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Abstract. Paper documents are still very common for all types of records of
personal achievements, ID cards and many other types documents issued to an
individual or a company. These paper documents, however, often come at the
cost of expensive printing and issuing, loss of data or malicious counterfeits. The
origin and integrity is often hard or even impossible to be verified. Digital sig-
natures solve some of these issues, however, this still requires centralized trusted
infrastructures and still does not allow for easy verification or recovery of lost
documents. Furthermore, attribute-based authentication is not possible with tra-
ditional signature schemes. In this paper, we present a decentralized platform for
signing and verifying digital documents that is based on the previously presented
SPROOF platform and additionally supports attribute-based authentication. This
platform allows for issuing, managing and verifying digital documents in a pub-
lic blockchain. In the proposed approach, all data needed for verification of docu-
ments and issuers is stored decentralized, transparent, and integrity protected. The
platform is permissionless and thus no access restrictions apply. Rather, following
principles of the Web of Trust, issuers can confirm each other in a decentralized
way. Additionally, scalability and privacy issues are taken into consideration.

Keywords: Blockchain ·Certificate · Privacy-friendly ·Digital Document · Pseudonym.

1 INTRODUCTION

Educational certificates and other records of personal achievements are still most com-
monly issued as a paper document. These documents are often easy to counterfeit, can
be lost and are hard to verify. In order to verify the correctness of such documents for,
e.g., a job application, one has to manually contact all issuing institutions for verifying
the integrity and validity of the paper document and the printed records. Furthermore,
issuing – and reissuing such paper documents in case they get lost – can be a cost
and labor intensive process. While documents can be issued and signed digitally, this
only solves some of the problems and requires a centralized and trusted infrastructure
that has – in the past – already shown to be unreliable in some circumstances [10].
Additionally, traditional digitally signed documents do not allow for easy verification
or recovery of lost documents and especially do not support the completeness feature
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which is introduced below. Another problem that traditionally signed documents face
is that providing evidence for a single attribute requires to share the data of the entire
document. For instance, given that someone wants to provide evidence for the date of
birth, sharing a driver’s license or passport will also reveal attributes such as the name.
In order to protect privacy in such circumstances, attribute-based authentication can be
used.

In this paper, a decentralized platform for signing and verifying digital documents
via a public blockchain is presented. This work extends the platform SPROOF originally
presented in Brunner (2019) with the ability to support attribute-based authentication.
In this paper, the architectural building blocks of SPROOF are presented, the detailed
protocol that uses a blockchain and a distributed storage for signing and verifying is
discussed, and the concept of attribute-based authentication and how it integrates in
SPROOF is presented.

As a document, we define a digital file that is granted from an issuer to a receiver,
e.g., a diploma granted from a university to a student or records of achievements granted
from an company to a customer. Such a document can represent any data that has an
issuer and a receiver. The proposed approach uses a blockchain for decentralized, trans-
parent, and integrity protected management of issued documents. The approach is fully
permissionless and does not allow single entities to gain control over issued documents
or to prevent others to verify documents. Furthermore, validation is easy and can be
automatized for a large number of documents from different issuers and for different
subjects.

The contribution of this work is manyfold: It is shown how documents can be issued,
received and verified while being fully decentralized, permissionless and transparent.
In addition, the ability to group related documents from the same issuer is outlined and
the concept of attribute-based authentication is presented. For evaluating the proposed
protocol, scalability and privacy issues are taken into consideration.

In order to issue, receive and verify documents, in SPROOF the following roles are
defined:

Issuer: The issuer of a document can be a company, an educational institution or basi-
cally anyone who wants to grant a document. The platform itself poses no limita-
tions on issuers and there is no central third party to control issuers.

Receiver: The receiver of a documents can be a student for an educational certificate,
an employee or even a company. Similar to issuers, there is no control over re-
ceivers.

Verifier: The verifier represents anyone who wants to view and verify the validity of
documents. A verifier also wants to authenticate the identity of an issuer or a re-
ceiver. Authentication is fully decentralized and follows the principles of the Web
of Trust (WoT). This role can be assumed by, e.g., an employer.

These participants interact via a platform for storing and managing digital docu-
ments at low cost, with a simple verification feature, and with a reliable storage of data.
We define the following desired properties:

Decentralization: The platform is completely decentralized and especially allows the
verification of data without a single trusted third party. Furthermore, verification
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of past documents must be possible even if the issuing institution is not existent
anymore.

Permissionless: The platform is permissionless and thus no single entity has control
over the participants. Any participant has full access and can add new or has the
possibility to revoke own issued documents without being required to register at a
third party.

Integrated Issuer Verification: The platform provides built-in mechanisms to verify
the identity of issuers. Thus, no additional or centralized channel is needed.

Transparency: The platform is transparent and every participant has read access to
validate a given document. Privacy of documents is preserved by not revealing
details of the receiver or sensitive content of a digital document, such as the name,
without the consent of the receiver.

Completeness: Issuers have the ability to group documents and verifiers can check
whether a group of documents is complete or not, i.e., if some document are in-
tentionally hidden by the receiver (e.g., verifying a Bachelor’s diploma includes
verifying all related courses). This can be enforced by the issuer at the time of
granting documents and is explained in detail in Section 4.

Attributed-based: Receivers have the possibility to share selected attributes of their
documents, e.g, only the name or the date of birth.

The rest of the paper is structured as follows: Section 2 compares SPROOF to state
of the art approaches in the field of educational certificate management and with respect
to the stated requirements. Section 3 describes the basic building blocks of this work
and the proposed protocol. Section 4 then describes the roles and the SPROOF protocol
in detail. Section 6 conducts a security analysis of the proposed protocol and Section 7
summarizes this work and gives an outlook to future research.

