
A bi-directional Interface enabling cross-disciplinary
Engineering with RAMI 4.0 and AutomationML

Christoph Binder and Christian Neureiter
Josef Ressel Center for Dependable

System-of-Systems Engineering
Urstein Sued 1, A–5412 Puch/Salzburg, Austria

(firstname.lastname)@fh-salzburg.ac.at

Arndt Lüder
Otto-v.-Guericke University

Universitätsplatz 2
D-39106 Magdeburg, Germany

arndt.lueder@ovgu.de

Abstract—The Reference Architecture Model Industrie 4.0
(RAMI 4.0) has been proposed to faciliate the discussion and
contribute to the standardization of future industrial systems,
especially in the area of basic engineering. In order to provide the
resulting system model to the heterogeneous detailed engineering
disciplines, AutomationML appears to be one of the technology
drivers, giving the possibility to exchange respective engineering
artifacts. Concluding, the utilization of this standard after ap-
plying the theoretical engineering concepts of RAMI 4.0 would
strongly enhance the interoperability between industrial systems
aligned to the reference architecture on the one hand and provide
a practical implementation of its theoretical concepts on the other
hand. Therefore, this work-in-progress Paper introduces the first
implementation of a bi-directional interface, which interconnects
basic engineering with detailed engineering of such systems. As
model-based systems engineering (MBSE) with either RAMI
4.0 or AutomationML is currently under broad investigation,
already established approaches are used to verify the application
of the developed interface. An initial real-world example is
taken for use to validate the research goals or challenges of the
resulting engineering tool-chain, which can strongly contribute
to engineering practitioners of flexible production systems by
maxing out the heterogeneous tool-landscape.

Index Terms—Reference Architecture Model Industrie 4.0
(RAMI 4.0), Model-based Systems Engineering (MBSE), Indus-
trial Internet of Things (IIoT), AutomationML, Model Transfor-
mation

I. INTRODUCTION

Under the term of Industry 4.0 or Industrial Internet of
Things (IIoT), flexible production in lot size 1 has gained
increasing importance in recent years. This resulted in new
ways of value creation throughout the whole product life-
cycle or intelligent decision-making supported by ubiquitous
interconnection. With those new possibilities, efficiency and
effectiveness in regard to production systems are gaining
more and more interest, as global players as well as small
and medium-sized enterprises (SMEs) are required to be
sustainably competitive. The mentioned aspects result in new
ways of thinking when setting up contemporary production
lines. Hence, conventional approaches reach their limits when
dealing with the complexity resulting from this trend.

Several methodologies emerged recently, like versioning
[1] or simulation [2], promising new opportunities to deal
with complex production systems. One of those methodologies
has been proposed with Model Based Systems Engineering

(MBSE), aiming to support the construction of such systems
throughout all engineering phases by applying domain models
[3]. Hence, to ensure the application of MBSE, modeling
languages are inevitable when dealing with the complexity
whilst planning, designing, realizing and maintaining flexible
production systems [4]. As different languages deal with
different aspects of the systems, heterogeneous modeling tools
have been introduced, each of them having particular advan-
tages. While either domain-internal as well as domain-crossing
aspects are important to consider throughout the engineering
life-cycle of those systems, comprehensive all-in-one tools
might be too limited in scope to deal with all their facets,
rather flexible tool-chains should be established [5].

An example for such a domain-specific approach is Ref-
erence Architecture Model Industrie 4.0 (RAMI 4.0) and its
corresponding modeling tool, the RAMI Toolbox [6]. Their
goal is to structure an industrial system according to different
aspects and more granular parts in the sense of basic engineer-
ing. This means, a high-level draft of the production system
and its plant topology is prepared for detailed engineering
disciplines, like electrical or mechanical engineering. By using
interoperability layers, hierarchy levels and the product’s life-
cycle during the development of the flexible production sys-
tem, the modeling paradigms separation of concerns as well
as divide and conquer are considered. The current modeling
methodology including a development process and a modeling
framework of the RAMI Toolbox are specifically targeting the
engineering aspect of such a system and developing it top-
down from a higher perspective to a detailed one, as requested
by Model Driven Architecture (MDA).

