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Abstract: The increasing complexity of cyber-physical systems requires model-based systems engineering (MBSE) in
an effort to sustain a comprehensive oversight. However, broader adaptation of these models requires spe-
cialized knowledge and training. In order to make this process more user-friendly, the concept of user-centric
systems engineering emerged. Artificial intelligence (AI) could help users overcome beginner hurdles and
leverage their contribution quality. This research investigates the feasibility of a large language model in the
systems engineering context, with a particular emphasis on the identification of potential obstacles for similar
tasks. Therefore, a GPT model is trained on a dataset consisting of UML component diagram elements. In
conclusion, the promising results of this research justify utilizing AI in MBSE. Complex relationships be-
tween the UML elements were not only understood, they were also generated using natural-language text.
Problems arise from the extensive nature of the XMI, the context limitation and the unique identifiers of the
UML elements. The fine-tuning process enabled the LLM to gain valuable insights into UML modeling while
transferring their base knowledge, which is a promising step toward reducing complexity in MBSE.

1 INTRODUCTION

Cyber-physical systems are becoming increasingly
vital in various sectors. They merge physical pro-
cesses with digital computation, resulting in their
complexity (Lee, 2008). At the same time, the rapid
evolution of artificial intelligence (AI) presents both
challenges and opportunities. On one hand, data-
driven decision-making makes systems even more
complex. On the other hand, the emergence of gener-
ative AI, such as large language models (LLMs) like
ChatGPT, shows promise in managing difficult engi-
neering tasks.

Model-based systems engineering (MBSE) has
established itself as a key tool in dealing with
the complexity of developing cyber-physical systems
(Neureiter et al., 2020). It focuses on a central digital
model through various engineering stages. However,
its broader adoption is limited by the need for spe-
cialized knowledge in object-oriented development,
(semi-)formal modeling languages (e.g. UML or
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SysML), and complex tools. The emerging concept
of user-centric systems engineering (UCSE) aims to
make MBSE more user-friendly. In making MBSE
more accessible, generative AI can be tremendously
helpful: LLMs can support users in constructing for-
mally correct system models using natural-language
prompts. By utilizing the code representation of sys-
tem models, we can benefit from the current progress
of LLMs in the area of code generation. Their in-
creasing proficiency enables LLMs to generate, adapt,
complete or refine code and a clear parallel can be
seen in which AI-assisted programming is evolving
in a more user-centric direction (Wong et al., 2023).
These powerful language models can be fine-tuned to
specific application scenarios, such as MBSE.

Our study aims at AI-enabled, user-friendly
MBSE. We pursue two main objectives:

1. Establishing a proof of concept for generating
UML models from natural-language inputs, uti-
lizing a specialized and fine-tuned LLM.

2. Identifying and addressing the challenges in-
volved in LLM-assisted model generation to
develop a practical and efficient engineering
methodology.



Our approach involves fine-tuning an LLM,
specifically GPT, using a dataset of natural-language
description and corresponding XMI-encoded UML
models. This research aims to showcase AI’s poten-
tial in making MBSE an accessible tool for dealing
with the complexity of modern CPS.

2 BACKGROUND

This chapter provides an overview of the underlying
concepts that are relevant to this research. First, the
basics of the Unified Modeling Language (UML) and
the associated XML Metadata Interchange (XMI) for-
mat are described. The focus is then placed on the
general concepts of LLMs, with a particular emphasis
on OpenAI’s GPT models. It also examines how con-
text and fine-tuning processes influence the behavior
and output of these advanced language models.

2.1 UML and XMI

The UML is a broadly used general-purpose language
for modeling, specification, visualization and docu-
mentation of complex systems. UML is characterized
by its use of graphical elements to represent system
structures and behaviors. With the introduction of
UML 2.0 in 2005, the language was further improved
by the addition of the textual notation XMI (XML
Metadata Interchange Format). XMI is a standard
format for interchanging UML Models based on the
Extensible Markup Language (Rupp et al., 2012). A
structured representation of UML models is essential
for interaction with LLMs, thus the use of the XMI
representation is required.

2.1.1 UML Component Diagrams

UML component diagrams fall under the category of
structure diagrams, serving to represent various parts
of a system as components in runtime. These dia-
grams are essential for visualizing the organization
and interactions of different components within a sys-
tem, particularly highlighting how components com-
municate through clearly defined interfaces (Rupp
et al., 2012). Basic understanding of the following
four components is important to follow this research:

• Component: Primary building block, represent-
ing a modular part of a system.