2 RELATED WORK

In this section, related work in the field of blockchain-based digital document man-
agement is presented. Table 2 shows a comparison of such approaches in the field of
educational certificates. The related work is evaluated with respect to our initial re-
quirements, which are decentralization, permission management, transparency, support
for integrated issuer verification, completeness and attribute-based representation of re-
ceivers, as described in the previous section.

The University of Nicosia1 was the first (2014) to register academic certificates
for an online course on the Bitcoin blockchain. A hash of an index document, which
contains a list of hashes of all certificates for a specific semester is registered on the
blockchain. Hence, attribute-based authentication is not supported. Their approach is
decentralized, permissionless and transparent, but does not allow for integrated issuer
verification and for validating the completeness of issued academic certificates.

The MIT Media Lab is working on a project called Blockcerts2. Their approach is
similar to the one implemented by the University of Nicosia, i.e., registering the root

1 https://digitalcurrency.unic.ac.cy/free-introductory-mooc/self-verifiable-certificates-on-the-
bitcoin-blockchain/academic-certificates-on-the-blockchain/ [retrieved: August 16, 2018]

2 https://www.blockcerts.org/ [retrieved: August 16, 2018]
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University of Nicosia 3 3 3 7 7 7

Blockcerts 3 3 3 7 7 7

LLP 3 7 3 3 7 7

uPort 3 3 3 7 7 3

Sovrin 7 7 3 3 3 3

SPROOF 3 3 3 3 3 3

Table 1. Comparison of related work with respect to decentralization, permission management,
transparency, support for integrated issuer verification, completeness and attributed based authen-
tication of receivers.

hash of a Merkle tree of hashes of documents on a public blockchain. This approach
is decentralized, permissionless and transparent. The project is not attempting to map
the digital identity to the real identity of an institution and thus does not allow for
integrated issuer verification and validation. Additionally, verifying the completeness
of issuing documents and attribute-based authentication is not possible.

By Gräther et al. (2018), an approach for a Lifelong Learning Passport (LLP) is
presented which is very similar to the approach of Blockcerts. Their approach is decen-
tralized, transparent and additionally they support a mechanism for issuer verification.
However, they use a hierarchical scheme for issuer accreditation and therefore it is not
fully permissionless. Verifying the completeness of issuing documents and attribute-
based authentication is not possible.

uPort3 is a service that allows users to register and set up their own identity. The
platform is based on the Ethereum blockchain and uses smart contracts. The proposed
scheme does not provide integrated issuer verification to the extent it is covered by this
work and does not provide a completeness feature.

Sovrin [20] is a protocol and token for self-sovereign identity and decentralized
trust. It allows attribute-based authentification and integrated issuer verification. How-
ever, the proposed scheme is built on top of its own token and does not allow to use
arbitrary blockchains. Furthermore, it is not fully decentralized and permissionless due
to the managing Sovrin Foundation that must approve all new nodes and is therefore
able to restrict access to unwanted participants.

We are not aware of any scheme that meets all of the initial stated requirements
and, in particular, resolves the completeness issue in a decentralized, permissionless,
and transparent way, which is one of the main contributions of SPROOF.

3 https://www.uport.me/
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3 BUILDING BLOCKS

This section introduces the fundamental building blocks for SPROOF. First, the concept
of public storage and blockchain is introduced, and the advantages and challenges for
using such a technology are briefly discussed. Second, the principles of key manage-
ment in HD wallets are explained. The latter is crucial for the completeness feature.

3.1 Public Storage

By Nakamoto (2008), Bitcoin is proposed as a decentralized, permanent, trustless public
ledger. The proposed approach is the first to reliably solve the double spending prob-
lem4 and sets the foundations for the concept of decentralized, permissionless append-
only databases, commonly referred to as blockchain. In general, a blockchain can be
seen as a global state machine where updates are performed by conflicting-free, au-
thenticated transactions. Following the initial approach by Nakamoto (2008), many im-
plementations have been proposed in recent years, also for fields other than financial
transactions, see e.g., [17, 6, 16].

For SPROOF we use a public permissionless blockchain, e.g., Bitcoin or Ethereum
[23], in order to create a platform where nobody, not even a selected consortium, has the
right to exclude data or participants [25]. SPROOF is built on top of a public blockchain
and does not intend to develop a new blockchain for this purpose. The blockchain is
used by SPROOF in order to have a verifiable global state of ordered pieces of data in
a decentralized, transparent manner and without the need of a single trusted platform
operator. The use of a blockchain in SPROOF comes with two main issues: scalability
and storage costs.

Blockchain implementations often come with limitations on the scalability [7], i.e.,
the number of transactions and the amount of data that can be stored or processed within
a certain amount of time. Polkadot [24, 11] proposes a strategy for solving these scala-
bility issues by decoupling the consensus architecture from the state-transition mecha-
nism. This means that all data is accepted to become part of the blockchain, i.e., the data
is stored and distributed, but the semantics of that data and thus the actual validity are
processed independently and off-chain. For SPROOF we only need the blockchain to
register chronologically ordered pieces of data and thus the consensus is built off-chain
by processing data with a publicly known rule set separately, the SPROOF protocol.

