
Application and Testing of Business Processes in the

Energy Domain

Kristof Böhmer1, Florian Stertz1, Tobias Hildebrandt1, Stefanie Rinderle-Ma1,

Günther Eibl2, Cornelia Ferner2, Sebastian Burkhart2, Dominik Engel2

Abstract:

The energy domain currently struggles with radical legal and technological changes, such as, smart
meters. This results in new use cases which can be implemented based on business process technology.
Understanding and automating business processes requires to model and test them. However, existing
process testing approaches frequently struggle with the testing of process resources, such as ERP
systems, and negative testing. Hence, this work presents a toolchain which tackles that limitations.
The approach uses an open source process engine to generate event logs and applies process mining
techniques in a novel way.

Keywords: Business Process, Process Testing, Energy, Process Analysis

1 Introduction

The protection of today’s energy production and transmission organizations against fraud,

misuse, and faults is crucial in order to ensure the stable, easy, and cheap access to

electricity [Co09]. Until now the energy domain achieved the required level of protection

based on an isolation driven strategy, cf. [We10]. However, driven by legislation changes,

increased complexity, and new technologies the need for open and standardized approaches

becomes obvious, cf. [AB07]. For example, smart meters have emerged in recent years.

Smart meters provide fine-grained energy consumption measurement and bidirectional

communication with various stakeholders, such as energy providers, cf. [DWD11]. Such

novel technologies and developments provide a plethora of advantages – but also pose

novel challenges, cf. [We10]. For example, smart meters do not only foster the stabilization

of large complex energy transmission networks but also enable to remotely cut off end

customers from their access to electricity, cf. [DWD11]. Hence, it is important to test smart

meters and related technologies.

At the same time, the complexity increased in the energy domain. Hence, standardized use

cases were defined and agreed upon by major Austrian energy producers and distributors,

cf. [OE15]. These use cases describe the core business processes of energy producers and

distributors (denoted as energy processes in the following) in textual form. For energy

1 Universität Wien, Workflow Systems and Technology, Währingerstrasse 29, A-1090 Wien, firstname.lastname@

univie.ac.at
2 FH Salzburg, Josef-Ressel-Zentrum, Campus Urstein Süd 1, A-5412 Puch/Salzburg, firstname.lastname@fh-

salzburg.ac.at

B. Mitschang et al. (Hrsg.): BTW 2017 – Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 25

firstname.lastname@univie.ac.at
firstname.lastname@univie.ac.at
firstname.lastname@fh-salzburg.ac.at
firstname.lastname@fh-salzburg.ac.at


providers it is a crucial task to implement the energy processes in order to address upcoming

energy related challenges.

The process model for the prepayment use case is depicted in Fig. 1. This and the following

examples are defined using Business Process Model and Notation (BPMN) as the standard

process modeling notation. Fig. 1 contains multiple related critical smart metering use cases

(e.g, payment handling) that can, if a fault occurs, lead to an unexpected energy turnoff. For

the sake of brevity this work will focus on the depicted use case and its connected process

model. However other use cases and requirements were also successfully modeled.

Fig. 1: BPMN model of prepayment process and use cases (modeled using Signavio)

In addition to implementing specifications/use cases it is also necessary to test the created

processes and their integration of internal and external services. Hereby related faults can

be identified early during the process design phase. Business process testing focuses on

defining and executing test cases that specify expected behavior. Unfortunately current

process testing approaches are somewhat limited. For example, existing approaches struggle

with a flexible integration of real world and mocked services into the business processes.

Hence existing work abstracts from incorporating external services into the tests, cf. [BR16].

Moreover, existing approaches focus on testing that specified behavior is possible (i.e.,

positive testing) neglecting negative testing. This is testing that a specific kind of behavior

is not possible, e.g., to ensure that an anticipated fault is not present.

Hence, existing work isn’t suitable to answer the following research questions:

RQ1 How can business process testing be applied in the energy domain?

RQ2 How to flexibly transition from simulation/test environments into production?

RQ3 How to conduct negative testing in the proposed process testing toolchain?

This work presents a toolchain for modeling and testing real world use cases and processes

from the energy domain. Hereby this work especially focuses on automatically testing if all

resources (e.g., applications or web-services), which are integrated in the processes, behave

“correctly” based on their specification. Moreover it will be discussed how fine granular

negative and positive test cases can be defined using conformance rules.

26 Kristof Böhmer et al.



The toolchain is discussed in Section 2. Evaluation results are discussed in Section 3.

Section 4 discusses related work. Conclusions and future work is given in Section 5.

2 Toolchain for Flexible Process Testing

Fig. 2: Toolchain

Existing process testing approaches typically struggle with the integration and testing of

resources, cf. [BR15]. Hence, we propose a resource focused testing approach, cf. Fig. 2.

