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Abstract Securing automotive architectures against cyber-attacks is a challenging
task, especially if function and safety have to be considered and the overhead of
the security engineering process has to be minimal. Security-by-design will become
a necessary property of automotive architectures in the future, because of rising
vehicle interconnection and the associated risks. ThreatGet already provides an ap-
proach for automated threat analysis and risk assessment in this field. Nevertheless,
there is still a lack of automation in the area of cybersecurity risk remediation and
subsequent result validation or verification. Therefore, this paper combines the se-
curity pattern engineering process with ThreatGet and the Automotive Reference
Architecture Model (ARAM) Framework to provide a multi-layered top-down ap-
proach to consider the parallel development of the function, safety, and security in
automotive architectures according to ISO-21434.

1 Introduction

In the last decades the automotive industry has become one of the world’s most
significant economic sectors according to [16] by producing nearly 95 billion units
(including passenger cars and commercial cars) and with more than 80 millions
vehicles sold yearly. Another key aspect reflected in [1] is the rapidly increasing
number of Electric Vehicles (EVs) and the impact of EVs on the automotive market
as those are seen as replacement of fossil-energy-driven cars crucial to mitigate air
pollution, oil dependency and green house gas emissions. However, not only the au-
tomotive market is facing an enormous growth, but also the amount of hardware and
software components within cars has dramatically increased - nowadays more than
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hundred Electronic Control Units (ECUs) and hundred millions lines of code are
part of modern vehicles. For example the 2017 Ford F150 has already exceeded 150
millions lines of code, as the trend towards autonomous driving requires new fea-
tures to be implemented and thus present and future vehicles can be defined as Com-
plex Autonomous Vehicles (CAVs) [16, 19, 11]. Furthermore, the authors in [2] have
investigated possible scenarios in relation to CAVs like Vehicle Platooning, where
multiple self-driving vehicles are travelling together at high-speed for a specific dis-
tance. Therefore, communication technologies like Vehicle-to-Vehicle (V2V) will
be used in future Smart Cities to enable an effective cooperation between CAVs
and to avoid potential crashes. Moreover, the work in [22] underpins even more
the importance of real-time communication in traffic flows with the development
of Vehicle-to-Infrastructure (V2I) communication techniques enabling for instance
a seemless interaction between CAVs and traffic light controller systems. Further-
more, the interaction of EVs with Smart Grids (SGs) plays also a significant role
concerning the communication infrastructure in the context of Smart Cities. Conse-
quently, the authors in [17] have researched on EVs serving as independent energy
source for the SG and the concept of Vehicle-to-Grid (V2G). All the mentioned
communication protocols viz. V2V, V2I and V2G can be summarized by the term
Vehicle-to-Everything (V2X). It contemplates the current communication landscape
of modern vehicles and shows the diversity of interactions with other systems, also
referred as V2X communication environment.

Thus, vehicles interacting with their vicinity can not be seen as isolated systems
anymore, but as a System-of-Systems (SoS), which especially increases the depend-
ability and with that the attack surface of these systems. With reference to Neureiter
[18] dependability intends to minimize risks emerging from systems which lead
to harms of systems in the same context. Accordingly, the author inventend a set of
dependability requirements, assuring safety and security associated harms like mali-
cious attacks from the outside can already be considered in the design-process phase
of systems. Aditionally, the authors in [23] and [12] examined various cybersecu-
rity attacks in relation to CAVs and support the significance of Security-by-Design
approaches, as it is essential to analyze potential attack vectors and to eliminate
emerging risks prior to the development of systems. Hence, the international stan-
dard for cybersecurity ISO-21434 [10] suggests the development of an preliminary
architecture for the purpose of the identification of an specific item, together with its
operational environment and their relationships in the context of cybersecurity. With
the definition of domain-specific reference architectures like the ARAM Framework
[5] it is possible to create architectures in the automotive domain by utilizing Model
Based Systems Engineering (MBSE) concepts. This framework should serve as base
for the preliminary architecture definition and for the investigation on possible coun-
termeasures with respect to cybersecurity attacks on CAVs. Therefore, this paper
proposes the definition of design-countermeasures in the form of Design-Patterns
based on the ISO-21434 to mitigate cyberattacks on certain components of CAVs
and thus to recognize and eliminate risks in the design-phase of systems.
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To address the mentioned aspects, this paper is structured as follows: Section 2 out-
lines the related work about cybersecurity and security-by-design approaches. Fur-
ther, in section 3 the research approach is described in more detail. Section 4 and 5
respectively explain the implementation and application of design countermeasures.
Finally, in section 6, the findings of the paper are outlined and a conclusion is given.