Storage on a public blockchain is often limited in terms of size (e.g., 80 Bytes of
data in Bitcoin) or expensive [21]. To avoid this problem, SPROOF only adds hashes of
data to the blockchain within a transaction. The corresponding raw data is then stored
in a distributed hash table (DHT). Data stored in such a DHT inherits the immutability
and ordering property from the blockchain if a cryptographically secure hash function
is used to calculate the hash that is sealed in the blockchain. In order to create a fully
decentralized platform, also the DHT needs to be managed in a decentralized way. For
example, established DHTs such as IPFS [2] or Swarm5 can be used.

4 The problem that two conflicting transactions spend the same funds twice.
5 http://swarm-gateways.net/bzz:/theswarm.eth/ [retrieved: August 23, 2018]
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Blockchains use public-private key cryptography [9] to represent a user and to sign
transactions. The public keys can be seen as pseudonyms, because they can be created
offline and without the need of an authentication process. However, this does not pro-
vide full anonymity, since public blockchains are transparent. If an attacker knows that
a pseudonym is linked to an identity, the attacker also has the possibility to see all trans-
actions which have been recorded in the blockchain since the beginning and are linked
to that pseudonym [19]. A solution to this traceability problem is to generate a new key
pair for each transaction, hence to use an address only once. One method to generate
keys out of a single seed is explained in the next section.

3.2 Key Management

In most blockchains, users are represented by a unique ID derived from a public-private
key pair using the Elliptic Curve Digital Signature Algorithm (ECDSA) [15]. In order
to solve the traceability problem, a new key pair for each transaction is created. A key
derivation function (KDF) is therefore used to derive one or more private keys from a
single password6, master key or a pseudo random number, a so-called seed S. In the
following, a method to deterministically derive hierarchically structured pseudorandom
public-private child keys (Q1,d1),(Q2,d2), . . . ,(Qn,dn) out of a single master key pair
(Q̂, d̂), is explained and illustrated in Figure 1. Each child key can be used as a new
master key, hence it is possible to build an infinite hierarchical tree. This concept is
called a hierarchical deterministic (HD) wallet.

(Q̂, d̂)

(Q1, d1) (Qn, dn)

Seed

. . .

Fig. 1. Representation of a HD wallet, where child key pairs (Q1,d1), . . . ,(Qn,dn) are derived
from a parent key (Q̂, d̂) and a seed S [4].

The ECDSA is based on (the assumed hardness of) the elliptic curve discrete log-
arithm problem (ECDLP), which is denoted as follows: E(K) denotes an elliptic curve
over a field K. A generator of the elliptic curve is referred to as P ∈ E(K) with an order
p. These parameters are publicly known. With the private key d ∈ K it is easy to calcu-
late the public key Q ∈ E(K), which is a point on the elliptic curve, using the formula
Q = dP. Recovering d by only using Q and P constitutes breaking one instance of the
ECDLP. Although there exists no formal proof, the ECDLP is commonly assumed to
be hard to invert if the underlying elliptic curve is properly chosen [15].

The KDF of an HD wallet uses a cryptographically secure hash function H (·) which
maps an index i and a public key Q∈ E(K) to an element of K. The index is the number

6 Deriving a key from a password is not recommended [22].
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for the child key pairs (Qi,di), which is calculated as follows:

di = d̂ +H (i, Q̂) (mod p) (1)
Qi = diP (2)

One of the main properties of HD wallets is that each child public key Qi can be
calculated without using (and needing to know) a private key, by Q̂+H (i, Q̂)P. This is
called master public key property.

A known vulnerability of HD wallets, however, is that it is possible to calculate the
master private key d̂ with the knowledge of the master public key Q̂ and an arbitrary
child private key di, by using the derived formula d̂ = di−H (i, Q̂)(mod p). This vul-
nerability can be bypassed by allowing so-called hardened child keys, where also the
public keys are derived from the master private key, instead of the master public key.
Such keys lose the master public key property. Another approach for HD wallets that
tolerates key leakage is presented by Gutoski and Stebila (2018).

In SPROOF, HD wallets are used to derive key pairs out of a single seed to gen-
erate pseudonyms, which are then used for receiving documents. The use of multiple
pseudonyms allows to release only a selected subset of documents to a verifier.

4 SPROOF

In this section, we describe SPROOF, a decentralized, permissionless, integrity-protected
and transparent platform for granting, storing and verifying digital documents. There
are three basic roles in the upkeep of SPROOF: issuer, receiver and verifier.

For the communication between the users representing these roles, two distinct
channels are needed: a public and a private one. The public channel is used for pub-
licly available data that is stored on a blockchain, i.e., the issuing of a document. The
private channel is needed to transfer non-publicly available and direct personal or sen-
sitive information required for issuing and verifying documents.

Any information sent over the public channel is denoted as an event. Events are
the only way to add information to the publicly available data set of SPROOF. Events
are signed by the issuer and are sealed and integrity protected with the help of the
blockchain and a DHT.

In the following, we first describe the processes to create an issuer, then ways to trust
an unknown issuer, the generation of a privacy-friendly representation for receivers and
finally, necessary steps to verify a document.

4.1 Issuer

The role of an issuer represents any organization or person who wants to grant docu-
ments, e.g., a university. Issuers need to be publicly known, trustworthy and verifiable.