Another example targeting the industrial domain and ensur-
ing integrity throughout the whole value creation network is
AutomationML [7]. Originally developed for exchanging data
between manufacturing engineering tools via XML-structures,
AutomationML has been successfully used in applications
that go widely beyond its traditional restricted purpose, like
security risk identification [8] or hybrid assembly workplace
generation [9]. Moreover, considering the engineering data
exchange logistics [10], AutomationML can ideally be applied
to transfer engineering information of flexible production
systems to its various application areas within the tool-chain,
especially in detailed engineering. Thus, the link between the



engineering concepts of RAMI 4.0 and AutomationML could
strongly contribute to future production systems engineering.

Therefore, the contribution of this paper proposes a bi-
directional interface between the RAMI 4.0-cube and Au-
tomationML, allowing to either export a developed system
to the Computer Aided Engineering Exchange (CAEX)-file
or import an external optimized system stored to such a
file. This means, a production systems engineer could export
engineering artifacts, such as plant topology models, from the
RAMI Toolbox to AutomationML for use in other tools along
the tool-chain. The other way round, a tool-chain designer
might integrate the RAMI Toolbox into an AutomationML-
based engineering tool-chain by applying its implemented
interface. Hence, special focus is set on usability, as MBSE
usually is a manual process having a lot of repetitive tasks.
By doing so, the automation potential of this approach is
investigated and validated with an excerpt of a real-world
case study and evolutionarily developed by applying the Agile
Design Science Research Methodology (ADSRM) [11].

To address these aspects, the remainder of this work-in-
progress paper is structured as follows: In Section II, the
background about AutomationML and RAMI 4.0 as well as
the related work in this area is explained in more detail. The
development, implementation and application of the interface
itself in its current research state is delineated in Section III.
Finally, in Section V the results of the study are summarized
and a conclusion is given.

II. RELATED WORK

A. RAMI Toolbox

The three-dimensional layout of RAMI 4.0 allows the de-
scription of industrial systems according to multiple perspec-
tives [4]. The “Interoperability Layers”, the “Life Cycle &
Value Stream” axis as well as the “Hierarchy Levels” are
each addressing different aspects of the system, as their names
imply. From top to down, the viewpoints of the system are
aligned, while the other two perspectives deal with the well-
known automation pyramid as well as the system’s life-cycle.

The RAMI Toolbox however has been implemented as
Add-In for Enterprise Architect (EA) with the goal to make
RAMI 4.0 applicable. Therefore, it includes all domain-
specific aspects of the reference architecture and provides a
proprietary metamodel, a UML-profile as well as a Domain
Specific Language (DSL). With the help of this toolbox,
industrial systems engineering is supported in different ways,
mostly with regard to usability and automation. The graphical
user interface (GUI) of the RAMI Toolbox allows users to
provide them with all functionalities and a specific guideline
how to develop such a system. The diagrams can automatically
be created with the DSL elements by navigating through the
panes. Additionally, interfaces to other tools or model check-
ing functionalities are integrated within the RAMI Toolbox.

B. AutomationML

Originally, AutomationML has been developed with the
goal to enhance the data exchange between engineering tools

targeting the manufacturing area [7]. The object-based ar-
rangement of plant components introduced by this standard
allows to structure them according to multiple granularity
levels, enabling the decomposition into single elements or
complete manufacturing cells. In more detail, an XML-based
data format arranges the respective information with regard
to the CAEX data format and its object-oriented paradigm.
This enables to associate engineering tools and disciplines
by storing all engineering information of multiple domains,
like mechanical, information or electrical engineering, within
a single point of truth [12].

