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Abstract—The Smart Grid is the leading example when talking
about complex and critical System-of-Systems (SoS). Specifically
regarding the Smart Grids criticality, dependability is a central
quality attribute to strive for. Combined with the desire of agility
in modern development, conventional systems engineering meth-
ods reach their limits in coping with these requirements. However,
approaches from model-based or model-driven engineering can
reduce complexity and encourage development with rapidly
changing requirements. Model-Driven Engineering (MDE) is
known to be more successful in a domain specific manner.
For that reason, an approach for Domain Specific Systems
Engineering (DSSE) in the Smart Grid has already been specially
investigated. This Model-Driven Architecture (MDA) approach
especially aims the comprehensibility of complex systems. In this
context, the traceability of requirements is a centrally pursued
attribute. However, achieving continuing traceability between the
model of a system and the concrete implementation is still an open
issue. To close this gap, the present research paper introduces
a Model-Centric Software Development (MCSD) solution for
Smart Grid applications. Based on two exploratory case studies,
the focus finally lies on the automated generation of partial
implementation artifacts and the evaluation of traceability, based
on dedicated functional aspects.

Index Terms—Smart Grid, Dependability, SGAM, DSSE,
Traceability, Model-Centric Software Development, Code Gen-
eration

I. INTRODUCTION

In recent years, the sustainable development of future
power systems has gained significant relevance. In order to
reduce energy resources like fossil fuel or nuclear power,
renewable energy is increasingly encouraged. Due to the
granularity and the dispersion of renewable energy production
facilities, the traditional power grid more and more changes
towards a dynamic network, containing multiple producers
and consumer, the so-called Smart Grid. Furthermore, by
the increasing number of Smart Grid based enterprises and
the associated autonomy of the individual applications, the
grid progressively emerges to a System-of-Systems (SoS).
In order to force the functional safety of the Smart Grid
and its applications, factors such as the dependability for
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SoS have to be ensured. Dependability includes the attributes
reliability, availability, maintainability, safety and the security-
related attributes integrity and confidentiality [1]. However,
since conventional systems engineering methods can fulfill
these requirements in simple systems, the question is: How
can dependability be addressed in the context of SoS?

Apparently, new methods for system development and man-
agement need to be defined. Based on the Smart Grid Archi-
tecture Model (SGAM) [2], the research of [3] introduced the
approach for Domain Specific Systems Engineering (DSSE)
in the Smart Grid. As defined by the concepts of Model-
Driven Architecture (MDA), DSSE describes an optimized
development process for systems based on the Smart Grid.
The traceability of system requirements throughout the various
layers of SGAM is a central aspect of this modeling approach.
Beyond that, however, tracing these requirements down to
executable software is not yet covered in this context. The
stated goal of the present research is the implementation of an
interface for source code generation, meeting the requirements
of DSSE and the target platform FREDOSAR! [5]. This
will be addressed with an adequate life-cycle integration of
a Model-Centric Software Development (MCSD) approach.
Finally, for evaluation, the achievement of traceability be-
tween model components of a system and concrete source
code should be surveyed. Therewith a further step towards
a sustainable method for approaching dependability in SoS
should be made.

The remainder of this paper is structured as follows: Section
Il gives a more detailed overview of related work and the
background of DSSE for Smart Grid applications. In Section
IITI the approach is described in detail and the selected research
methodology is depicted shortly. After that, the actual imple-
mentation of several case studies is demonstrated in Section
IV. Finally, the chosen case studies are evaluated in Section
V and the paper is summarized and concluded in Section VL.

Uhttps://www.fredosar.org/



II. RELATED WORK

This section gives an overview of the state-of-the-art and the
related work. Since this paper especially targets dependability
in complex SoS, first, some system-related terms have to be
introduced.

A. Classification of Systems

Basically, systems can be distinguished based on the at-
tributes dynamic and alterability as well as diversity, variety
and scale. A small number of elements with static intercon-
nections is defined as simple system. Increasing the number of
elements and including modifiable interconnections, results in
a complicated system. Finally, a system with a large number
of changing elements and a dynamical interaction behavior
between those elements is classified as a complex system [6].
However, if the complex system’s individual participants also
have an autonomous character, the term ”System-of-Systems
(SoS)” is suggested to be used. Maier [7], Sage and Cuppan [8]
and DeLaurentis [9] furthermore elaborated a number of traits
describing SoS. It includes operational independence, geo-
graphic distribution, evolutionary behavior, emergent behavior,
independent system networks, heterogeneity and trans-domain.
Hence, the initial idea of the Smart Grid finally ends in a SoS,
including infrastructure, functionality, services and interfaces,
which can be applicable for a broad range of enterprises.