In order to create a new account, an issuer establishes a public-private key pair.
The public key is the representation of the issuers public profile PP in SPROOF and
the private key is needed to sign events triggered by the issuer. The key pair itself
provides no information about the organization or person behind and is thus pseudony-
mous. However, issuers need to be identifiable and therefore PP needs to be linked to
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the issuers organization. This can be done by adding a new EIdentity Claim event. This
event includes all necessary data to address the issuer, e.g., the name of the company
or organization. Since the platform is permissionless and decentralized there are no re-
strictions for generating such identity claims and there is no single trusted third party
to verify the correctness of the provided claims. To increase the trustworthiness of an
issuer, additional EIdentity Evidence events can be provided. These events, also created by
the issuer, provide additional evidence by connecting the SPROOF account with already
established central trusted platforms, e.g., social media accounts or known public key
infrastructures. To link a social media account, the issuer needs to add an EIdentity Evidence
event including a reference to a publicly accessible message, e.g., a post in an online
social network, which contains PP. To link an X.509 certificate, the issuer needs to add
an EIdentity Evidence event including the certificate and a signature over PP created by the
confirmed private key of the X.509 certificate. Note that this process is possible for
all types of PKI certificates. This allows to connect several, already established central
trusted infrastructures, to PP. There is no limitation in the number of EIdentity Evidence
events, hence an issuer can add multiple EIdentity Evidence events to strengthen its PP.

While the methods to increase trustworthiness of an issuer described above are
based on central trusted authorities, this is used as bootstrapping to build a decentralized
confirmation network which borrows concepts from the WoT [5]. In a WoT others must
be able to confirm the identity of the issuer, by sending a EConfirm event. The purpose
of a confirmation is that the sender verifies the receivers identity claim. Confirmations
are linked to the identity claim that was added last. This is to rule out the possibility
of an issuer to maliciously rename itself after collecting some confirmations. Before an
issuer confirms another issuer it needs to verify PP and the provided identity claim.

This can be done based on the identity evidence events or also outside SPROOF, e.g.,
during a personal meeting. This means that – in return – an issuer may lose its reputation
if it confirms a fake issuer. A confirm event contains a boolean value, either a positive
or negative trust indicator and arguments to justify the decision. Confirmations can thus
be used to create networks of issuers. Given such a network, newly added issuers can
quickly gain reputation by a confirmation from a well-known and established issuer. As
an example, consider a network of universities. While a newly established university
sets up relationships with well-established institutions for research and teaching collab-
orations it can – in the same way – gain confirmations in SPROOF after a while. Once
one or more major institution confirmed the integrity of the new university, this sets up
a WoT.

4.2 Receiver

A receiver of a document is, analogously to an issuer, represented with a public key.
This public key is used together with the corresponding private key to prove the own-
ership of a document to a verifier. Reusing the same pseudonym for all documents that
a receiver gets would lead to the receiver being only able to share all documents ever
received at once to a verifier, which would not be privacy-friendly and also impractical
for the receiver. Once a third-party knows the pseudonym, it would be able to view all
documents issued in the past and also all future ones. To avoid this traceability problem,
fresh pseudonyms can be created for each document exploiting the previously presented
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properties of HD wallets. Note that only leaves of the pseudonym tree should be used
for receiving a document. By doing so, the privacy is preserved by the fact that it is
practically impossible to invert a cryptographically secure hash function. Therefore,
it is not possible to calculate parent pseudonyms by knowing the corresponding child
pseudonyms.

As shown before, the public-private key pairs are deterministically generated out of
the random seed S using a HD wallet KM , as described in Section 3.2. This seed is the
main secret and is needed for recovering all derived pseudonyms.

Using KM , the receiver is able to generate child pseudonyms PI1 , . . . ,PIn . Each of
those pseudonyms can be used as a new master key for further sub-pseudonyms for a
specific issuer. A pseudonym is shared with an issuer using the private channel. From
this pseudonym, the issuer is able to generate further sub-pseudonyms by using the
master public key property of HD wallets. Note that this can be done without revealing
any information about the corresponding private keys.

The ability to derive sub-keys and the fact that the pseudonyms are publicly linked
to the documents enables further features, e.g., if an issuer wants to link a document
which has dependencies to other already issued ones. This can be the case for a series
of educational certificates that build on each other, e.g., required courses for getting a
bachelor’s degree. Given a parent pseudonym, all descendants are verifiably connected
to this parent. If, for instance, pseudonym PG1 , see Figure 2, represents a Bachelor’s
diploma, all sub-pseudonyms including PD1 , . . . ,PDn , which may represent particular
courses, are permanently and publicly linked to the Bachelor’s diploma. We call this
property forced completeness, since it can be enforced by the issuer and cannot be
hidden. Note that a receiver can still share documents PD1 , . . . ,PDn separately and in-
dependently and without revealing the parent pseudonym and thus the corresponding
document. If a receiver shares more than one pseudonym that are used for documents
issued by the same issuer, which can be avoided by sharing a pseudonym on a higher
level of the pseudonym tree, the verifier can conclude that the receiver shows an in-
complete information. This is, to the best of our knowledge, a feature that is unique to
SPROOF.

The concept of completeness is shown in Figure 2, where the privacy and com-
pleteness property are indicated by arrows. Privacy is provided bottom-up, whereas
completeness is achieved top-down.

Note that the pseudonym itself contains no information about the real identity of
the receiver, e.g., the name of the person. However, a means of linking a document
to the real identity of the receiver needs to be established. Otherwise, receivers may
collaborate and share documents among each other by sharing private keys of their
pseudonyms. In addition, for attribute-based authentication the identity of the receiver
must be split into multiple features.

