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Fig. 4. Precision at highest resolution (3 s).

such as e.g., kitchen_outlets4 (compare also with Fig. 4).
It should be noted that the negative events of an appliance
typically have the same absolute values as the positive events,
thus only the positive events are shown here.

V. EVALUATION OF APPLIANCE
DETERMINATION ABILITY

According to the causal chain (1), the first step in the deter-
mination of private information is considered, i.e., the ability
to determine appliance use is evaluated

Load Curve = Appliance Use. 3)

Note that the subsequent analysis models the detection of a
given appliance. Due to the reasoning stated in Section III-A
the assessment of the on-duration of appliances is not
evaluated.

A. Classification Method

The chosen methodology can be identified more clearly,
when the problem is stated in another form. Considering a
detected event, one wishes to know, which appliance this
event is stemming from. This is exactly a multiclass classifi-
cation problem where the number of classes is the number of
appliances. This multiclass classification problem is split into
several one versus all two-class classification problems, one
classification problem for each appliance. The input is the 1-D
value of the event to be classified, the output is the informa-
tion, if the event is stemming from this appliance or from one
of the other appliances. Due to this setting, natural measures
for appliance detection performance are precision and recall
of classification. If a single performance value is required, the
F-score (2) can be used. In contrast to a normal classification
scenario where a good performance is requested, here small
values are desirable with respect to privacy preservation.

It is expected that the overlap affects the precision of the
classification task. Appliances with negligible overlap of their
event values with event values of other appliances, such as
washer_dryer3 and oven2, are expected to lead to simple clas-
sification problems with high precision. The precision of the

corresponding classification problem is expected to decrease
with increasing overlap.

Of course, more sophisticated analyzes could be done
exploiting, e.g., the periodicity of the refrigerator or the typical
duration between events of the appliance [15]. The informa-
tion about the time of the day when the appliance was used
could be taken into account [15], too. A dishwasher run con-
sists of a series of events with different event values. The
fact that different runs all look very similar to the time pat-
tern of events shown in Fig. 1 could be exploited as follows.
Event values of kitchen_outlets3 have similar values as one
particular level of the dishwasher values (Fig. 3). Looking at
the statistics of events over some past time window, if some
other event values of the dishwasher do not occur, the dish-
washer could be ruled out and thus kitchen_outlets3 could be
distinguished from dishwasher. The same argument could be
applied to washer_dryerl and the dishwasher. However, such
a detailed analysis is not the scope of this paper.

For the sake of simplicity, as classification algorithm the
nearest neighbor method using three nearest neighbors is used.
The resulting precision of the several two-class classifica-
tion tasks for the highest time resolution is shown in Fig. 4.
Precision is typically in the range between 60% and 80% with
a maximum precision for washer_dryer3 of nearly 100%. By
comparing Figs. 3 and 4, the negative influence of the overlap
with events from other appliances on the precision is evident.

Note that here no direct NIALM analysis was done. Instead,
only the event-values of the individual appliances (or circuits)
are directly taken in order to analyze possible NIALM perfor-
mance. The result can be used for an optimistic (in the sense
of precision) estimate for the precision of a NIALM analy-
sis, if several assumptions hold. The first assumption requires
that the mains signal is the sum of the individual appliances
loads plus a possible constant offset value which has no influ-
ence on events. Secondly, the noise must be of equal size both
for all individual appliances and for the mains signal. Thirdly,
and most importantly, the one-at-a-time condition which is a
special form of the switch continuity principle [9] is assumed
to be fulfilled. This condition states, that during each time
interval at most one of the appliances changes its state.

B. Method Evaluating the One-at-a-Time Condition

The one-at-a-time condition is already known as a com-
mon necessary condition for some NIALM algorithms [9].
When more than one appliance change their state the edges
of the aggregated signal are the sum of the individual edges.
This leads to a much bigger search space of possible solu-
tions which must be handled by the NIALM algorithm.
Additionally, when more than one combination of appliances
have the same aggregate edge value, ambiguities arise.

The classification method above looks at the signals of sin-
gle appliances. Consequently, the one-at-a-time condition is
ignored. The information about each appliance is obtained by
separately applying the edge detection algorithm on the signal
of each single appliance. However, in a usual setting, only the
aggregate signal is given, thus hardening the disaggregation
problem. The one-at-a-time condition suggests that a change
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of an appliances’ state can only be detected, if only this single
appliance changes its state during the measurement interval.
For the assessment of the one-at-a-time condition, for each
event found, it is checked, if this is the case or not.