However, due to the complexity and criticality of the Smart
Grid new challenges for risk management arise. Managing
complexity, maintaining consistency and assuring traceability
during system development are the key tasks for minimizing
potential faults. This is where conventional systems engineer-
ing methods get to their limits. Although, system models can
provide crucial support.

B. Model Support

For the mastery of the aforementioned systems engineering
challenges Wymore [10] introduced the Model-Based Systems
Engineering (MBSE) paradigm. Generally, Model-Based En-
gineering (MBE) refers to a process in which software models
play an important role without being the key artifacts for
development. As a consequense of the changing requirements
of systems engineering the concepts of MBE have been
evolving over time. Madni and Sievers [11] give a timely view
into MBSE and its motivation, the current status and needed
advances.

In contrast to MBE, Model-Driven Engineering (MDE)
and Model-Driven Development (MDD) use the descrip-
tive models as primary artifacts for system and software
development. Model-Driven Architecture (MDA) is a more
specialized concept of MDD, which refers to the standards
of the Object Management Group (OMG). Another slightly
modified approach is Model-Centric Software Development
(MCSD), which especially focuses on the automated gen-
eration of partial implementation artifacts dependent on the
aspects of interest [12]. Independent from these gradations,
model-supported approaches are particularly applicable for
expressing domain concepts and for reducing complexity of

developing. MDE furthermore addresses development with
rapidly changing requirements and prevents from many errors
early in the engineering life-cycle [13]. The research of Whit-
tle, Hutchinson and Rouncefield [14] reports on a study that
surveys the state of practice in MDE. It especially highlights
that domain specific concepts are more successful than general
approaches. Domain Specific Systems Engineering (DSSE) is
therefore the suggested solution for MDA in the Smart Grid.

C. Domain Specific Systems Engineering in the Smart Grid

The launch of the Smart Grid Architecture Model (SGAM)
by the European Standardization Mandate M/490 was one of
the biggest achievements in the era of Smart Grid engineering
[2]. An SGAM-based model is a virtual representation of a
Smart Grid system or a specific use case in this domain. As
depicted in Figure 1, it includes domain-specific viewpoints,
giving space for the needs of various stakeholders and their
requirements. The SGAM is structured three-dimensionally,
including Domains and Zones as well as an Interoperability
Dimension. Every element of a Smart Grid model can be
clearly assigned within this 3D categorization. The Domain-
axis of the model decomposes a Smart Grid system on basis
of the position of an element in the electricity grid. The Zone-
axis on the other hand distinguishes the element’s roles with
regard to automation possibilities. Finally, the Interoperability
Dimension defines layers for Business, Function, Information,
Communication and Components.

Business Objectives
Polit. / Regulat.. Framework

Business Layer

Function Layer

Interoperability
Dimension

Fig. 1. The Smart Grid Architecture Model (SGAM) [2]

Beyond SGAM as a theoretic specification, the work of
Neureiter [3] outlines a synopsis of several years of research
for practically applicable system development in the Smart
Grid. The background of this research is another issue to
be pointed out in more detail. First, a MDA-based process
for the Smart Grid has been launched [15]. For real world
applicability, the so-called SGAM-Toolbox? is an essential

Zhttps://sgam-toolbox.org/



side benefit of the mentioned research. The methodology
as well as the tool especially focus on the requirements-
based development of Smart Grid use cases. Mostly, the
development is initiated by business cases, which orientate
to business goals and general politically-driven restrictions.
The continuing development with DSSE then requires the
traceability of the stated objectives throughout all layers of
SGAM. By adhering to the principles of MDA, a high level
of consistency can be achieved with DSSE. To give a more
detailed insight, the DSSE-based process of developing Smart
Grid applications is shortly described in the following.

D. Process Model (PM)

The Process Modell (PM) of DSSE provides a guidance
through the whole developing processes of Smart Grid ap-
plications. The process is divided into the three sequential
engineering phases: System Analysis, System Architecture as
well as Design and Development.

