hierarchy. Figure 3 shows the part of the OPC
UA information model, where they can be mounted. The
specification extension [24] defines an object with the browse
name “DeviceSet”, which groups all devices the OPC server
should contain, i.e., the Ethernet Powerlink device, which is
called “EplDevice” in the information model depicted in Fig.
3. It contains a node “ObjectDictionary”, where the original
Ethernet Powerlink object dictionary is mapped, i.e., objects
are grouped along their “index” and “subindex”.

Fig. 3. Object Dictionary within OPC UA Information Model [24]

After having realized the OPC UA integration with the
used board, a testbed as shown in Fig. 4 had been set up
in order to validate that the access to the onboard OPC UA
server was possible and fulfilled the basic requirements. A
PLC was connected to the system under test (“Prototype”)
via an Ethernet Powerlink connection. A Powerlink analysing
device (“X20ET8819”) [25] was put in-between to monitor
the Powerlink traffic. This device was also able to timestamp
the frames with an accuracy of 20 ns. The results of the tests
were sent to a PC, on which the analysis could take place.
The test PC was also used to schedule and start the tests; the
switch was used to get remote access to the PC.

Fig. 4. Test Environment

Both the PLC and the PC were equipped with an OPC UA
client for querying and browsing the OPC server instance of
the prototype. Hereby, the free OPC UA client “UaExpert”
from Unified Automation [26] had been used at the querying
PC; the PLC came along with an integrated OPC UA client.
For some of the tests (especially for the parallel queries), an
additional PC was integrated in network segment Ethernet 1,
while the analysing device was unused. For validation, the
following tests had been conducted:

First, the browsing of the OPC information model was tested
by accessing some already known nodes. Then, setting and

getting values via OPC UA was tested via attributes of test
nodes, where valid and unvalid values were used. Whereas
the valid values could successfully be written with the OPC
client, the unvalid values yielded errors. Also, subscriptions
to OPC UA “monitored items” were tested with test nodes.
These incremented a test variable every second and published
its value to the client. Hereby, a parallel query from up to
five client instances had been performed. Furthermore, dy-
namically adding and removing nodes in the OPC information
model could successfully be realized. Finally, some tests were
made to assess the usage of Microsoft’s security guideline
“Basic128RSA15” [27].

V. PERFORMANCE AND EFFICIENCY EVALUATION

The prototypical setup as described in the previous chapter
had been used to conduct some measurements of performance
and efficiency of the OPC UA integration, along with a
comparison with values of similar tests without the use of
OPC UA. Hereby, the tests covered three aspects of interest:
Response times, memory utilization, and CPU utilization.

A. Response Times

Table I depicts the results of measuring the response times.
The time measured was the difference between query and
response.

TABLE I
RESPONSE TIMES IN MILLISECONDS

None Basic128RSA15
Avg Min Max Avg Min Max

Read 1 3.6 3.49 3.72 6.84 6.69 7.2

Read 10 5.22 5.19 5.49 11.21 11.09 11.32

Read 63 15.45 14.79 15.61 36.3 35.59 38.29

Write 1 3.6 3.59 3.72 6.6 6.39 6.92

Write 10 4.81 4.79 4.92 9.44 9.2 9.6

Write 63 12.91 12.39 13.09 26.37 25.99 26.69

Hereby, an object with the index 0x8000 and 200 subindexes
had been defined; thus, 201 OPC UA nodes with NodeIDs
ranging from 0x800000 to 0x8000C8 had to be instantiated.
Reading and writing access was then conducted with a single
object, 10 objects in parallel, and 63 objects in parallel; each
of these six scenarios was conducted 100 times, calculating
minimum, maximum, and average values for the response
times. The measurements of the response times for reading
and writing access to OPC UA nodes have been conducted
using security guidelines “None” and “Basic128RSA15”, as
shown by the respective columns in Table I.

Additionally, similar queries have been made without the
use of OPC UA, i.e., directly to the Ethernet Powerlink object
dictionary using the Powerlink “Service Data Object” (SDO)
[12]. However, these reference tests could only be performed
with a single object, as conjoint access to more than one object



is not yet implemented with SDO. For a single query, the re-
sponse times of OPC UA without security guideline are about
twice as high than with SDO; by using “Basic128RSA15”,
the values again are about doubled. Although the values are
clearly increasing with the number of objects, the increase is
lower that linear, i.e., conjoint access is worth the effort.