• Port: Points of interaction for a component.

• Exposed Interface: Reference to the interfaces
that a component either provides or requires.

• Interface: Specification of the set of operations
or services, that are either provided or required by
a component.

Figure 1 illustrates a typical interaction of these four
elements and serves as a reference implementation
within this research. A component may have multiple
ports with exposed interfaces. A required interface
uses the provided interfaces, and both are realized by
an interface with its definition.

Figure 1: Exemplary interaction between components in
UML component diagrams.

2.2 Large Language Models

Large Language Models are a combination of multi-
ple AI disciplines that mainly inherit from deep learn-
ing and natural language processing (NLP) and are
so-called generative AIs (Amaratunga, 2023). The
fundamental basis of this method is grounded in
stochastics and probabilities, however, there are some
underlying concepts that require further clarification.

2.2.1 Tokenization

The first challenge is to make a natural-language text
machine-readable. This parsing process involves sev-
eral different methods, for this research, only tok-
enization is relevant. Tokenization in NLP is a fun-
damental step in which a text is broken down into
smaller units, known as tokens. These tokens are of-
ten words or sub-words and serve as base elements for
various language processing tasks. This not only re-
duces the complexity of a sentence but also represents
it in a structured format (Amaratunga, 2023).

2.2.2 Transformer-based Models

Some of the most sophisticated LLMs nowadays are
generative pre-trained transformers (GPTs). GPT
models consist of multiple complex layers and are
able to create an output from an input. The input is
used as context for the generation of the output, but
so is the output. This works because GPTs are so-
called autoregressive models, they generate word af-
ter word. This makes it possible to use the previously
generated text as the additional context for the next
words (Amaratunga, 2023).



An important contribution to the success of
transformer-based models was developed by Ashish
Vaswani et al. with the paper ”Attention Is All You
Need” in 2017. This research presented a significant
milestone in the field of natural language processing
by introducing the attention mechanism into the trans-
former model, a new and promising approach that de-
parts from traditional recurrent or convolutional neu-
ral networks. The attention mechanism allows the
encoders and decoders to focus on different parts of
the input sequence by assigning them more weight.
Based on the task of translating a text from English
to German, this transformer-based model was supe-
rior in quality and also required a significantly smaller
amount of training time by being more parallelizable
(Vaswani et al., 2017). Consequently, these advance-
ments enabled the GPTs to train on huge datasets to
create LLMs with more general knowledge and un-
derstanding of the concepts in the real world.

2.2.3 Training GPT Models

GPT models belong to the family of LLMs and have
an incredible power of generating natural text due
to their training performance that enabled them to
gain knowledge through huge datasets. This abil-
ity can be further utilized to effectively train pre-
trained models on a specific topic and transfer the
already-known concepts and patterns to new domains
(Amaratunga, 2023). While the process of fine-tuning
LLMs requires an understanding of algorithms like
back-propagation and gradient descent, vendors like
OpenAI effectively simplify this complexity with an
additional abstraction layer, making the technology
more accessible. By tailoring such models through
fine-tuning, we achieve a higher level of precision
and reliability, by greatly improving their applicabil-
ity and effectiveness on specific tasks.

2.3 OpenAI’s GPT API

Since its introduction by OpenAI in 2018, the GPT se-
ries of models has evolved, with each iteration labeled
as GPT-n, where n indicates the version number. The
GPT-3.5 model, released in 2022, marked a signifi-
cant advancement with its extensive API supporting
fine-tuning, a key feature in this research. In fine-
tuning, the model receives prompts specifying de-
sired output characteristics, and each interaction con-
tributes to a conversational context, influencing sub-
sequent responses. A critical aspect of GPT models is
their context size limitation, with the latest GPT-3.5-
turbo-1106 model handling up to 16K tokens.

The interaction architecture between a human and
the LLM is structured so that the model receives a

prompt detailing specific requirements that its output
must meet. Each prompt and subsequent response
generated by the LLM contributes to a conversational
context that is continuously utilized to produce the
next segment of the response. A notable distinction
among GPT versions is their maximum comprehen-
sible context size, managed internally by a context
window that automatically drops the oldest context
information if the tokens exceed the limit (OpenAI,
2023a). Currently, GPT-3.5-turbo-1106 is the most
recent available model for fine-tuning jobs, and is ca-
pable of handling a context with the size of 16K tokes
(OpenAI, 2023b).