The proposed approach assumes that following information is given: a process model that

should be tested, a set of resources that are utilized by the model, and test cases. Each test

case (short test) holds resource specifications and the data flow variable values required to

instantiate/execute the model. Moreover, the presented approach utilizes the Cloud Process

Execution Engine (CPEE). It is applied to execute processes under real world conditions

but also to simulate executions for test purposes.

The testing starts with importing the model into the CPEE two times with different

configurations. The first configuration wires all resources – referenced by the model – to

their real life resource implementations (e.g., real web services which would enable to check

credit card data). Secondly, a testing configuration is created that utilizes abstracted mocked

versions of the real life resources. We refer to the first configuration as the “real life model”

and to the second one as the “testing model”.

The mocked resources are generated individually, based on resource specifications which are

hold by each test. Hence, each test case likely will bring a slightly varying specification. These

specifications must fit the use cases and scenarios to be tested. For example, specifications

and use cases can be extracted from public documentations, e.g., the use cases published by

the Austrian energy domain [OE15]. Note, that the CPEE enables to flexibly configure if a

mocked or real life resource should be utilized. Moreover, it enables to flexibly implement

the mocked resource behavior programmability with the tool of choice. For example, as a

process using a chosen modeling notation or as a service using a programming language

such as PHP or Java.

Finally, all the preparatory test artifacts (e.g., mocked resources) are available. Hence, the

testing can continue based on a two pronged approach. First, the real life model is executed

based on the instantiation/test data defined in the test case. Secondly, the testing model is

executed based on the same test data than the real life model and the mocked resources.

During the execution of both model configurations the CPEE logging component, cf. [St16],

stores all the executed behavior (i.e., execution events) in an execution log. Events and

execution logs hold, for example, which steps (e.g., activities) were executed during the

Application and Testing of Business Processes in the Energy Domain 27



execution of the models. Moreover, they enable to deduce the order of the steps and the data

used/exchanged during the execution.

This enables to conduct a wide range of an analysis based on existing conformance checking

and process mining techniques, cf. [Aa11]. Conformance checking enables to determine if

recorded execution logs conform to expected behavior. For example, conformance checking

enables us to determine if each recorded step fits to behavior which is defined in a process

model. In comparison, process discovery approaches enable to automatically “identify” the

structure/behavior of a process model based on recorded execution logs. In short, recorded

execution logs can be converted into a model that is capable of producing the analyzed log –

based on existing process mining approaches.

This approach proposes to exploit conformance checking and process mining to ensure

the correct implementation of resources which are integrated into process models. Tool

support for conformance checking and process mining is provided by, for example, ProM

(http://www.promtools.org/). It is proposed to apply process mining on the execution log

generated by the model under test. The hereby generated process model is later compared

to the execution log generated by the real life model using existing conformance checking

techniques, cf. [Aa11]. It is assumed that identified deviations likely indicate either faults at

the test/mocked resources or, more likely, at the real life resource implementations.

For example, assume, that a resource has to decide if Eve is allowed to order a product

based on her previously determined creditworthiness during a process model execution.

Hence, the models’ execution differentiates if Eve is creditworthy or not (e.g., an order

product step is executed/logged during the models’ execution or not). Imagine that the test

case defines Eve as not creditworthy and also instruments the mocked service accordingly.

However, if in the logged real life model events the order product step can be found then the

conformance checking will fail and point out a potential fault.

The generated results can be utilized to improve the tested processes in an iterative manner.

Hence, the proposed testing approach can be applied multiple times in a row to determine if

all identified deviations from the test specification were found/fixed. During each iteration

identified deviations can be addressed, either by fixing the real live resource implementation

or by adapting a faulty test. Note, we assume that, most likely, multiple test cases will be

available. In such a case the previous steps are executed once for each test case.

Finally, we want to point out two additional advantages of the proposed approach. Models

can be tested and executed with a mixture of real life and mocked resources. This allows

to test the implementation of the resources as soon as they become available. Moreover,

this shortens the time to market. This is because the real life process model and execution

engine can be used during all tests. Hence, the tested real life model configuration can,

after the testing has finished, simply be pushed to the production environment. In addition,

negative tests can also be conducted by altering the mocked resources so that they behave

“incorrectly”. This enables to test/ensure that the specified incorrect behavior is not occurring

in the real life process model and its resources.

28 Kristof Böhmer et al.

http://www.promtools.org/


3 Evaluation

For evaluating the toolchain, we focused on the prepayment process, discussed in Section 1

and 2. We focused on this use case, because the end state of this use case is severe, since a

customer would be cut off of his access to power (i.e., electricity), cf. [OE15]. As the first

step, we created the BPMN model for this use case. Fig. 1 shows the result of the first step.