By now, AutomationML has a broader application than its
original purpose, as it has paradigmatic been applied in a data
exchange logistics for engineering networks by exploiting data
integration [10]. To store the information accordingly, Au-
tomationML introduces four major concepts of differentiating
object-based components within a flexible production system.
At first, RoleClasses describe the abstract system architecture
regardless of its technical implementation and thus deal as
foundation for other objects. The semantic is associated to
the system element with the help of this class. Next, the
SystemUnitClasses have to be defined based on the available
system components within the delimited area or domain,
like company-specific libraries. The so-called InterfaceClass
specifies all interfaces and data exchange standards within
the industrial system. Finally, Instance Hierarchies store all
information including instances of system components within
a particular project [13].

C. Modeling Language Mapping

A major prerequisite for developing the interface has already
been proposed in [14]. In their work, the authors propose the
mapping of AutomationML to SysML in order to enable cross-
disciplinary modeling with those two languages. Thereby, they
compared the different notations of the class-based SysML to
the prototype-based AutomationML and developed a separate
stereotype, which interconnects the two languages by profiling.
However, while the result enables to model and export Au-
tomationML files directly with corresponding EA diagrams,
some issues have been pointed out, which lead back to the
different application areas of each language.

While the mentioned work introduces the interconnection
of those two methodologies for the first time, their approach
has one drawback regarding to applicability. As they intro-
duce own stereotypes and diagrams, a system modeled with
SysML needs to be modeled with this proprietary approach
again before being exported into an AutomationML-file. This
includes some kind of redundancy and while most of the
systems engineers are already conform with SysML, creating
such files directly from this modeling language would strongly
contribute to its usability. Because of these reasons and as
the RAMI Toolbox itself partly makes use of SysML, the
developed interface associates models directly to be applied
by systems engineers in each of their discipline.



III. DESIGN & DEVELOPMENT

A. Interface Development

Before actually developing the interface between the re-
spective modeling frameworks, similar concepts describing the
same subject need to be compared and mapped if needed.
While the upper layers of the RAMI 4.0 modeling frame-
work, which is implemented in the RAMI Toolbox, describe
contextual aspects with various domain-specific languages,
the bottom layers are implemented with well-known Unified
Modeling Language (UML)-diagrams or the Systems Model-
ing Language (SysML). This means, the technical system is
decomposed into its single part at the end of the engineering
process by applying an SysML Block Definition Diagram.
In conclusion, this type of diagram appears to be the best
matching to be transformed into AutomationML vice versa.
Thus, Table I shows the results of the mapping between
SysML and AutomationML. Thereby, the proposals of [14] are
also considered, as they are introducing an own stereotype to
link the respective concepts instead of mapping them directly.

TABLE I
MAPPING BETWEEN AUTOMATIONML AND SYSML CONCEPTS

Concept AutomationML SysML

Model File Model
Libraries InstanceHierarchy Package
Objects InternalElement Block
Interfaces ExternalInterface Port
Attributes Attribute Tag
Abstraction Decomposition Part Association
Connectors InternalLink Connector
Pattern Role Stereotype

The table indicates that an EA model is equal to an Automa-
tionML file. Each InstanceHierarchy is realized with a Pack-
age, while SysML Blocks are translated to InternalElements.
Following this principle, Ports realized the ExternalInterfaces
Attributes are the same concept as Tagged Values in EA.
InternalLinks are realized within the model with Connector
relationships and the decomposition between the elements is
extracted from the part associations. Finally, element Roles are
implemented by stereotypes within EA.

After mapping the respective concepts, the interface itself
could be implemented. As seen in Figure 1, this is done
by providing a new function via the RAMI Toolbox GUI.
This function realizes the bi-directional interface and offers
an import as well as an export functionality. While explaining
the whole source code of the interface would exceed the
scope of this paper, the main functionality is outlined roughly.
The export-function is thereby called on a SysML block and
recursively finds all connected elements, ports and attributes,
according to the previously defined correlations. The enclosing
package deals as InstanceHierarchy to store all plant informa-
tion. After finding the connected elements of the chosen block,
a new AutomationML file is created and the listed elements
are inserted one by one.