GPT models are fine-tuned with a collection of
JavaScript Object Notation (JSON) Objects in the
JSON Lines format. Each line of this format maps
a system description and a full conversation between
the two personas ”user” and ”assistant”. The dataset
represents example conversations between a user and
with the anticipated response of the LLM (OpenAI,
2023a). During the fine-tuning process, this data set
is used to adjust the parameters of the model so that
the expected responses are reproduced as closely to
the training set as possible.

3 APPROACH

As outlined in Section 1 a user-centered approach to
MBSE could be supported by the utilization of ar-
tificial intelligence. To achieve the results for this
research, this section deals extensively with the ap-
proach of creating the training dataset, generating
XMI with the trained GPT model and the approach
for evaluating the results.

3.1 Dataset Generation

To conduct the research, UML component diagram
elements are utilized. These are structured and
straightforward elements describing significant com-
ponents and their interconnections within a system.
Representative for all UML elements, their XMI
representation is used to generate the fine-tuning
dataset for the GPT model. The dataset consists of
10 different conversations between a user and an
assistant, where the user is requesting XMI code
from the LLM. The requested code examples are
UML component diagram elements with increas-
ing complexity, organized into three complexity
classes. These classes are designed to progressively
demonstrate more intricate component interactions
and system architectures based on the reference
implementation in Section 2.1.1:



1. Standalone components and interfaces: The
simplest class involves standalone components,
which may have a port with exposed interfaces
and their realizing interfaces. These examples fo-
cus on individual elements in isolation, providing
a fundamental understanding of components and
their XMI structure.

2. Connected components with interfaces: The
second complexity class introduces connected
components, where one component acts as a
provider and/or as receiver of exposed interfaces.
This class focuses on which interactions between
components are permitted and desired, and there-
fore already uses all four elements.

3. Nested components with internal and external
connections: The most complex class features
components within components that have inter-
nal connections and expose ports through multiple
layers. The complex interaction and the numer-
ous dependencies within the XMI are intended to
challenge the training.

Each example is modeled in the systems modeling
tool Enterprise Architect (Systems, 2023) and ex-
ported into the machine-readable XMI format. Given
the extensive amount of information this format con-
tains, it is possible to reduce some data segments in
a pre-processing step without altering the UML ele-
ments. All data in XMI is subordinate to the XML
tags. This makes it possible to delete tags like project
information, styles, diagrams and diagram positions
of the elements directly. Attributes such as the author,
creation- and modification times can also be deleted
without hesitation. This completes the XMI code for
integration into a dataset

The JSON Lines format, which is the dataset for-
mat used for the fine-tuning process of GPT models,
expects a conversation between a user and an assis-
tant in each line as a JSON object. In the dataset used
for this research, the user is requesting component di-
agram elements and the assistant responses with XMI
code. Each request consists of multiple English sen-
tences describing the desired components and their in-
teractions. The XMI examples and the user prompts
are then combined accordingly to create a dataset with
10 conversations. Figure 2 visually represents the
data set generation steps applied in this study.

Figure 2: Fine-tuning dataset generation visualized steps.

3.2 XMI Generation and Evaluation

Once the GPT model is trained successfully with the
specially prepared dataset, the model becomes acces-
sible for practical use through the OpenAI API. To
assess the effectiveness of the trained GPT model, we
generate XMI code for the four types of UML ele-
ments covered in the training. This generated code is
then imported into the Enterprise Architect software
for further evaluation. The prompts used for generat-
ing XMI code adhere to specific criteria to ensure a
robust evaluation:

• No prompts from the training dataset are reused,
to avoid biasing the model’s responses.

• Unique UML models are generated with different
interaction scenarios for each complexity levels.

The XMI code generated by the GPT model often ne-
cessitates post-processing. This involves manual ad-
justments to refine and correct the output, ensuring
the correctness of the XMI code. Figure 3 illustrates
the steps to generate XMI code from GPTs API and
import it into Enterprise Architect to visualize the re-
sult for an evaluation.

Figure 3: XMI code generation visualized steps

The evaluation is exclusively performed through a hu-
man assessment of the generated XMI code and fo-
cuses on two primary criteria: its syntactical correct-
ness and the completeness of elements and relation-
ships as specified in the request prompt. The analysis
will concentrate then on identifying learned patterns
and obstacles encountered during the generation pro-
cess.