System Analysis Phase

Based on stakeholder needs, in this phase, a business analysis
is done and a Business Use Case (BUC) is defined. Therefrom,
corresponding Business Actors (BAs), Business Goals (BGs)
and High Level Use Cases (HLUCs) are derived. The output
of this phase is the SGAM Business Layer. In a further step,
the BAs are transformed to Logical Actors (LAs). Finally, in
the requirements specification, requirements are defined for
every LA. Hence, another result of the System Analysis is
the SGAM Function Layer. These two layers correspond to
the Computational Independent Model (CIM) specified in the
MDA. This is the base for further development.

System Architecture Phase

In the System Architecture Phase possible architectural solu-
tions are developed. Thereby, a model transformation maps
the LAs to physical components. This transformation aims
the linkage between domain specific aspects and technology
specific realizations of components, including individual at-
tributes, behavior and interactions. This phase therefore mainly
concerns the SGAM layers for Communication, Information
and Components, which represent the Platform Independent
Model (PIM) of MDA.

Design and Development Phase

Based on the achievements of the preceding phases, this phase
deals with the concrete realization of the particular compo-
nents. It is divided in two steps. First, a detailed architectural
design is created. This transformation step turns the system
components from black boxes to white boxes. Thereafter, as
the second step, physical components and concrete software
solutions are implemented. This phase reflects the Platform
Specific Model (PSM) and the Platform Specific Implementa-
tion PSI of MDA.

A more detailed insight into the PM is given in [3]. In
general, the DSSE approach and the SGAM-Toolbox are the
base accomplishments of this continuing research. Moreover,
the given approach is suggested to be extended and integrated
to a comprehensive SoS Integration Toolchain for Smart Grids.

E. System-of-Systems Integration Toolchain

The SoS Integration Toolchain has been introduced by [3].
It is illustrated in Figure 2. The concepts of the toolchain try
to give an appropriate solution for the sustainable development
and integration of future energy systems. The proposal of the
toolchain is composed of the following eight steps:

1. GIS data import:

The first step of the toolchain comprises the import of
Geographic Information Systems (GIS), which includes
electricity based data of energy grid analysis.

2. Use Case import:

In the second step typical Smart Grid related use cases
are imported. This is done on the basis of community-
based repositories, called Use Case Management Repository
(UCMR).

3. Reference Architecture import:

This is followed by the import of a general Reference
Architecture (e.g. the NIST Conceptual Model [16]) as a
starting point for development.

4. Architecture Development:

By means of the SGAM-Toolbox the individual Architecture
Development takes place. As an example, a standard-based
approach for domain specific modeling of Smart Grid system
architectures is accurately described in [17].

5. Model Evaluation:

After the architecture development, the introduced toolchain
process suggests a Model Evaluation. Thereby, the developed
model can be evaluated on basis of defined Key Performance
Indicators (KPIs). In this context, an example for the
assessment of privacy indicators is given in [18].

6. 3D Visualization Tool:

A further evaluation approach recommends the manual
inspection of the developed architecture model. For the
manual evaluation in interdisciplinary environments an
adequate 3D Visualization Tool has been developed for
support [19].

7. Power System Simulation:

Besides the static evaluation of architectures the analysis of
the dynamic behavior of an application in the context of a
SoS is recommended. Mosaik? is a dedicated Co-Simulation
framework developed for evaluating applications for the Smart
Grid [20]. A first attempt for the investigation of emergent
behavior caused by electric vehicles is stated in [21]. Though,
there is still a great potential for further research in this field.

8. Source Code Generation:

Finally, step eight addresses the automated Source Code
Generation. To achieve traceability, the goal of the depicted
approach is the transfer from a detailed SGAM-models
to concrete executable software. For that reason, a
general middleware framework FREDOSAR has been

3https://mosaik.offis.de/
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Fig. 2. System-of-Systems “Integration Toolchain” for Smart Grids

developed. To support model-centric approaches, FREDOSAR
provides specially designed interfaces. However, the needed
applicability has not been evaluated or proofed yet.

This overview of the SoS integration toolchain and the
associated research effort indicates the relevance of this re-
search field. Nevertheless, there are still some open issues to
be implemented, evaluated and discussed. One of those is the
implementation of an interface between the SGAM-Toolbox
and the execution platform FREDOSAR. To make the intended
interface finally evaluable, the interpretation of “traceability”
has to be defined first.