2 Related Work

2.1 (Cyber-)Security-By-Design

According to the studies of Haberfellner et al. [9], systems with a high variety of
interconnections and a large number of interrelated elements can be seen as com-
plex systems. In general CAVs can be classified as such a complex system and
as a specific form of Cyber-Physical Systems (CPS) and Internet of Things (IoT)
system, due to their characteristics. Typically, CPS consist of a distributed set of
sensor nodes forming a feedback loop enabling for example full autonomy, or at
least semi-autonomous functions. The close connection between CAVs and CPS
was considered in more detail in [3], where the authors have investigated on secu-
rity issues related to CPS and point out the importance of security-by-design ap-
proaches. Moreover, the results have shown that it is not sufficient to consider only
the attack surface on CPS, as certain aspects like the generalization of attacks usu-
ally ignores security-by-design fundamentals e.g., the role of Roots of Trust (ROT).
Furthermore, in terms of CAVs the main security goal is the resilience of safety fea-
tures of autonomous functions, as human lives can be harmed by any compromise
of the functionalities provided by CAVs. Thus, it is important to identify the entire
system life-cycle of a CPS, including for instance all steps and people involved in
the security thought of the system. This can be done by the utilization of a hollistic
approach like Systems Engineering (SE), where the key concepts of designing se-
curity for complex systems can be described within a system model. Following the
results in [3] two potential approaches for designing security exist to the time of their
research viz. the development of security policies guided by the Confidentiality, In-
tegrity and Availability requirements, also known as CIA triad, or the creation of
the STRIDE threat model invented by Microsoft. Additionally, the previously men-
tioned authors itself propose as well a security-by-design approach for autonomous
vehicles by combining key principles from the standards ISO-26262 and SAE-J3061
[13]. To time another state-of-the-art standard was introduced: the ISO-21434 [10].
It provides inter alia mitigating strategies throughout the automotive field and aims
to deliver safe and secure CAVs.
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2.2 Automotive Systems Engineering

As systems are becoming more and more complex due to the rising interconnection
with other systems and the interplay of different teams during the system develop-
ment phase, the need for interdisciplinary approaches utilizing proven concepts to
overcome the growing complexity in systems, is essential. Therefore, the discipline
of SE is used as established approach for the modeling of complete system archi-
tectures, in order to create new applications and to satisfy the needs of stakeholders
[8]. Various SE frameworks exist that can be used in different domains to perform
MBSE tasks, aiming to define one central element i.e. a system model that captures
all required information and provides consistency through all stages of development
[24, 25]. The ARAM Framework for instance, is a result of the evaluation of dif-
ferent automotive frameworks as stated in [5] and allows to perform model-based
and domain-specific SE within the automotive domain. Furthermore, with the three-
dimensional structure it is possible to model entire CAV architectures from different
perspectives and on diverse layers of abstractions. This enables to model multiple
aspects of a specific System of Interest (SOI) from the bare definition of require-
ments to the realization with suitable components. Moreover, in terms of cyberse-
curity, the ARAM Framework can be supplemented by the threat modeling based
approach ThreatGet, developed by the Austrian Institute of Technology (AIT) [20].
Thus, with ThreatGet it is feasible to perform an automated risk identification and
to discover potential attack vectors concerning CAVs.

2.3 Security Patterns as a derivative of Design Patterns

Design patterns provide solutions that solve explicit problems by using proven con-
cepts. They aim to avoid time and knowledge-consuming examination of already
solved problems. Design patterns generalize a solution so that it can be reused for
well-known problems in similar fields. Security patterns, a derivative of Design
patterns, provide concepts for security designs and best practices from an exist-
ing body of knowledge to solve security problems in related scenarios. ”Security
patterns are represented as textual templates or combined with Unified Modeling
Language (UML) models, in a hierarchically layered architecture or in a search-
able pattern library.”[15] Security pattern engineering begins with the analysis of
the system architecture and the determination of regarding security vulnerabilities
and threats. Established security analysis methods and techniques, to reveal them,
are attack surface analysis, attack trees, and threat modeling (ThreatGet). Subse-
quently, appropriate mitigation controls for the identified vulnerabilities and threats
must be applied. Finally, the result is verified and validated against context-related
standards. If the security pattern is approved, it can be instantiated and applied to
the existing system architecture design. A security pattern is a generalization of a
security design, therefore it is crucial to take into consideration the context of an
application. The outcome of the security pattern engineering process is a secure
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system architecture [15]. According to ISO-21434 and Threat Analysis and Risk
Assessment (TARA) methods [10], security goals can be specified from the system
architecture after the security pattern application and subsequently security require-
ments can be derived from it. The combination of the security pattern engineer-
ing process, the definition of security goals and requirements lead to an ultimately
cyber-security concept [10].