This process starts with sending a reminder to the customer for paying his bill. A second

reminder will be sent, if no payment has been received for two weeks. If the customer does

not pay after two weeks the central system of the energy utility will register the customer as

a debt customer. The smart meter of the customer will be put in a debt mode and a credit

option will be activated for the customer, as a prepayment option. The customer can then

top up his credit and consume it afterwards. After his credit is depleted, his power will be

cut off. If he is financially powerful, the energy utility, can offer him a credit function for his

power supply. If the customer accepts, his power supply will be turned on again and he can

consume as much power as his credit covers. Again his power will be cut off, if his credit

is depleted. A customer does always have the option of paying his bills to be cleared and

registered as a normal customer again.

Fig. 3: Prepayment Process created using the CPEE front end

The next step involves two parts.

The first part is building a process

model in the CPEE. One approach

would be creating an XML file

directly for the CPEE, which is

tedious and prone to errors. So the

CPEE front end (http://cpee.org/

~demo/cpee-cockpit) also allows

to create process models easily in

two ways. It is possible to either

create a process model through

a graphical editor or to directly

importing a model from a BPMN

file. The process model can be

seen in Fig. 3. Every step of this

process sends data to a resource.

In this scenario, every resource is

a web resource and the messages

are sent via HTTP. It is important

to note, that these resources can be

created easily and do not require a

big amount of code. For example,

PHP based web-services are perfectly suited for this case. After the testing phase, each of

these resources can be swapped for a real resource. List. 1 shows a very small entry of an

event log. The event “Send first reminder” has been observed on the 5th of October. For

this simple query, we wanted to know if a customer with the id of 163 has paid his bill, so

we sent his id to the resource. The resource reported back to us and we can see, that the

Application and Testing of Business Processes in the Energy Domain 29

http://cpee.org/~demo/cpee-cockpit
http://cpee.org/~demo/cpee-cockpit


customer with the id 163 paid his first reminder. The process should end here, since the

customer should not be a debt customer now.

List. 1: Example of Log File

1 <event>

2 <string key="concept:name" value="Send␣first␣reminder"/>

3 <list key="data_send">

4 <string key="knr" value="163"/>

5 </list>

6 <date key="time:timestamp" value="2016 -10 -05 T19:3’:26 +02:00"/>

7 <list key="data_received">

8 <string key="sent" value="true"/>

9 </list>

10 </event>

How the actions of a resource on the CPEE are logged is explained in more detail in [St16].

The next step describes executing this process model. The CPEE creates a process instance

of a process model and executes it. It is possible to create many instances at once, so we can

generate multiple event logs which cover the whole behavior of the model. Every process

instance creates one event log. These event logs can also be put together to generate one

large event log.

The next step of the toolchain is process mining. The basics of process mining are described

in Section 2. We created an event log with 1001 processes which consists of 20349 events.

With ProM we can mine a process model out of this log and see if it suits our designed

process model and our conformance rules through conformance checking. It is important

to note, that the implemented conformance checking at the moment only takes the control

flow into account for the fault detection. Faults related to data, such as, an incorrect process

data variable state, are not detectable at this time. An in depth description of conformance

checking can be found in [RA08].

After the conformance checking, the test resources can be altered and new event logs can

be created. These steps can be repeated until the conformance checking results fit the real

process model and all the test resources were swapped out for the real resources.

4 Related Work

Related work can mainly be found in the business process testing domain. There a plethora

of approaches, techniques, and concepts are available, cf. [BR15]. Surprisingly it was found

that a flexible integration of external or internal services and applications (i.e., resources)

into test executions is currently hardly provided. Hence, the majority of the existing process

testing work abstracts from this challenge, and for example, ignores it, cf. [BR15; ML06].

Alternatively simple approaches are applied that typically simulate resources based on test

cases that only hold predefined resource return values, cf. [Br08; BR15; LSD08]. Overall,

the most flexible existing integration of resources were found in [LS06] and [LSD08]. In

[LS06] the authors propose to transform the process into JAVA code (e.g., activities would

become classes), which enables to flexibly mock external resources. For example, basic

simulated resource behavior can be implemented in JAVA source code.

30 Kristof Böhmer et al.



This results in a high manual programming effort and still does not enable to easily switch

between mocked resources and their real world implementation. So in [LSD08] the authors

propose to utilize the Business Process Execution Language (BPEL) to defined the behavior

of mocked external resources. Unfortunately their proposed framework only focuses on

testing BPEL processes. Overall we came to the conclusion that the integration of resources

into test executions is currently limited and tackle this limitation with the proposed testing

framework. A similar situation was found when the related work was checked for their

negative testing capabilities. A majority of the identified existing work focuses on positive

testing, cf. [BR15]. Hence, the expected behavior is defined at the test cases, for example,

based on the expected variable states or control flow paths. During test execution the

observed behavior is compared with the expected one.