FE. Traceability

As a result of the aforementioned research, traceability
of requirements has been identified as a very reasonable
quality factor for dependable SoS engineering. Regarding its
terminology, traceability has an origin in various domains. The
work of Winkler and von Pilgrim [22] gives a general overview
and treats the role of traceability in requirements engineering
and MDD. Therefore, the present paper orientates to the IEEE
Standard Glossary of Software Engineering Terminology [23],
which defines traceability as “’the degree to which a relation-
ship can be established between two or more products of the
development process”. The stated relationship between these
products or artifacts is built on so called traceability links. A
traceability link implies the actual dependencies and influences
that exist between artifacts [22]. The distinction between
traceability in modeling and source code generation is simply
that at MDD the traceability links are generated automatically,
whilst the links in a system model are mostly created manually.
As DSSE primarily aims the requirements engineering part, the
research of this paper focuses on the traceability between the
final model and the non-model artifacts generated or derived
from it.

III. APPROACH

Reviving the preliminary findings of the state-of-the-art, it
becomes apparent that there are still some open issues concern-
ing a consistent MDE approach for Smart Grid applications.
Generally, however, the scientific work presented in Section II
indicates that MDE is a sustainable answer for engineering
in complex systems or SoS such as the Smart Grid. The
previous achievements of DSSE therefore especially highlight
the usefulness of systems engineering based on MDA. A
proper approach for source code generation could be a further
step refining the earlier introduced SoS engineering toolchain.
Hence, an adequate approach for the depicted open issues has
to be devised.

Due to the dimension of projects in this research field
and the unpredictability of future applications, domain or
system specific requirements, the development process follows
the Agile Design Science Research Methodology (ADSRM)
[24], which is an agile methodology for application-related,
scientific research and development. The ADSRM is typically
built on exploratory case studies, which are driven by so-
called research entry points. In this case, the question for
dependability in the Smart Grid and related computing systems
is the favored research entry point. Based on the objective-
centered initiation of the ADSRM, the present research focuses
on the implementation and evaluation of traceability to be the
centrally aimed objective. The chosen ADSRM approach is
built on two exploratory case studies, whose implementation
and application will be described in more detail in Section I'V.

In order to make the intended methods evaluable, the
interpretation of traceability is particularly clarified to the
following: The focus for traceability especially lies on the
linking between models from the SGAM Functional Layer and
the source code generated therefrom. To get a better overview
of how this should be achieved, the intended development
approach is described in more detail in the following.
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A. SGAM-Model-Centric Development

Referring to the definitions presented earlier, the chosen
procedure is classified as a model-centric approach based
on SGAM-models. Thereby, the automated development
especially focuses on deliberately chosen model artifacts. The
model-centric approach allows a quick repetition between
the problem definition and the implementation of the aspects
of interest [12]. Figure 3 depicts the SGAM-model-centric
development approach. It includes the following steps:

1. SGAM-Model:

The desired interface should be designed to support the
previous achievements of DSSE, including the SGAM-
Toolbox as well as the FREDOSAR framework. The
SGAM-Toolbox 1is currently available for the Enterprise
Architect* (EA) software modeling tool. Hence, the starting
point for the MCSD procedure is a consistent SGAM-based
model.

2. Interesting Artifacts:

Commonly, the development of a Smart Grid application is
initiated by an upcoming business case. Besides to politically
forced general requirements, the business case objectives
are the main drivers of the system development. In DSSE
the system architecture is then developed throughout all
SGAM layers, including the Function Layer. Therefrom,
some detailed Functional Descriptions can be retrieved.
This functional descriptions are represented by an Activity
Diagram. This diagram includes those functional aspects,
that are estimated as potential risks for a safe applicational
behavior, primarily in the applications’s role in a SoS.

3. Code Generation:
Based on these interesting model artifacts, the source code

“https://www.sparxsystems.de/

generator of the EA is used to generate partial implementation
artifacts (Code Generation).

4. FREDOSAR Template:

The resulting code from the diagram-based code generation
is actually not applicable at this point of time, as the
derived artifacts are not suitable for any target platforms.
To solve this problem, the development approach further
applies accordingly prepared and verified code templates. By
implicating all relevant (service) dependencies, the applied
template perfectly meets the requirements of the FREDOSAR
target platform. Basically, the same approach is suggested to
be realized for other platforms.

5. Automated Build:

The resulting code artifacts are then centrally managed,
versioned and automatically built on a dedicated Gitlab
server. As the application’s integrity is guaranteed by a
signature, the traceability can also be guaranteed for the build
and deployment process.