4 REALIZATION

Based on the determined research approach, this sec-
tion describes the realization of the trained GPT
model and the generation of the XMI code. The rele-
vant steps are explained and the results are presented.

4.1 Complexity Classes

The basis for creating the necessary dataset for the
training process is clear and structured data prepara-
tion. Therefore, 10 examples of increasing complex-
ity are modeled, and respective user prompts are for-
mulated according to Section 3.1. Figures 4,5 and 6
represent one complexity class each.



Figure 4: Representative model elements for complexity
class 1.

Figure 5: Representative model elements for complexity
class 2.

Figure 6: Representative model elements for complexity
class 3.

4.2 XMI Pre-Processing

The pre-processing of the XMI includes the removal
of irrelevant XML tags that do not alter the UML ele-
ments. This not only ensures that the GPT model only
learns the essential relationships, but it also saves a
non-negligible amount of tokens. Using the Python
library ”etree”, it is possible to modify an XML file
and deleting all tags and attributes described in Sec-
tion 3.1.

With a slightly modified version of the python
code provided by the OpenAI documentation, it is
possible to count the tokens of a file for a specific
GPT model version via the tiktoken python library
(OpenAI, 2023a). Table 1 presents the token and the
rough file sizes before (Raw) and after (Edited) the
pre-processing step.
As can be seen, the pre-processing achieves a token

Table 1: Complexity level 2 token and file size comparison
before and after pre-processing.

File State File Size Tokens
Raw 25KB 10.526

Edited 20KB 7.216

saving of about 30%. Nevertheless, even the reduced
version of this example already occupies over 40% of
the maximum context size of 16K Tokens.

4.3 Data Merging and Fine-Tuning

To create the data set for the fine-tuning process, the
cleaned XMI needs to be merged with a natural text.
The following 3 descriptions are the user prompts for
the previously selected examples for the complexity
classes 1–3, it should be noted that the example from
complexity level 3 was created within 2 user prompts
that build up on each other.

• 1 - Two Components ”Create Component X and
Component Y”

• 2 - Two Connected Componets ”Create a Com-
ponent for my ’Data Analyser’ service that ex-
poses the interface ’UserBehaviour’. The ’User-
Behaviour’ interface has the attributes ’userID’ as
int and ’behaviour’ as String, and is received by
the ’Frontend’ component.”

• 3 - Two Promts, Nested Components
1. ”Create three components within the parent
component ’Backend Service’, named ’Service
A’, ’Service B’, and ’Service C’.”
2. ”Add an interface named ’BackendData’ to
’Service A’ within ’Backend Service’. This in-
terface should be exposed to an external compo-
nent named ’Frontend Service’. Include attributes
’dataID’ as int and ’dataValue’ as String in the
’BackendData’ interface. ’Service C” is also re-
qesting the ’Backend Service’ from ’Service A’.”

A similar description was created for all other exam-
ples and inserted manually into a JSON Lines file.
The GPT model was then fine-tuned via OpenAIs on-
line platform.

4.4 XMI Generation

Since the fine-tuned model is now easily accessible
through an API call like in the OpenAI documenta-
tion, the model can be used to generate XMI code for
a validation process. In this part, two exemplary XMI
models are generated, those are intended to be repre-
sentative of the results.
The first requesting user prompt: ”Create a compo-
nent named ’Weather Tracker’ with a port element.



Additionally, create an interface named ’Weather-
DataInterface’, which includes the attributes ’temper-
ature’, ’humidity’, and ’windSpeed’” addresses the
complexity class 1.
In the training set is no case for individual compo-
nents where a port exists without an exposed inter-
face, which is realized by an interface. This test is
intended to check that no false assumptions or rela-
tionships have arisen from the training. In Figure 7
the generated XMI code is imported and visualized in
Enterprise Architect, no post-processing was needed
and all requested elements and attributes are gener-
ated.

Figure 7: Generated XMI for complexity class 1.