B. Memory Utilization

Table II shows the memory utilization of the different
software parts of the system under test, using four different
test scenarios: SDO access without OPC UA was compared
with the use of OPC UA; in both cases a static variant where
memory is used by the code image was compared to a dynamic
variant with additional memory needs.

TABLE II
MEMORY UTILIZATION IN BYTE

Without OPC UA With OPC UA
Stat. Dyn. Stat. Dyn.

Basic
Components 76 202 326 130 90 106 340 034

FreeRTOS 8 643 25 767 9 041 30 793
FreeRTOS +
Extensions 23 069 23 649 23 277 23 925
FreeRTOS +
TCP 65 645 73 493 66 429 74 773
Ethernet
Powerlink 129 082 247 014 135 215 253 147
OPC UA
Server 0 0 271 766 758 698
Data Provider
Namespace 0 0 0 225 788 225 788
Data Provider
Object Dir. 0 0 17 010 17 414

PolarSSL 0 0 141 215 141 803

Sum 302 641 696 053 979 847 1 866 375

The conducted test scenarios included up to 500 OPC
UA monitored items with up to ten parallel subscriptions.
Monitored items provide a publish/subscribe service, where
changes of data point values exceeding a configurable interval
are reported to the querying OPC UA client. The values of
Table II refer to the maximum numbers. These parameters
have influence on the allocated dynamic memory; however,
the allocation takes place at the initialization of the OPC UA
stack, i.e., in advance of the actual tests.

Thus, the actual number of used monitored items and
subscriptions has no influence on the memory utilization; yet,
the number of sessions linked to the server has impact. Espe-
cially the component FreeRTOS+TCP will require additional
memory for each session with linked clients. The values given
in Table II had been obtained without any clients linked to the
server. The security features were activated, which resulted
in a memory requirement of about 200 000 Byte; the main
part of that memory utilization is due to the integration of the
PolarSSL functionality.

C. CPU Utilization

Also for the assessment of the CPU utilization, OPC UA
monitored items had been used. Figure 5 shows the CPU
utilization dependent on the number of monitored items.

Fig. 5. CPU Utilization in Selected Scenarios

Besides the number of monitored items, further influencing
parameters had been taken into account: the number of sub-
scriptions, the sampling rate, the number of changed values
of data points, and the used security guideline. For the results
shown in Fig. 5, the sampling rate was configured to 50 ms,
i.e., the server sent out the new values every 50 ms in the
case of changes. For the cases without any changes in the
monitored data, a keep alive counter of 10 was configured,
i.e., every 500 ms the server sent the values in any case. All
of the tested scenarios show a near linear dependency on the
number of monitored items.

VI. CONCLUSION AND FURTHER WORK

With the research work at hand we have analyzed, under
which conditions the use of OPC UA in field devices is a
feasible undertaking. The advantages can be clearly seen in
the seamless integration of field devices and backend devices,
alongside with the potential to use OPC UA’s semantic power
to build up big scaled multi-vendor automation systems. It
has been proved that this usage is possible, even when other



(real-time constrained) control tasks have to be performed
on the same network resources. However, the rather big
footprint of OPC UA has also its disadvantages for field
devices, as resource utilization and communication latencies
are concerned. This tradeoff could be expected in advance;
however, the work at hand gives some quantitative results
which can help engineers to decide whether the use of OPC
UA is feasible or not in their respective environment.

As devices tend to become more powerful, also in embedded
setups, the use of OPC UA will be more and more reasonable.
One of the most important current drawbacks of OPC UA is
the lack of real-time capabilities, as this is a pre-condition for
most automation systems. Thus, the ongoing work on real-time
capable OPC UA [15] is a very interesting recent development
in this context, as this would address the timing issues and
hence broaden the applicability of this technology. Once this
is available, a similar evaluation would be very desirable, first
for testing the fulfillment of real-time constraints, and second
concerning the other conditions under which such approaches
can be deployed in real world environments.

The semantic interoperability offered by OPC UA in in-
dustrial field devices is an important asset in context of IoT
proliferation [28]. Multi-vendor setups are common in this
field, which are in need of a conceptual basis for system
integration and service orchestration. OPC UA can provide
these central roles and can also support the distribution of
“intelligence” [29] that is currently on its way in the light of
distributed (micro) services. In order to manage semantics in
massively distributed systems, the use of ontologies [30] will
lead to interesting new research fields.
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