First, the edges are computed from the individual signals of
all appliances at the highest time resolution available and all
event times are evaluated. An event is the only event within
a measurement interval, if the duration to both the previous
and the next event time exceeds the measurement interval. If
the smaller duration is less than the measurement interval an
event can be classified as single event, otherwise an event is
classified as a coincidental event. As a performance measure
now the proportion of single events for each appliance and
measurement interval is calculated. Also here, small values
are desirable with respect to privacy preservation.

VI. INFLUENCE OF TIME GRANULARITY ON
APPLIANCE CLASSIFICATION

In this section, the influence of time granularity Af on pre-
cision and recall of the classification method shown above is
studied.

A. Influence of Time Granularity on Recall

In a normal NIALM classification setting, the recall of a
given appliance is defined as the proportion of events stem-
ming from this appliance that can be found in the aggregate
signal. However, due to the unknown differences between the
mains signals and the signals of the individual appliances sig-
nals (Fig. 2), it was decided not to use the aggregate signal.
As a consequence, the recall cannot be evaluated directly. In
order to assess a quantity similar to the recall rate, the numbers
of detected events of an appliance are compared for different
time resolutions. Considering the events found at the high-
est resolution as ground truth, the number of events found at
different time granularities can be normalized by this ground
truth. Since the goal of this paper is studying the changes that
arise due to changes in time resolution, this normalized num-
ber of events sufficiently serves as a measure of the recall
rate. This measure for the recall is too optimistic because it
is assumed that the recall at the highest resolution is 100%
and the events of the appliances are found from the appli-
ances signals instead of the mains signal. This overestimated
recall measure goes down to near zero with decreasing gran-
ularity (Fig. 5) which is sufficient for a decrease of the exact
recall rate.

In the privacy setting, the decrease of the recall to near
zero means that with the time interval exceeding an appliance-
specific threshold, a device will not be detected any more.
Undetectability of devices in turn increases privacy.

B. Influence of On-Duration on the Recall

Fig. 5 shows that the recall of the appliances decreases
with increasing measurement interval Az. The measurement
interval Atg,0p Where this decrease takes place differs among
appliances. This appliance-dependent quantity is denoted as
drop-time. This subsection shows that the property of the
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Fig. 6. Drop time Atgrop and median on-durations of different appliances.

appliances by which this critical duration is influenced is the
on-duration Tyy.

For an experimental assessment of this influence, for each
appliance the drop-time Atgrop Of the recall is assessed as the
time granularity where the recall in Fig. 5 is below 30% at
first time. The value 30% was chosen for making Atgrop robust
against false positive events. A comparison of the obtained
recall drop-time Afgrop and the on-duration of the appliances
in Fig. 6 shows a clear increase in drop time with increasing
on-duration.

The connection between the on-duration and the drop of the
recall can be explained by the mechanism of the transient pass-
ing method applied to a simple on—off-appliance with fixed
on-duration 7y,. For ease of explanation sampling of values is
assumed. The transient passing method detects an on-state as
a steady sequence of at least n values with higher energy con-
sumption. As in [9], in this paper, n is set to 3 which is one of
the smallest possible choices for n having thus a good detec-
tion property with reasonable robustness. If the on-duration
Ton is too small, Ty, < (n — 1)At = 2At, at most two subse-
quent values can have higher loads which is just not enough
to detect the on-state. Consequently, no change from or to the
on-state can be detected. Rewriting this condition, the recall
rate should drop to zero, if the time interval At exceeds a
threshold which depends on the on-duration

Ton
At > Al‘drop,ideal(Ton) = -

“)
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Fig. 7. Recall of 3 different appliances, estimated by the rule of thumb (5).

Using this connection, the knowledge about the on-duration
of an appliance—which is often available as an initial guess
without any NIALM-like analyzes—can be used for estimating
the time interval Af needed to significantly decrease the recall
rate. If the time interval exceeds half of the typical on-duration
of an appliance, a considerable proportion of events stemming
from this appliance cannot be detected any more. Using the
cumulative distribution of on-durations F(7,y), this rule can
be formalized: dependent on the measurement interval Az, an
approximation for the recall rate R(Af) can be calculated as

R(AD) = 1 — F(A/2). (5)

This estimated recall rate of events is illustrated in Fig. 7
for lighting3, ovenl and the dishwasher. Despite the different
choice of x-axes a strong similarity to Fig. 6 can be noticed.
Due to the long on-durations, lighting3 exhibits high recall
rates. The different on-durations of the dishwasher-states result
in a staircase-like recall-curve.

C. Influence of Time Granularity on Precision

After studying the influence of the time resolution on the
recall rate in Section VI-A, now the precision for the remaining
events of the remaining appliances is investigated.