3 Approach

3.1 Agile Design Science Research Methodology

As mentioned before, the main goal of this work is to define design countermea-
sures for the mitigation of cyberattacks in the design-phase of CAVs. However,
the definition of quantifiable requirements can be difficult to elicit in such an ag-
ile development scenario, because of the uncertain specification of the final result.
Therefore, the ideas of the Agile Design Science Research Methodology (ADSRM)
proposed in [4] were adopted, as this approach fosters the constant improvement
of both, the problem- and solution space in an dynamically changing application
scenario. In each iteration of the methodology, defined artifacts, as well as require-
ments are evolving, where each iteration itself provides a solution of the intended
artifacts. Thus, a specific process is introduced by this very methodology, contain-
ing various process steps for the development of the artifacts and offering several
entry points that can be used to initiate the iterative process model. With the usage of
this method, agile software development is supported and for the certain case in this
work the iteration cycle is joined by the so-called design and development-centered
initiation. Following the definition in [4] the first input of the ADSRM process is
an appropriate case study, essential for the requirements engineering process and
for the development of the main artifacts. Therefore, this paper uses a case study
regarding an Over The Air (OTA) update and the resulting effect on the Braking
System of an CAV. Thus, the main artifact concerns the development of a security
pattern based on the ISO-21434, which can be applied to models created with the
ARAM Framework and in combination with the threat modeling tool ThreatGet.
Consequently, the case study is explained more particularly in the following.

Case Study - Referring to the previously mentioned research methodology a suit-
able case-study is demanded by the ADSRM process to develop the main artifacts.
Based on a scientific cooperation with the International Council on Systems Engi-
neering (INCOSE) automotive working group, the case about a Braking System of
an CAV was chosen, as this study has an particular impact on safety-related CPS
in the automotive area. The case was first described in [21] and explains in de-
tail the Braking System of an autonomous vehicle, with its functionality and sub-
components needed to perform braking in certain operational moments.
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Further, this study can be complemented with a variety of scenarios occuring in fu-
ture Smart Cities stated in [2] e.g., Vehicle Platooning. Moreover, to address security
related aspects, the selected study has been supplemented by the integration of an
OTA update scenario, as it especially contemplates possible impacts on the CAV
Braking System while performing an update. This can be for instance, a general
software update, or the update of a specific component firmware within the vehicle,
via an external server. Findings in [14] have shown, that an OTA update triggers new
security challenges, as with such an update vehicle security can be compromised.

4 Implementation

The previously mentioned security pattern engineering process provides a high-level
concept of how to construct a security pattern for automotive architectures accord-
ing to ISO-21434 [6]. The basis for the security design process is the previously
mentioned case study about the CAV Braking System, which was modeled with
the ARAM Framework. The security pattern is based on a snapshot of the system
from the point of view of ARAMs Information Layer. This approach aims to incor-
porate the security design process into architectural development as early as possi-
ble. This enables top-down refinement of the security pattern, from layer to layer.
Analogously, conclusions can already be drawn about the quality of the modeled
architecture in terms of security on each layer and an outlook on required com-
ponents can already be given for the underlying layers. The output of the security
pattern application can be validated and verified against the ISO-21434 on every
layer. Constructing the pattern is shown in a five-step process:

Step 1: Identify the problem space and scope: The following security pattern de-
scribes controls required to ensure the fail-safety of a CAVs braking system during
an OTA software update. OTA connections between in-vehicle and external net-
works are utilized for remote maintenance, remote control, or software updates.
The scope of this procedure is to address the security threats that relate to:

• Communication between vehicle and Original Equipment Manufacturer (OEM) backend.
• In-vehicle communication and system reliability.