For this purpose, the real identity is separated into attributes representing, e.g., the
name, date of birth, a passport photo or a digital representation of a fingerprint of the
person. These attributes are combined by using a hash tree, as shown in Figure 3. To
protect the privacy of the receiver, only the root value of the hash tree is attached to
a document. Given the cryptographic hash reference of some data, it is practically im-
possible to reconstruct the original data. However, cryptographic hash functions are
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Fig. 2. Pseudonym tree with derived keys and documents in the leaves. Completeness is achieved
by a unique, easily verifiable path from the top to the bottom and privacy is achieved by the
impossibility to retrieve parent keys from a given leaf key [4].

deterministic, hence an attacker who holds a copy of, knows or guesses the identifica-
tion data of the receiver would be able to reconstruct the hash tree and can then dis-
close information about the receiver. To avoid this vulnerability, salt values are added
to all attributes in order to obfuscate the hash reference [12]. Each attribute consists
of a name, a value and a salt value. The hash reference of attributex is calculated by
H (Namex||Valuex||Saltx). The hash reference for all attributes is calculated by the fol-
lowing formula: attributes = H (attribute1|| . . . ||attributen).

Additionally, a validity period represented by two timestamps is added for each re-
ceiver of a document. The root value, represented as AttrID, which is publicly available,
is calculated by AttrID = H (validFrom||validUntil||attributes). In Figure 3, an exam-
ple attribute tree is illustrated. The construction of the hash tree allows the receiver to
selectively disclose chosen attributes.

AttrID

validFrom validUntil attributes

attribute1

Name1 Value1 Salt1

attributen. . .

Fig. 3. Attribute tree with a validity time period and multiple attributes. The construction of the
tree allows the receiver to selectively disclose specific attributes.
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4.3 Document

In this section, the processes to publicly registering a document via SPROOF is de-
scribed in abstract form. In SPROOF, a document is attached to the registration event.
The issuer can decide whether the content of the document is publicly visible nor not.
The registration event includes, by embedding it to a transaction, the public key and a
signature of the issuer. Additionally, it is possible to attach fields for a validity period,
dependencies to other documents, and a list of receivers to a document. In Figure 4, the
possible fields for the registration are illustrated. SPROOF provides three different ways
to attach data or digital content the registration event:

Hidden: In the documentHash field, hash values of data or digital documents can be
entered. The issuer can decide if the referenced file is published on a centralized
server or later attached to the document. For verification, the verifier needs the raw
data to crosscheck the locally calculated hash reference with the publicly registered
one.

Direct: In order to directly attach data to the registration event, the data field can be
used. This field allows to attach arbitrary JSON objects to the registration event.
This data is the publicly available.

Indirect: To enable the attachment of large files or binary files which can not be rep-
resent as a JSON objects, the dhtLocation field is provided. The dhtLocation field
represents a location reference to a file stored in a DHT.

In the following the events used to register a document, add a receiver to document
and revoke either the receiver of the document or the document itself are described.

Registration

issuer: publicKey
validFrom: unixTimestamp
validUntil: unixTimestamp
data: jsonObject
dhtLocation: String
documentHash: String
dependencies: List
receivers: List

Fig. 4. A registration object including all possible fields which can be used to register a document
via SPROOF.

Register Document The ERegister Document event is then used to publish the information
about the registration of a document, as shown in Figure 4, via SPROOF. Note that it is
possible to register a document without adding a receiver. The registration event sealed
on the blockchain and the unique ID of the document is calculated out of the hash value
of the content in combination with the blockhash.
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Add Receiver To add a receiver to a document, the issuer needs to publish the
EDocument Add Receiver event with the unique registration ID. With SPROOF it is possi-
ble to add 0 to n receivers for a single document. This enables the feature to group or
structure documents. In the case of the document representing a diploma or a driving
license, it would be possible to automatically ask for a receiver of a specific document
ID in order to enable future services. That document and the representation of the re-
ceiver contains additionally a validity range. Hence, it is possible that the document as
such may be longer valid than a specific grant to a receiver. The opposite direction is
not possible.

In order to add a receiver to a SPROOF registration, the receiver has to register at
an issuing institution. For this purpose, the receiver chooses a master pseudonym PI ,
which has not already been used by another issuer and which represents a new leaf
in the pseudonym tree. The receiver then needs to transmit the necessary identifica-
tion data that enables the issuer to create the attribute hash tree. This data should be
transmitted over a private channel to the issuer. The issuer has to verify if the identi-
fication data matches to the real identity of the receiver and check whether PI is not
already used as receiver for another document. Once this process is completed, the re-
ceiver is registered at the issuer. Furthermore, by sharing its pseudonym, the receiver
permits the issuer to derive new sub-pseudonyms to add the receiver to registered doc-
uments. With this approach, the issuer is able to decide the ordering and structuring of
the receivers pseudonym tree by deriving new sub-pseudonyms out of the shared mas-
ter pseudonym. The completeness feature can thus be enforced at the time of adding
a receivers’ pseudonym to registered documents. A verifier can later check the set of
all documents granted to a given pseudonym and all derived sub-pseudonyms. The ver-
ifier can thus be sure that no documents were hidden by the receiver. This process is
illustrated in Figure 5.

Receiver Issuer SPROOF

Register: PI , ID

Verify identity

Register document

Add receiver

Attribute tree

Fig. 5. Process for granting a document in SPROOF. The receiver registers at the issuer and passes
the pseudonym which should be used for the new document. The issuer verifies the registration
and grants a new document.