Interestingly, for increasing time interval At the precision
for the classification of the remaining events keeps being
high. This behavior is illustrated for house 1 and a time
interval of 15 min. Due to the low recall, only four out
of 15 appliances/circuits are still detectable. The precision
of classification for these four remaining appliances is even
higher than for the highest time resolution. One reason for
this behavior is that a four-class classification problem is much
simpler than a 15-class classification problem.

Another prerequisite for this behavior is the surprisingly
robust estimation of the event values which is exemplarily
shown for the dishwasher in Fig. 8. This stability property
only holds for the transient passing method. For the edge
merging method event values are relatively stable but show a
slight decrease of event values (Fig. 9) while for the difference
method event values get smeared for decreased time resolution

Fig. 8. Robustness of dishwasher event values when determined with transient
passing edge detection.
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Fig. 9. Dishwasher event values determined with the edge merging method.

(not shown). The amount of smearing for the difference
method is most pronounced for the averaging-statistic.

VII. UNDERSTANDABLE PRIVACY ANALYSIS

This section aims at presenting the results about the influ-
ence of time granularity. As an important requirement, these
results should be easily understandable and thus be suitable for
unexperienced people like end-users or other decision makers.
The influence of the time resolution is discussed in two parts:
1) the first part shows the influence on appliance use detec-
tion and 2) the second part shows the influence on higher-level
personal information.

A. Detection of Appliance Use

An appliance can provide insights into personal information
only if it can be detected and if the precision of detection is
high. An appliance with these two properties will be called
measurable. Measurability of an appliance itself does not nec-
essarily imply danger for privacy, because appliances that are
automatically controlled such as the refrigerator do not provide
personal information even if their operational states are known.
In contrast, nonmeasurability does imply privacy-safety which
is the property that should be assessed here. Measurability
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Fig. 10. F-score matrix. Small values are desirable for privacy.

can be assessed using the commonly used F-score which is
computed from recall r and precision p by (2). Arranging
the F-scores for all appliances and all time resolutions the
resulting matrix can be visualized by a heatmap as shown in
Fig. 10. There, the privacy-harmless appliances having low
F-scores are colored green, while measurable and thus poten-
tially privacy-decreasing appliances having high F-scores are
colored red or orange.

The visualized F-score matrix (Fig. 10) clearly shows that
measurability decreases and consequently privacy increases
with increasing time interval.

Interestingly, measurability not necessarily decreases with
increasing time interval. For example the F-score of appli-
ance bathroom_gfi is maximal at a time interval of 30 s. This
behavior can be explained by the high overlap of its event
values with the events values of the appliances microwave,
ovenl, oven2, and kitchen-outlets4 (Fig. 3). This overlap leads
to a rather small precision and consequently small F-scores
of bathroom_gfi at high time resolution. However, the other
appliances have shorter on-durations than bathroom_gfi. The
short on-duration leads to a sharp drop of their recall at a time
interval of 30 s. For bathroom_gfi the drop at the 30 s interval
is relatively small, the sharp drop occurs later at a time inter-
val of 1 min (Fig. 5). Thus, since the masking events of the
other appliances are not present at a 30 s interval the precision
of bathroom_gfi increases from 47% at 10 s intervals to 81%
at 30 s intervals. This increase in precision overcompensates
the drop in recall from 90% to 71% leading to an increased
F-score (from 0.62 to 0.76) and thus explaining why bathroom
activities are only measurable at 30 s time intervals.

Assessing appliance use with the one-at-a-time condition
method shows that the proportion of single events decreases
with increasing time interval (Fig. 11) which again implies an
increase of privacy.

Comparing the results of the two evaluation methods shows
a similar behavior. The only big differences can be seen for
lightingl and lighting2 which look much more privacy-safe
when evaluated by the one-at-a-time condition method. This
increase in privacy compared to the F-score assessment can be
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explained by the fact, that this method considers all appliances
at once instead of just a single appliance. For the chosen house
lighting1 and lighting?2 are strongly co-occurring, therefore the
proportion of single lighting events is small already at a very
fine time resolution. This dependence of appliances can not
be modeled with the classification method which looks only
at the event values and not at the event time.

B. Detection of Activities

Now, according to the causal chain (1), higher level privacy
implications of the resulting matrices are illustrated

Appliance Use = Activities, Presence/Absence.  (6)

For ease of explanation, a privacy-threshold of 0.7 is intro-
duced. Entries with higher values are classified as measurable,
entries with lower values as unmeasurable. Thus, red or
orange entries are regarded as privacy-relevant while green
or yellow entries are regarded as privacy-safe.