6. FREDOSAR Deployment:

The result of the automated build is an executable FREDOSAR
application (FRAPP). From a central repositoryﬁ, this FRAPP
can finally be deployed to any hardware, which runs the
FREDOSAR framework properly.

Summarizing, the intended MCSD approach tries to give an
adequate answer to the identified requirements of the missing
piece to make up the SoS integration toolchain for Smart
Grids. The associated development steps of this model-centric
solution, as well as the applicability of the intended approach
will be treated in the following section.

Shttps://about.gitlab.com/
Shttp://repo.fredosar.org/applications/



IV. IMPLEMENTATION AND APPLICATION

This section gives an overview of the implemented interface
for MCSD. Oriented to the ADSRM, the earlier described
approach is applied on the Smart Grid demonstration exam-
ple Flexible Loads, including the case studies Electric Vehi-
cle Charging (EVC) and Variable Renewable Energy Tariffs
(VRETs). Briefly outlined, in this flexibilization approach,
customers allow the energy provider to control their loads.
E.g. when the grid reaches a peak, the energy provider can
add loads to compensate overproduction. Thereby, individual
Electric Vehicles (EVs) of a fleet, which are connected to
the grid, could act as a flexible energy storage. Compared to
lazy power plants, which take time to start up, this energy is
available quickly. For the given example, the SGAM Business
Layer contains two BASs, the Distribution System Operator
(DSO) and the Private Customer (PC). VRETs are then
calculated and offered by the DSO, which is responsible for
the stability of the energy grid and also for pricing in these
case studies. EVC, which indirectly provides flexibility to the
DSO, is represented by the PC.

Oriented to the process model introduced in Section II,
the use cases of these two BAs are traced to LAs and then
realized in HLUCs. Using the example of the given case
studies, the HLUC “consume cheap energy” is implemented
on the PC side and the HLUC “grid stability” is implemented
on the DSO side. To keep the example case studies of this
paper as simple as possible, a very low level of detail has
been chosen for the DSSE process model. The mentioned
illustrations should primarily clarify, that in DSSE there is a
trace between the BAs, the HLUCs and the resulting functions.

For modeling the aforementioned case studies, the SGAM-
Toolbox has been used. To generate code from the SGAM-
based model, it has to include UML classes and UML
behavior diagrams. The UML classes consist of attributes
and operations. Attributes are class variables and operations
are methods, which execute functionality or implement algo-
rithms. Each operation has its defined behavior. The behavior
represents either written code blocks or a linked element.
Linked elements are diagrams, which are able to generate
source code from. EA generates source code from Activity
Diagrams, Sequence Diagrams and State Diagrams. For the
given case studies Activity Diagrams have been chosen as
these basis linked elements.

The target platform FREDOSAR is linked as depending
artifact in the model. The code generator requires this de-
pendency to take care of the middleware specific design. This
can be done by either adopting the code generator or by using
templates. Compared to a template solution, adopting the code
generator is more expensive. Therefore, a skeleton FRAPP
template has been developed. This template has an adequate
structure and resolves the dependencies. To hook in the gen-
erated code, it also includes empty operations with markers.
Before modeling the classes, the template has been imported
and reverse engineered as UML class. The in code markers

are connected to the behavior diagrams through operations.
At this point, the preparation work for the code generation is
done. The following shows, how the individual case studies
EVC and VRETs have been implemented in detail.

A. Case Study 1: Electric Vehicle Charging

Customers have different preferences, how to charge their
EVs. It can depend on the price and also on the usage of the
EV. Should it be charged over night or during the day? What’s
the energy price for charging? How is the algorithm designed
to charge the car? Does it take care of personal preferences?

____________ %
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consume cheap energy

doStep
Activitylnitial
get actual
price

battery state [chargeStatePerc < 100]

[actPrice <=
HITEE startPrice]
not loading
battery full [ P

not | i loadECar
price to high ﬁ?

Trigger
Update

ActivityFinal

Generated Code D

private void doStep(){
if (chargeStatePerc < 100) {
if (actPrice <= startPrice)
//... code left out here in Figure
} else {
actChargingPower = @;

updateState();
¥

Fig. 4. Electric Vehicle Charging modeled as Activity Diagram

For this case study, six virtual neighbour households are
equipped with an EV and an EV controller. The combination
EV, EV controller and household is represented by the PC in
the model. A general behavior of the PC is to consume energy.
Furthermore, when the EV is connected to the grid and at this



time not needed, PCs can provide flexibility. Therefore, the
stored energy in the battery can be supplied to the grid.