Revoke Documents are not always valid for an unlimited period of time. Sometimes
an expiration date is sufficient, e.g., for a first aid course or for a driving license. Ad-
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ditionally, an issuer may also decide to revoke a document or a specific receiver of a
document, when, e.g., it detects plagiarism in a graduation paper or for other reasons.
Therefore, an issuer which grants a document has the possibility to revoke the whole
registration or also to revoke a specific receiver at a later point in time. This is done by
adding an EDocument Revoke or the EDocument Receiver Revoke event, which only the issuing
institute is allowed to do. This event includes the ID of the registration or the public key
of the specific receiver, and a reason to justify the revocation. These event is appended
to the public storage and therefore publicly available and accessible by all verifiers.

4.4 Events

Events are the only way to add information to SPROOF and they are sealed in a pub-
lic blockchain. In this work, only issuers are allowed to add events. The reason is
that adding an event requires a transaction on a blockchain. Adding a transaction to
a blockchain usually comes at the cost of at least a fraction of cryptographic tokens. We
assume that issuers are willing to buy some tokens, but receivers may not. To be con-
sidered as valid, each event needs to follow specific rules, as described in Section 4.1.
Invalid events are ignored. Note that due to the decoupling of the consensus mecha-
nism of the blockchain from the SPROOF protocol, invalid events may become part
of the blockchain data, but are not considered by SPROOF users. Therefore, the pub-
licly available data set of SPROOF is a chronologically ordered list of valid events. A
blockchain node only needs to check if the blockchain transaction is valid and does
not need to validate if the corresponding data represents a valid SPROOF event. This
reduces the costs for a transaction to the blockchain.

Since storage space on a blockchain is often limited and expensive, only the hash
reference of data is sealed into a transaction. Adding a new transaction for each event
would imply that an issuer, which wants to grant n documents, also needs to add n
transactions. This is inefficient and expensive. Therefore, events are combined into a
chronologically ordered list and the hash reference of this list of events is then registered
into a single transaction, as illustrated in Figure 6. The issuer has to sign this transaction,
including the hash reference, and add it to the blockchain as part of a transaction. Once
the transaction is included and confirmed, it is traceable and authentic to the issuing
institute, integrity-protected and publicly readable.

At this point, only the hash reference of events is sealed in the blockchain. The cor-
responding raw data is stored in a DHT, where the sealed hash value is used to address
the raw data. The issuer has to ensure that the raw data is available and complete. A
registration of events in the blockchain that does not provide the raw data is transpar-
ent visible to all verifiers and would therefore damage the reputation of the specific
issuer. A transaction that is considered for the SPROOF data set is always sent to a fixed
SPROOF address. Therefore, for validation purposes, a verifier only needs to consider
transactions sent to this address.

4.5 Verification

Transactions in SPROOF can be validated by practically anyone in the world. For this
purpose, a verifier needs to iterate over all transactions in the blockchain that are sent to
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Issuer

Event 1
Event 2
. . .
Event n

eaf6...a1d7 Blockchain

DHT
create

calculate

store

sealed

Fig. 6. For adding events to SPROOF, one or more events are collected and written to a DHT. The
hash reference of that DHT entry is then sealed in the blockchain and thus publicly visible to all
participants [4].

the SPROOF address. The verifier then downloads the corresponding raw data from the
DHT. After that, the verifier is able to execute each event of the SPROOF protocol and
check if it is valid and should be added to a local database. The database represents the
precalculated global unique state of SPROOF. Note that this includes also revocation
events for documents or receivers. Additionally, this database can then be used to view
and validate documents and to authenticate issuers and receivers. This client-side vali-
dation process can be done programmatically on a trusted computer that is controlled by
the verifier. Since hashes can be assumed to be collision free [8], the data stored in the
DHT is immutable. Changing the raw data would results in a different hash reference,
not matching the one sealed in the public blockchain.

Receiver The verifier can validate a receiver by two different approaches. In both ap-
proaches, the receiver has to share a pseudonym Px with the verifier. Using Px, the
verifier is able to find all documents that are granted to Px or any descendants of Px. In
the first approach the receiver remains anonymous, whereas in the other one the receiver
can disclose selected attributes. Both approaches are described in the following.

For the anonymous approach, the verifier has to be convinced by the receiver to be in
possession of the private key of a pseudonym Px. For this purpose, the receiver creates a
verification document, which includes the following fields (Verifier Name, Blockhash,
Px, validFrom, validUntil, attributes) and which is signed using the private key that be-
longs to Px. This document is shared with the verifier via a private channel. The verifier
is now able to check whether the provided signature matches to Px and has to check
whether the signed Verifier Name is correct. In order to check if the receiver is still
in possession of a valid document, the verifier additionally needs to check if it is in a
valid time period and if the values match the attached AttrID. This can be done by cal-
culating the hash value of (validFrom||validTo||attributes). The Blockhash acts as a
decentralized timestamp to detect outdated signatures. This needs to be done in order to
reduce the risk of an attacker reusing the verification document. With this information
the verifier can conclude that the receiver knows the private key of Px, that all docu-
ments granted to any derivation path of Px belong to the receiver, and that the verifier
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knows the minimum age of the signature by comparing the Blockhash. Considering
that receivers may cooperate and share pseudonyms, it is not always enough to verify
a receiver without identification. For the approach where the receiver additionally dis-
closes, e.g., attribute1 of n attributes, the receiver shares Name1,Value1,Salt1 and all
n hash references of the remaining attributes with the verifier. The verifier is able to
calculate and validate the obfuscated and missing hash value of attribute1 and can thus
calculate attributes. Finally, the verifier needs to crosscheck the values of the attributes
with an official ID-Document to see if it matches to the real identity of the receiver.