However, while existing model checking based testing approaches are also mainly applied

for positive testing they can also be utilized for negative testing, cf. [BR15; FBS04; Na06].

Unfortunately, such model testing based approaches frequently require an in depth knowledge

of formal rule modeling techniques or custom rule definition languages. We assume that such

knowledge can be lacking at typical IT professionals, cf. [BR15]. Overall, we concluded that

existing process testing work does not put a strong focus on negative testing – a limitation

addressed by this work. In addition we were not able to identify any existing work that

focuses or reports on process testing in the energy domain.

5 Conclusion

This paper proposes a process testing toolchain that takes a process model and resources

as input and generates test log data as output. In addition existing process conformance

and mining approaches are applied in a novel way to test the processes. Hereby, existing

resource specifications are exploited to ensure that resources which are integrated into

business processes are correctly implemented. In addition the presented toolchain enables,

based on the process execution engine CPEE, a flexible integration and switches between

real life implementations of resources and customized mocked resources (→ RQ2).

It was concluded that this not only enables to start early with resource/process testing (i.e.,

when the first real life resources become available) but also improves the time to marked

for the process models under test. The presented approach also discusses the provision

of negative testing capabilities (→ RQ3). In order to demonstrate the applicability and

feasibility of the toolchain, it has been applied to a real-world uses case/specification from

the energy domain [OE15], i.e., the prepayment process (→ RQ1).

The toolchain can be also applied independently from the energy domain. In future work,

the negative testing capabilities could be used in the security domain to ensure that predicted

attack vectors cannot be exploited.

Acknowledgement This research was partly funded by the Austrian Research Promotion

Agency, project 849914.

Application and Testing of Business Processes in the Energy Domain 31



References

[Aa11] van der Aalst, W. M.: Process Mining: Discovery, Conformance and Enhance-

ment of Business Processes. Springer, 2011.

[AB07] Armaroli, N.; Balzani, V.: The future of energy supply: challenges and op-

portunities. Angewandte Chemie International Edition 46/1-2, pp. 52–66,

2007.

[Br08] Breu, R.; Lechner, A.; Willburger, M.; Katt, B.: Workflow Testing. In: Levera-

ging Applications of Formal Methods, Verification and Validation. Springer,

pp. 709–723, 2008.

[BR15] Böhmer, K.; Rinderle-Ma, S.: A systematic literature review on process model

testing: Approaches, challenges, and research directions, Technical Report,

2015.

[BR16] Böhmer, K.; Rinderle-Ma, S.: A Testing Approach for Hidden Concurrencies

based on Process Execution Logs. In: Service Oriented Computing. Oct. 2016.

[Co09] Cottrell, F.: Energy & society: the relation between energy, social change, and

economic development. AuthorHouse, 2009.

[DWD11] Depuru, S. S. S. R.; Wang, L.; Devabhaktuni, V.: Smart meters for power grid:

Challenges, issues, advantages and status. Renewable and sustainable energy

reviews 15/6, pp. 2736–2742, 2011.

[FBS04] Fu, X.; Bultan, T.; Su, J.: Analysis of interacting BPEL web services. In: World

Wide Web. ACM, pp. 621–630, 2004.

[LS06] Li, Z. J.; Sun, W.: Bpel-unit: Junit for bpel processes. In: Service Oriented

Computing. Springer, pp. 415–426, 2006.

[LSD08] Li, Z. J.; Sun, W.; Du, B.: BPEL4WS unit testing: framework and imple-

mentation. Business Process Integration and Management 3/2, pp. 131–143,

2008.

[ML06] Mayer, P.; Lübke, D.: Towards a BPEL unit testing framework. In: Testing,

analysis, and verification of web services and applications. ACM, pp. 33–42,

2006.

[Na06] Nakajima, S.: Model-checking behavioral specification of BPEL applications.

Theoretical Computer Science 151/2, pp. 89–105, 2006.

[OE15] OE: Smart Metering Use-Cases für das Advanced Meter Communication

System (AMCS), Version 1.0, tech. rep. 1/88, Oesterreichs Energie, 2015.

[RA08] Rozinat, A.; van der Aalst, W. M.: Conformance checking of processes based

on monitoring real behavior. Information Systems 33/1, pp. 64–95, 2008.

[St16] Stertz, F.; Rinderle-Ma, S.; Hildebrandt, T.; Mangler, J.: Testing Processes

with Service Invocation: Advanced Logging in CPEE. In: Service Oriented

Computing. Oct. 2016.

[We10] Wei, D.; Lu, Y.; Jafari, M.; Skare, P.; Rohde, K.: An integrated security system

of protecting smart grid against cyber attacks. In: Innovative Smart Grid

Technologies. IEEE, pp. 1–7, 2010.

32 Kristof Böhmer et al.