Following the DSSE approach, the BUC of the PC is traced
to LAs and substantiated with HLUCs. A HLUC for the
PC is to “consume cheap energy”. As shown in Figure 4,
this HLUC is associated to the PC, which represents the
customer. In general, this figure outlines the traceability of the
requirements from the SGAM Business Layer to the Function
Layer, through an Activity Diagram. A detailed Activity
Diagram is derived from the HLUC of the PC. Therein, the
charging algorithm doStep is modeled. It charges the EV
when the electricity price falls below a defined threshold
and takes care of the current battery state and overcharging.
The doStep algorithm is connected as an empty operation
via the already mentioned code marker. The result is the
UML class ModelBasedECarImpl. Finally, the source code
for the EV charging application can be generated out of this
Class Diagram. The link between the model and the code is
established through defining the doStep as linked behavior
operation in the model. This link is crucial. It closes the
gap between the model and the source code. During the code
generation, the linked behavior is evaluated and the Activity
Diagram is translated to source code. A partial artifact of the
resulting source code is also shown in Figure 4 at the bottom.

The connection of all elements through different layers
guarantees traceability. The HLUC “consume cheap energy”
can be traced down to the algorithm description and through
the linked behavior down to the generated source code line. If
the HLUC changes, all affected model elements and also the
source code lines are known.

The second Case Study about VRETS is similar, but from
a different actor perspective.

B. Case Study 2: Variable Renewable Energy Tariff

Energy is produced in different power plants and also
bought at the spot market. Taking renewable energy sources
into account, the energy in the grid is volatile. To smoothen
peaks, the DSO varies the electricity price depending on the
available energy in the grid. This price is calculated on a
regular basis. The model for this case study consists of similar
elements as the previous case study. It has the DSO as BA, the
HLUC ”grid stability”, a detailed functional Activity Diagram
and the resulting generated source code. All these elements
are shown in Figure 5. To keep focus, the algorithm and the
generated code part is cherry picked. The price calculation
algorithm is modeled as an Activity Diagram. For an easier
understanding, the complexity of this algorithm is reduced to
a minimum. First, a function to retrieve the available energy
in the grid is called. If there is an overproduction, the price is
decreased. If there is an energy demand, the price is increased.
In the application, the new price is respectively published
to the PCs via a FREDOSAR communication service. As
modeled in the PCs Activity Diagram depicted in Figure 4, the
PC decides either to charge or not to charge, when a defined
price threshold is met. The resulting code after generating
the DSOs functionality is completely listed in Figure 5 at

grid stability

Distribution System >{

Operator (DSO)

act doStep

H Available energy
Activitylnitial

Over production?

[x=0.5]

Decrease Price Increase Price

actPrice -= 0.1 actPrice += 0.1

Publish price

updateState() ActivityFinal

Generated Code D

private void step(){
double energy = getAvailableEnergy();
if (energy»>@.5) {
actPrice -= @.1;
} else {
actPrice += 0.1;

updateState();

Fig. 5. Simple Price Calculation Algorithm modeled as Activity Diagram

the bottom. No manual code writing is done, everything is
automatically generated based on the model.

Further insights into the code generation, the automated
build and the deployment are given the following.

C. Code Generation, Build, Deployment and Execution

In summary, using EA code can be generated out of the
box, if the model meets the requirements of UML classes
and linked behaviors. The case study project is configured
to produce Java code meeting all FREDOSAR and OSGi
dependencies. A more detailed description of the individual
steps of the code generation in EA can be found within the
project documentation’.

7https://ressel.th-salzburg.ac.at/FREDOS AR-Frapps/model-based-
applications/documentation



The next step after generating the code, is the software build
process. It is triggered after the generation and uses Apache
Maven® to build Java OSGi Bundles, which are conform with
the FREDOSAR conventions. FREDOSAR then is able to
install and run these bundles straightforward.