Issuer To decide if an issuer is trustworthy, a verifier can check the publicly available
EIdentity Evidence events and decide whether the provided information is sufficient to trust
an issuer PP. Additionally, the linked X.509 certificates can be verified. In case that the
EIdentity Evidence events are insufficient, another way is to use the confirmation network
to find a path from a known trustworthy party to the issuer.

4.6 Combine Issuer and Receiver

In Section 4.1, the process for issuers to create a public profile is described. This process
is not limited to issuers, but also allows receivers to create a public account where the
receiver has the possibility to disclose privately received documents and attach them to
their public profiles. With the use of HD wallets it is possible to generate, out of a single
seed S, multiple hierarchically structured public-private key pairs. The first child can be
used as the representation for issuers to grant documents and by receivers to publish
documents. The second child can be used as the master key for possible pseudonyms,
which is illustrated in Figure 7.

KM

Public Private

D1 Dn

Seed

. . .

Fig. 7. A SPROOF account can be split into a public and a private part. While the public part is
used for granting and receiving documents, whereas the private part is used as a master key for
new pseudonyms [4].

To publish a privately received documents to a public profile two signatures are
needed. One from the receivers pseudonym and one from the public account. The sec-
ond signature is implicitly provided by adding the transaction to the blockchain. This is
done by triggering an ELink Document event.
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4.7 Summary

In this section, the processes for generating issuers, receivers and processes for register
document, add receivers and revoking them later on were presented. The platform is
permissionless and therefore provides, for issuers, a decentralized way to add identity
claims for bootstrapping accounts. Necessary data to verify the issuer and the document
is publicly available without any read restrictions. A privacy-friendly way to generate
pseudonyms and link identification data of a receiver to a publicly accessible docu-
ment has been shown. The generation of pseudonyms enables the platform to fulfill the
completeness property. The construction of the attribute tree used to structure the iden-
tification data of a receiver allows for selectively disclosure of those. Combining events
allows to add data to the blockchain in a scalable way.

5 IMPLEMENTATION

In this section, the fully working prototypical implementation is described. For the im-
plemented prototype the public Ethereum Blockchain and IPFS are used as Blockchain
and DHT, respectively. The prototype consists of a smart contract running on the blockchain,
a backend implementation referred as to as the SPROOF node and SPROOF client, the
client side implementation. In Figure 8, an overview of all components and their con-
nection is illustrated.

Client Node

Issuer

Receiver

Verifier

Public Storage
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Event State Machine
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API
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Fig. 8. The implementation consists of a SPROOF client and a node. The node is a combination
of three modules: Public Storage, Event State Machine and API which are based on each other.
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5.1 Smart Contract

To lock a transaction hash on the blockchain we implemented a very short smart con-
tract in Solidity, see Listing 1.1. Since there are three different ways to lock a hash
reference of files stored in IPFS on the public Ethereum blockchain, the smart contract
provides three respective public methods. Note, that it is not necessary to use a smart
contract to lock a hash reference on a blockchain [1]. By using a smart contract, how-
ever, it is possible to seal multiple hash references including a signature verification in
one transaction. In the following, the three different ways to seal a hash reference are
briefly outlined.

1 pragma solidity ˆ0.5.1;
2 contract sproof {
3 event lockHashEvent(address indexed from , bytes32 indexed

hash);
4 function lockHash(bytes32 hash) public{
5 emit lockHashEvent(msg.sender, hash);
6 }
7 function lockHashProxy(address _addr , bytes32 hash , uint8 v,

bytes32 r, bytes32 s) public {
8 require(ecrecover(hash , v, r, s) == _addr);
9 emit lockHashEvent(_addr , hash);

10 }
11 function lockHashesProxy(address [] memory _addresses ,

bytes32 [] memory hashes , uint8[] memory vs, bytes32 []
memory rs, bytes32 [] memory ss) public {

12 for (uint i=0; i < _addresses.length; i++) {
13 require(ecrecover(hashes[i], vs[i], rs[i], ss[i]) ==

_addresses[i]);
14 emit lockHashEvent(_addresses[i], hashes[i]);
15 }
16 }
17 }

Listing 1.1. Source code of the smart contract used to lock an IPFS file in the public Ethereum
Blockchain. The smart contract is implemented in Solidity.

Lock Hash The lockHash function has only one input parameter, a hash reference of
files stored in IPFS. The sender signs the transaction, which emits the lockHashEvent
with the information about the issuers address and the corresponding hash reference.
Note that this method can only be executed by the issuer directly, hence the issuer
needs to pay the transactions costs, which can be impractical if SPROOF will be used
by a wide range of users.

Lock Hash Proxy In order to avoid the drawback that the issuer needs to acquire cryp-
tographic tokens to pay the transaction cost, the lockHashProxy method is provided.
This method needs, besides the hash reference of IPFS informations about the issuers
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address, also a valid signature. The method verifies that the signature over the hash ref-
erence is created with the private key corresponding to the issuers address and emits the
lockHashEvent with the corresponding data. This transaction can be paid by an exter-
nal party, hence the issuer does not need to acquire cryptographic tokens. However, the
additional data and computational steps to verify the signature of the issuer results in
higher transaction costs.

Lock Hashes Proxy To avoid high transaction costs and to improve the scalability, the
lockHashesProxy method is provided. This methods receives a lists of hashes, issuers
and signatures within a single transaction. It iterates over the whole list and emits the
lockHashEvent for all valid combinations. This transaction can be paid by an external
party and has the ability to seal multiple hash references of multiple issuers in a single
transaction. This will reduce the cost per transaction by 31.41% in comparison to a
Ethereum transaction7 without additional data.