Step 2: Prepare and research: In the previous step, an initial view of the problem
space and scope was formed. This step is intended to form the basis for the threat
modeling and find initial controls required to mitigate those threats. Before the de-
velopment of ThreatGet, that meant collecting available research for reference or
building out new research and analysis [6]. The following steps focus on the main
threats and recommended controls for OTA software updates, which were defined
in [14] and are displayed below.
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Threats, Risks and/or Vulnerabilities Anticipated Security Controls

• Read Updates: Attackers access/read
contents of software updates, which may
lead to loss of intellectual property.

• An encrypted channel is used between the
vehicle and the OEM system.

• Deny Updates: Attackers prevent a vehicle
from fixing software problems by denying
access to software updates.

• Enhanced cryptography and image
stenography techniques for software
updates.

• Deny Functionality: Attackers cause a
vehicle to fail to function.

• Verify the authenticity of the software
update source

• Control: Attackers cause a vehicle to install
software of their choosing.

• Use automotive software update
frameworks (Uptane).

• Log update status and events.

A list of assets affected by the problem statement was also created during research.
Asset Title Asset Description

• Software Update Server (External) • OEM server contains the software update
repository.

• CAV Central Gateway (Internal) • Orchestration between Server/Client
infrastructure. Requests and retrieves
software updates.

• Software Update Client (Internal) • CAV component, deploys and
acknowledges software updates.

Step 3: Threat modeling: This step provides a list of threats within the problem
statement [6]. The OTA software update process modeled with the ARAM Frame-
work is the target for threat modeling using the threat modeling tool ThreatGet based
on the automotive ruleset. The identified threats were categorized against the threat
events taxonomy. For each threat the potential threat events were characterized, the
relevance of the event assessed and the threat sources determined that could initiate
the events [6]. The threat modeling produced the following result. As outlined in the
previous step this is not the overall list of threats identified by ThreatGet. It concen-
trates on the main risks of OTA software updates.

Threat Event (ID / Title) Threat Description and Characteristics

• TE-37: Compromise of confidential
information or data breach.
TE-23: Man in the middle attack or
network traffic modification.

• Software update content maybe is
intercepted or stolen. One way to read this
data is to stage an eavesdropping attack.

• TE-34: Violate isolation in multi-tenant
environment.

• Blocking/Slowing-down software update
retrievals lead to outdated software or
exploitation of known vulnerabilities.

• TE-42: Denial of service on hosting
platform or system services.

• Continuous sending of a certain software
update may lead to update prevention,
freezing, or a crash of a vehicle component.

• TE-27: Exploit hardware or platform
vulnerabilities.

• Sending outdated or incompatible software
with known vulnerabilities may lead to the
vehicle failing to function.

• TE-31: Unauthorized changes or
manipulation of application functionality
or code.

• Overwriting the software update with
malicious software may lead to
unanticipated behavior.
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Step 4: Define and map security control objectives: In this step, the complete re-
search done up to this point is used to determine appropriate controls to mitigate
the threats. It is important to note that this step does not automatically generate an
answer to what security controls are required within a security pattern. It ensures
that all different angles of the problem space are considered and that completeness
is built into the rationale as to why those controls are needed [6]. The National In-
stitute of Standards and Technology (NIST) Risk Management Framework is used
as a taxonomy for security controls. First, threats are mapped to assets. In the upper
part of Figure 1, each threat is stepped through and the affected assets are identified.
Second, controls are mapped to threats. In the lower part of Figure 1, for each threat,
the mitigating controls are identified. To avoid repetitive work and to not go beyond
the scope of this paper only the asset Software Update Client is considered from this
point [6].

Step 5: Assemble the security pattern: After the mapping of threats to assets and
threats to controls, the relationship between assets and controls is built out. In this
step, the two different mappings are reversely traversed from the control objectives
back to the asset. This results in a list of controls to mitigate the identified threats
for the asset, Software Update Client [6].

Threat Event Security Controls Objectives

• TE-27: Exploit hardware or platform
vulnerabilities.

• AC-03: Access Enforcement, CM-07:
Least Functionality, SI-03: Malicious Code
Protection, SI-07: Software, Firmware, and
Information Integrity

• TE-31: Unauthorized changes or
manipulation of application functionality
or code.