Looking at the F-score matrix, for 1 h time intervals all
appliances are privacy-safe. For a 1 min time interval only
the lights are privacy-relevant (because of its automatic opera-
tion mode the refrigerator is regarded as safe in this analysis).
Interestingly, increasing the time interval from 1 to 5 or 15 min
only negligibly increases privacy here. Bathroom activities
(bathroom_gfi) are only measurable at exactly 30 s time
intervals. Cooking (stove, ovenl, oven2, and microwave) and
housework (washer-dryer and dishwasher) are privacy-safe for
time intervals of 30 s or more. It should be noted that the
kitchen outlets were not considered for this analysis due to
the unclear nature of the corresponding appliances. The result
of this short discussion is shown in Table II.

Considering the one-at-a-time condition evaluation method,
already at a measurement interval of 2 min, all appliances are
privacy-safe. As before, the increase in privacy compared to
the F-score assessment can be explained by the co-occurrence
of lightingl and lighting2.

The results of Tables II and III should be seen as a first eval-
uation of privacy that is likely to be too optimistic. On one
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hand, this privacy analysis is based on the effect of an
increased measurement interval on event detection. While fine-
grained personal information is likely to be based on appliance
events, it seems plausible that coarse information such as pres-
ence or absence could easily be found using other methods.
Such methods could for example examine the difference in
average power consumption for times where the inhabitants
are present or absent. For the detection of certain activities it
could be sufficient to distinguish different groups of appliances
such as appliances used for cooking.

On the other hand, the choice of the value 0.7 as the
privacy-threshold is quite arbitrary and mainly intended for
demonstrating the privacy evaluation. Choosing this value
as a threshold for the F-score, an appliance is considered
measurable, if nearly each single event can be detected and
distinguished from other appliances events. However, for the
detection of regular personal habits it is not necessary to
detect each single event, it is rather necessary to detect enough
events during the recording time. Having data for long dura-
tions such as years, a lower recall rate could be considered
privacy-relevant leading in turn to a lower acceptable F-score
privacy-threshold. Looking at a thought experiment of an
appliance used twice a day and a measurement duration of
three years leads to approximately 300 events. Even one-third
of these events would be enough to estimate typical usage
times.

The privacy-threshold should also be chosen separately for
each appliance. For example, one run of a dishwasher leads
to many events. Although for a time interval of 30 s the
F-score goes down to 0.32 (Fig. 10), the main big events are
still detectable at this time granularity (Fig. 12, upper panel)
suggesting that a lower threshold is needed for the dish-
washer. Averaging over a 5 min interval, only one edge is
left (Fig. 12, lower panel), using a 15 min interval, also this
last event can not be detected any more suggesting for the
dishwasher an F-score threshold of 0.04 or less. Despite these
open issues, the usefulness of the performed evaluations for a
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Fig. 12.  Edges for dishwasher for Ar = 30 s (upper panel) and 300 s

(lower panel).

first assessment of the impact of time granularity on personal
information could be shown.

VIII. CONCLUSION

Although being the simplest possible privacy enhancing
technique, the impact of decreasing the time resolution on pri-
vacy analyzes of load signals obtained from smart metering to
date has not been studied systematically. Since the first step
in a privacy attack can consist of the assessment of appliance
use which is in turn often based on edge detection methods,
the influence of the time interval on edge detection methods
applied on load signals is studied.

Using edge detection alone already leads to valuable insights
about the disaggregation possibilities for different appliances,
a full NIALM-analysis is not necessary. Appliances whose
events have a small overlap with the events of the other
appliances can more easily be disaggregated.

With increasing time interval, the recall, i.e., the propor-
tion of detected edges stemming from a device decreases.
This decrease is more pronounced for appliances with shorter
on-durations. As a coarse rule of thumb, when the time inter-
val exceeds half the typical on-duration of an appliance, the
appliances event values cannot be reliably detected any more.
For the house analyzed in detail, increasing the measure-
ment interval to 15 min has the effect that only four out of
15 appliances/circuits remain detectable (three lighting circuits
and the refrigerator). For these remaining appliances the dis-
aggregation precision stays high, because even for high time
intervals the transient passing edge detection method robustly
determines edge values.

Privacy implications can be evaluated by F-score values or
the proportion of single events of an appliance. Evaluating
these values for different appliances and time granularities,
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the resulting matrices can be visualized. This visualization
represents the impact of time granularity on privacy in an eas-
ily understandable way suited for nonexperts like the users
themselves or other decision makers.

For the next natural steps toward privacy evaluation datasets
that include personal information or activity logs are needed
enabling a more direct assessment of personal information.
Such data would be the basis for finding a well-founded
way of choosing privacy-thresholds, an evaluation method that
combine the two methods proposed here or other methods
especially designed for low measurement intervals.
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