5.2 SPROOF Node

The SPROOF Node can be seen as blockchain application or as a backend implemen-
tation and consists of three main modules: the Public Storage (PS), the Event State
Machine (ESM) and an Application Programmable Interface (API). In the following,
the three modules are described in detail.

Public Storage The PS uses IPFS as DHT and the public Ethereum Blockchain. To
seal a hash reference in the blockchain a smart contract, as described in Section 5.1, is
used. The smart contract address is configurable in the PS module. At the first start the
PS reads all emitted lockHashEvents from the smart contract in a chronological order
and fetches the corresponding data stored in IPFS. Additionally, this module verifies
the syntax of the data stored in IPFS. If the data is valid and matches predefined JSON
schema it will be forwarded to the ESM.

Event State Machine The ESM module receives all registrations in chronological or-
der including all events sealed by an issuer and validates the semantics. For that purpose
it iterates and executes all events. In case, the event is valid, it will be processed as a
new state transition and the resulting state is then stored in the local database.

API To provide easy access from third party applications an API is provided. This API
is used to verify issuers, documents and receivers. The SPROOF API only needs hash
references of publicly available information about receivers or documents in order to
provide the information about the validity of those. Note, that therefore no sensitive
information needs to be transfered to a SPROOF node.

7 The cost for a transaction without additional data on Ethereum is 21000 Gas.
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5.3 SPROOF Client

The SPROOF Client is a client side module, currently provided in Javascript. This mod-
ule provides the full functionality for creating seeds, public private keys (HD wallets).
Additionally, the issuers are able to create all events and the necessary signatures to
interact with the SPROOF protocol locally on the client side. This also includes the gen-
eration of the attribute trees for the receivers. The events will be then be uploaded to
IPPS and the IPFS hash reference is then signed on the client side. The SPROOF client
provides the full functionality to use all methods of the smart contract to lock a hash
reference. Additionally, the functionality to verify receivers’ attribute trees and the cal-
culation of the root value of the attribute trees is provided to avoid sensitive data to a
SPROOF node.

6 EVALUATION

In this section the SPROOF protocol is evaluated with respect to maliciously acting
issuers, receivers and verifiers. Additionally, general attacks to the SPROOF platform
are considered.

A malicious issuer may create a fake profile. Therefore the fake issuer sets up a
EIdentity Claim event and adds numerous EIdentity Evidence events to strengthen its fake pro-
file. By consistently creating fake social media accounts, a fake website, etc. this makes
it hard to identify a true issuer from a fake one. However, the core idea of the WoT is
that multiple established and trusted issuers confirm the identity of new issuers. A ver-
ifier of a document, attempting to validate the identity of the issuer, can identify such
fakes by starting at one or more known trusted issuers and following the paths to the
fake issuer. In case there exist no paths or a majority of negatively rated confirmations
only, these are strong indications that the document has been created by a fake issuer.
Additionally, a verifier can validate the X.509 certificates linked to the issuer. In case
that these X.509 certificates are invalid, linked to non-official websites or not available
at all, this are also strong indicators of a fake issuer. Issuers may revoke documents
with a malicious intent and without justification, or publicly release identification data
of documents it has previously issued. While this is a general problem, it would only
affect the specific documents from this issuer and not the receivers’ whole accounts.

A malicious receiver may attempt to collaborate with other receivers to share pseudo-
nyms and thus collecting documents that were issued to another receiver. However, this
is prevented by adding AttrID to documents, which uniquely identifies a specific re-
ceiver. Note that this data is not publicly stored in the blockchain, but only the root hash
reference is linked to a document in order to protect privacy. In case the receiver wants
to remain anonymous at the time of verification, such an attack is feasible, however, it is
up to the verifier to allow an anonymous verification at the risk of shared pseudonyms.

A malicious verifier may reuse or publish received documents and the correspond-
ing values of the attribute tree. In the process of sharing a document to a verifier the
Verifier Name and the Blockhash are contained and signed by the receiver. Reusing a
document is practically impossible since this would require to change the Verifier Name
and the Blockhash within the signed data. While publishing received documents cannot
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be prevented in SPROOF it would only affect the specific documents shared with this
malicious verifier.

Malicious attackers may add a huge amount of valid or invalid events at once or seal
a hash reference where the raw data stored in the DHT is not available or significantly
large. However, adding a transaction to the blockchain is only possible with a signature
which is linked to a public key. Adding invalid events or hash references where the raw
data is not available will downgrade the reputation of an issuer. A timeout for reading
data from the DHT and a limit for the number of events which are allowed to be sealed
within one transaction can be used to protect the platform from such attacks.

7 CONCLUSION

In this paper, the extended version of [4], a platform for managing digital documents
has been presented. The paper proposes the architectural building blocks, a protocol
for issuing, receiving and verifying documents on a public blockchain and a descrip-
tion of a proof of concept. A public blockchain is used to seal hashes of data stored in
a Distributed Hash Table. The implemented smart contract for this purpose has been
presented. It is further shown how attribute-based authentication can be used by assign-
ing and independently verifying multiple attributes of one receiver. For features such
as completeness, i.e., the ability to prevent receivers from hiding certain documents, a
Hierarchical Deterministic Wallet is employed for managing the cryptographic keys of
receivers and also optionally of issuers. For the verification of issuers a Web of Trust
of issuers is sent up and thus provides integrated issuer verification. In summary, the
presented platform is fully decentralized, permissionless and provides privacy-friendly
attributed-based authentication for receivers of documents. Future work will focus on
extending the proposed protocol to be used in other domains, such as digital ID cards
or in proofs of ownership and origin.
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