Fig. 1. RAMI Toolbox AutomationML interface

Therefore, Drath [15] proposed an C# Application Program-
ming Interface (API) that is able to automate this step with
minimal manual effort. This API can directly be implemented
into the RAMI Toolbox as dynamic-link library (DLL), since
the RAMI Toolbox itself is implemented in C#. Thanks
to this DLL, difficult XML-transformations are abolished
and resource consumption is optimized. After creating the
AutomationML-file, it is saved to the designated storage space,
where it could be used for further processing in other tools.

The counterpart, importing an AutomationML-file into
an EA model, follows the same principle. After choos-
ing the import-function via the RAMI Toolbox GUI, an
AutomationML-file could be selected. This file is subsequently
traversed and all InternalElements with their correlations are
stored within the EA package. Additionally, a separate SysML
Block Definition Diagram is created, which displays all im-
ported blocks, ports, attributes and connections. This allows to
directly use the imported elements to be interconnected with
the already existing RAMI 4.0 model or further edit them with
the EA modeling tools.

IV. APPLICATION

In order to evaluate the implemented interface, a superficial
case study of the Siemens Fischertechnik industrial plant
model is applied. This allows to investigate the usability and
applicability as well as correct functionality. In more detail,
this case study makes use of the newly implemented punching
station, which has been integrated into the original production
line according to the peculiarities of RAMI 4.0. With the help
of the interface, the resulting SysML block can be exported
and externally processed, for example with the AML Editor, or
the resulting AutomationML-file can be imported again into
the industrial plant model. Figure 2 indicates the compari-
son between the imported model and the exported file. The
image shows that all related blocks are also implemented as
InternalElements, which also counts for the ports respectively
ExternalInterfaces. The hierarchy between the elements has
also been correctly implemented. In addition, not visible in
the image is that the attributes are also successfully transferred
either by importing or by exporting them. The figure also
shows one major drawback of the approach. As currently only
instantiated systems can be considered within RAMI 4.0, only
the InstanceHierarchy could be investigated.



Fig. 2. Comparison between SysML model and AutomationML file

This also entails that the corresponding supported Role-
Classes, SystemUnitClasses or InterfaceClasses could not be
linked to the existing instances. In future reference architec-
ture definitions, the interplay between AutomationML and
RAMI 4.0 could strongly be enhanced by also including
abstract or company-specific aspects.

V. DISCUSSION, CONCLUSION & FUTURE WORK

As future production systems are addressing a lot of dif-
ferent aspects throughout the whole value creation network in
the context of Industry 4.0 or IIoT, more and more complexity
emerges when developing them. Thus, multiple engineering
tools need to work together, as each one addresses a separate
part of the complex system, which reduces the complexity by
breaking the system down. With the aim to close this gap
in current approaches, this work-in-progress paper proposes
a bi-directional interface between RAMI 4.0 and Automa-
tionML. While developing such a system could be achieved
with RAMI 4.0 and the RAMI Toolbox, the resulting system
model could be transferred to other engineering tools with
AutomationML. Therefore, the current state of this interface
is presented, which automatically exports AutomationML-files
from previously modeled systems or imports SysML Block
Definition Diagrams from previously created AutomationML-
files. This interface is evaluated towards usability and appli-
cability by making use of a superficial industrial plant case
study, which should be enhanced in future.

The current version of the RAMI Toolbox1 helps system
engineers by modeling a production system according to the
characteristics of RAMI 4.0. In its current state, only the
instance of such a system could be modeled, either as it
is currently build or as it should be build in future. How-
ever, no reference architectures, targeting specific domains
or domain-specific aspects, are currently defined. Hence, the
AutomationML-file as well as the interface could also consider
the InstanceHierarchy of the system to be described.

This leads to the future work of the mentioned approach.
While it is planned to derive reference architectures regarding
a particular sub-domain or company, the interface should also

1The RAMI Toolbox is available at http://www.rami-toolbox.org/

be extended in order to enable exporting or importing the Inter-
faceClassLib, the SystemUnitClassLib and the RoleClassLib.
This should be done in future projects and validated with a
more comprehensive case study of the Siemens Fischertechnik
industrial plant model. While the applied research methodol-
ogy for further enhancing the result of this paper is ADSRM,
new outcomes or enhancements will be implemented as well
as published step by step in small research cycles.