The generation for complexity class 2 focuses on
a mutual dependency between two components, since
there were no similar examples defined in the train-
ing set. The following requesting user prompt gen-
erates the code for Figure 8: ”Generate me two dis-
tinct components: ’Audio Player’ and ’Media Li-
brary’. The ’Audio Player’ should provide an inter-
face called ’PlaybackControl’ with functions such as
’Play’, ’Pause’ and ’Stop’. This interface is used by
the ’Media Library’. Conversely, ’Media Library’
provides an interface called ’LibraryAccess’ with
functions such as ’fetchTracks’ and ’updateLibrary’,
which is used by the ’Audio Player’. ”.
The generation process was interrupted because the
context limit was reached. As a result, the unfinished
code had to be corrected by closing all XML tags be-
fore importing into Enterprise Architect. Therefore,
there was no change in the generated elements, how-
ever, the code is not complete and without human
post-processing unusable. From an objective point of
view, 2 ports and 2 exposed interfaces are missing,
and both realizations of the interfaces are wrongly
linked. However, the names of the generated elements
and their features have been generated correctly.

As the context has already been exceeded in com-
plexity class 2, it was not possible to generate more
complex examples that add any value to this research.

Figure 8: Generated XMI for complexity class 2.

5 FINDINGS

This study demonstrates that even with a limited
dataset of 10 examples, the GPT model is capable
of accurately creating UML elements and establishing
correct links in XML code. Notably, the model shows
proficiency in understanding the syntactical nuances
of the XMI language. It reliably generates the names
and features of components and interfaces, and cor-
rectly identifies that an exposed interface is always
attached to a port. However, it consistently strug-
gles with realization connections, indicating an area
for further refinement.
The experiment revealed three significant obstacles:

1. Extensive data representation: The generality
and extension of the XML code leads to a tex-
tual overhead for the representation of simple in-
formation. This requires the LLM to understand
complex relationships between XML tags that are
linked together throughout the entire context. We
therefore believe that a much larger data set is re-
quired until the patterns are actually recognized.
This complexity raises questions about the effi-
ciency of using the XMI language for such tasks.

2. Context limit: The verbose nature of XML exac-
erbates the issue of context limitations in the GPT-
3.5-turbo model. In scenarios of moderate com-
plexity, the generation quickly approaches its con-
text limit, leading to unreliable outputs or aborted
generations. This limit is roughly exceeded by
generating about 8 elements with small features.
Furthermore, due to the moving context window,
it is not possible to reference past elements in the
course of a conversation. An adaptation of gen-
erated models within a conversation is with this
approach not possible.



3. Challenges with IDs: A critical observation per-
tains to the handling of unique identifiers (IDs).
Each XMI element maintains an ID, consisting
of 37 characters and presents a unique challenge
in the context of LLM processing. The concern
is that while the LLM recognizes the pattern of
an ID, we think it does not effectively verify its
uniqueness and generate it using the appropriate
algorithm. Furthermore, false associations dur-
ing the training process could arise. For instance,
the model might incorrectly learn that a port el-
ement always possesses a certain ID pattern, or
inversely, that a particular ID pattern dictates an
element’s behavior. Additionally, the training pro-
cess can inadvertently identify non-existent errors
and thereby impair the model’s learning process.
The LLM’s approach of constantly generating re-
sponses and comparing them against our training
dataset for weight adjustment becomes inefficient
due to the inherently random nature of IDs.

6 CONCLUSION AND OUTLOOK

The application of AI is becoming increasingly rel-
evant in the design of user-centric MBSE. Not only
could it reduce the inherent workload, it could also
help to overcome beginner hurdles and assist in the
standardized use of modeling languages.

Within this research, a dataset of 10 XMI example
models were created and used to fine-tune a GPT-3.5
model. This trained model was then utilized to gen-
erate UML component elements using a description
in a natural language text. While the model shows
promise in recognizing patterns and relationships in
XML code, significant challenges arise with extensive
data representation, context limits, and the handling
of unique IDs. Nevertheless, the results justify using
AI in MBSE.

Looking forward, the release of GPT-4 for fine-
tuning with an expanded context limit of 128K tokens
and additional training data may still find XMI’s rep-
resentation of UML elements challenging. To address
both the issues of data bloat and IDs, transitioning to
alternative modeling languages, such as SysML v2,
could be advantageous. SysML v2 not only offers
a more efficient textual representation related to pro-
gramming languages but also incorporates an exten-
sive and expandable graphical notation.

This shift to a simpler, more intuitive language
structure could significantly enhance AI’s ability to
model complex systems, opening new approaches
for research and application in user-centric AI-driven
systems engineering.
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