• AU-02: Event Logging, AU-10:
Non-repudiation, PM-12: Insider Threat
Program, SC-35: External Malicious Code
Identification, SI-02: Flaw Remediation,
CP-09: System Backup

Fig. 1: Threats mapped to assets / Controls mapped to threats

Control families:
AC - Access Control AU - Audit and Accountability CM - Configuration Management

CP - Contingency Planing PM - Program management SC - System and Communication Protection
SI - System and Information Integrity
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5 Application

As explained above, the goal is to further automate the security-by-design of auto-
motive architectures according to ISO-21434. The first major step to achieve was
the automation of threat modeling. This has already been addressed with ThreatGet.
The use case considered in this paper is the OTA software update process. Fig-
ure 2 contemplates an example, modeled with the ARAM Framework and imple-
mented as Domain Specific Language (DSL) for the modeling software Enterprise
Architect (EA). The bottom diagram shows the modeling of the ARAM Information
Layer, which is the starting point for the application of ThreatGet. The ARAM layer
is mapped to a proprietary ThreatGet diagram, see the top diagram of Figure 2. After
that, the automated threat analysis and risk assessment is performed. Where Threat-
Get ends, the next step towards further automation of security-by-design begins.
Accordingly, the NIST Risk Management Framework provides the needed control
objectives to mitigate the identified threats. At the end of the previous section, it is
shown, how security patterns can be assembled. However, keep in mind, that each
control objective described under NIST SP 800-53 [7] is written as a generic state-
ment for a broad set of assets [6]. This is an important property for developing a
general security pattern, but before the controls can be applied, they must first be
written in the context of the asset.

Asset Title Asset Description

• AC-03: Access Enforcement • Enforce discretionary access restrictions
for all devices, and services, which try to
interact with the client.

• CM-07: Least Functionality • Clients work only with minimal services
and toolsets required for their usage.

• SI-03: Malicious Code Protection • Clients have endpoint protection enabled
for anti-malware and intrusion prevention.

• SI-07: Software, Firmware, and
Information Integrity

• Ensure system integrity for CAV core
functionality is maintained.

• AU-02: Event Logging Malicious Code
Protection

• Clients that generate security event records
are aggregated into a centralized security
event monitoring.

• AU-10: Non-repudiation Event Logging
Malicious Code Protection

• Firmware and devices are digitally signed
from a trusted source (OEM).

• PM-12: Insider Threat Program Event
Logging Malicious Code Protection

• Regularly monitor clients at regular
intervals to ensure compliance with
workflows and the level of access
permissions.

• SC-35: External Malicious Code
Identification

• Periodically scan for potentially malicious
code that may be introduced to the external
firmware database of the OEM.

• SI-02: Flaw Remediation • Any firmware detected with security threats
is not permitted to deploy on the client.

• CP-09: System Backup • Using an A/B partition method will
provide a failsafe for the update process.

Subsequently, the security pattern is modeled as a Design Pattern in EA using the
previously assembled asset-centric controls. Thereafter, the security pattern is added
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to the ARAM Toolbox. There it is part of the ISO-21434 extension, which provides
templates for common security problems in automotive architectures. Using the
toolbox, security patterns can be applied to ARAM diagrams via drag and drop. The
result of the application to the OTA software update architecture, which was mod-
eled on the ARAM Information Layer, can be seen in the right corner of the bottom
diagram in Figure 2. The security pattern consists of a list of asset-centric controls
that must be met to mitigate the risks identified by threat modeling. It should be
noted that the security pattern is currently modeled for only one asset, the Software
Update Client. However, it is already a preview of the result.

Fig. 2: Threat model / Pattern application
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6 Conclusions and Future Work

The presented approach outlines a first step towards the overall automation of
security-by-design according to ISO-21434. This intention can be realized, by the
construction of so-called security patterns, stated in Section 2 and following the se-
curity pattern engineering process, presented in Section 4. Therefore, primary the ar-
chitecture of an CAV needs to be modeled with the ARAM Framework and analyzed
with the threat modeling tool ThreatGet to find potential threats. Consequently, the
created pattern, can be applied to this very model, in the form of an extension for the
ARAM Toolbox and help to mitigate occuring threats and risks in a certain scenario
e.g., OTA update. Further research will focus on automating the remediation of cy-
bersecurity risks using security patterns, the ARAM Framework, and the associated
result validation and verification. In addition, it will be examined how the results of
the security pattern engineering process on each layer of ARAM affect the required
components on the layers below and how they can be automatically constructed and
validated. One possibility is the utilization of software tools like LemonTree, de-
veloped by LieberLieber Software, which already enables automated validation of
Systems Modeling Language (SysML) models. The future work aims in particular
to incorporate vehicle functions and vehicle security development accurately, seam-
lessly, and with as little overhead as possible.
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