ACKNOWLEDGMENT

The support for valuable contributions of Siemens is grate-
fully acknowledged. The financial support by the Austrian
Federal Ministry for Digital and Economic Affairs and the Na-
tional Foundation for Research, Technology and Development
and the Christian Doppler Research Association as well as the
Federal State of Salzburg is also gratefully acknowledged.

REFERENCES

[1] R. Mordinyi and S. Biffl, “Versioning in cyber-physical production sys-
tem engineering–best-practice and research agenda,” in 2015 IEEE/ACM
1st International Workshop on Software Engineering for Smart Cyber-
Physical Systems. IEEE, 2015, pp. 44–47.

[2] W. de Paula Ferreira, F. Armellini, and L. A. De Santa-Eulalia, “Simu-
lation in industry 4.0: A state-of-the-art review,” Computers & Industrial
Engineering, vol. 149, 2020, p. 106868.

[3] L. E. Hart, “Introduction to model-based system engineering (mbse)
and sysml,” in Delaware Valley INCOSE Chapter Meeting, vol. 30.
Ramblewood Country Club Mount Laurel, New Jersey, 2015.

[4] M. Hankel and B. Rexroth, “The Reference Architectural Model Indus-
trie 4.0 (RAMI 4.0),” ZVEI, 2015.

[5] M. Barth, R. Drath, A. Fay, F. Zimmer, and K. Eckert, “Evaluation of
the openness of automation tools for interoperability in engineering tool
chains,” in Proceedings of 2012 IEEE 17th International Conference on
Emerging Technologies & Factory Automation (ETFA 2012). IEEE,
2012, pp. 1–8.

[6] C. Binder, C. Neureiter, and A. Lüder, “Towards a domain-specific
approach enabling tool-supported model-based systems engineering of
complex industrial internet-of-things applications,” Systems, vol. 9,
no. 2, 2021.

[7] R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the
glue for seamless automation engineering,” in 2008 IEEE International
Conference on Emerging Technologies and Factory Automation. IEEE,
2008, pp. 616–623.

[8] M. Eckhart, A. Ekelhart, and E. R. Weippl, “Automated security risk
identification using automationml-based engineering data,” IEEE Trans-
actions on Dependable and Secure Computing, 2020.

[9] M. Fechter and A. Neb, “From 3d product data to hybrid assembly
workplace generation using the automationml exchange file format,”
Procedia CIRP, vol. 81, 2019, pp. 57–62.

[10] A. Lüder, J.-L. Pauly, F. Rinker, and S. Biffl, “Data exchange logistics
in engineering networks exploiting automated data integration,” in 2019
24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 2019, pp. 657–664.

[11] K. Conboy, R. Gleasure, and E. Cullina, “Agile design science research,”
in International Conference on Design Science Research in Information
Systems. Springer, 2015, pp. 168–180.

[12] A. Lüder, N. Schmidt, and R. Drath, “Standardized information ex-
change within production system engineering,” in Multi-disciplinary
engineering for cyber-physical production systems. Springer, 2017,
pp. 235–257.

[13] AutomationML consortium, “Whitepaper automationml part 1 - archi-
tecture and general requirements,” Tech. Rep., 2014.

[14] L. Berardinelli, S. Biffl, A. Lüder, E. Mätzler, T. Mayerhofer, M. Wim-
mer, and S. Wolny, “Cross-disciplinary engineering with automationml
and sysml,” Automatisierungstechnik, vol. 64, no. 4, 2016, pp. 253–269.

[15] R. Drath, “Let’s talk automationml what is the effort of automationml
programming?” in Proceedings of 2012 IEEE 17th International Confer-
ence on Emerging Technologies & Factory Automation (ETFA 2012).
IEEE, 2012, pp. 1–8.