For the production environment, FREDOSAR has been
installed on a physical real world miniature model, using
Raspberry Pis®, which represent the distributed hardware the
SGAM Component Layer. The intend of the miniature model
is to simulate a complex SoS, which includes elements like
wind turbines, photovoltaics, a substation, a DSO, businesses,
households with EVs and further. Each system is interfering
with each other. By means of the earlier mentioned FRAPP
repository, for execution, the resulting software artifacts of
both case studies have been deployed to this SoS environment.
The VRET application has been deployed to the DSO premise
and the EV charging application to six virtual households.
Finally, a web based visualization dashboard displays the real
operational behavior of all participants. On this dashboard, the
electricity price information and the charging states of the EVs
can be traced. As this visualization actually is not part of the
present paper, it is not described in more detail. Nevertheless,
it offers a good opportunity for live demonstrations of the
achieved research results. For the present paper, a more
detailed evaluation of these results is given in the following.

V. EVALUATION

For the final assessment of the research results, an observa-
tional based evaluation method is applied [25]. To recap, the
following questions have already been clarified throughout this
paper:

How can SoS applications be developed dependably?
SGAM, DSSE and subsequently the SoS integration toolchain
deliver adequate answers for sustainable and dependable de-
velopment approaches.

Which quality attributes have to be pursued?

Model consistency, completeness and the traceability of re-
quirements have been estimated as central quality attributes
for system development. Traceability has been specifically
investigated in the present paper.

How must existing approaches be extended?

The traceability of requirements within a MDA conform model
is fulfilled by the DSSE approach. Starting from such a
consistent SGAM-based model in regard to the SoS inte-
gration toolchain, the traceability between functional system
requirements and concrete source code has been identified as
an open gap. Built on the two exploratory case studies, the
implementation of an adequate code generation interface and
the application of these case studies have been carried out in
the previous section. Based on the resulting observations, this
section tries to answer to what extent the expectations have
been fulfilled. So the question to be answered is:

8https://maven.apache.org/
9https://www.raspberrypi.org/

How far does the MCSD approach close the traceability
gap between the SGAM-based model and the source code?
In the application-based evaluation, it finally turned out that
the traceability of the relevant model-based aspects between
the code and the model is given. Of course, it must be said
that for now only selected areas of the model are translated
directly into source code. However, assuming that due to the
MDA-based DSSE approach, a very high model consistency is
given and the detailed functional descriptions in the model are
complete, the result of the MCSD approach is very satisfying.
Considering the model as given anyway due to the DSSE
approach, an automatic source code generation significantly
facilitates the development process. Nevertheless, logical con-
clusions and decision paths in the model must be implemented
in great detail. Furthermore, it has to be noted, that with the
existing approach, an automated traceability between DSSE-
based business requirements and the resulting source code
cannot be guaranteed so far. Basically, a changing business
requirement also requires a manual change of the underlying
Activity Diagram, which is the base for the code generation.
Therefore, a step by step implementation and an ADSRM-
based evaluation of new ideas and open issues seems to be
the right approach to finally find the right mixture between
automation and manual engineering. The introduced MCSD
approach of this research pointedly focuses to the automated
generation of certain aspects of interests.

The obtained findings indicate that this approach is surely a
suitable starting point for the investigation of further concepts
in this research field. For the Smart Grid, the MCSD approach
is furthermore recommended to be used in combination with
DSSE and the SGAM-Toolbox. Due to the SoS context,
however, the MCSD approach is kept as simple and general
as possible. Thus, the integration of further tools and/or an
extension to other domains are not excluded. After a short
conclusion of this paper, therefore, the following section also
illustrates possible issues of future research.

VI. CONCLUSION

The installation of renewable energy resources in the power
grid has been leading to the formation of a complex system,
the so-called Smart Grid. The smartness of the grid results
of creating a basis for a wide variety of enterprises. Since
these enterprises often have an autonomous character as well,
the Smart Grid is also referred to as SoS. However, as the
Smart Grid on the other hand also comprises survival-relevant
infrastructure, new methods for dependable engineering and
development in critical SoS need to be defined. The previ-
ous research of DSSE laid the foundation for a sustainable
approach for MDA in the Smart Grid. In order to take
advantage of the achievements of DSSE and the resulting
SGAM models, this paper made it a goal to introduce an
interface for automated code generation. Based on the state-of-
the-art analysis, this has been estimated as an open gap in the
SoS integration toolchain for Smart Grids. At the definition of
the mentioned interface, the traceability of relevant functional
requirements is considered as particularly important. To finally



generate these so-called aspects of interest, a model-centric
approach has been followed for development. To keep the
development method for complex systems comprehensible, the
functionality of the implemented interface has been reduced
to a minimum in this first step. In terms of the dedicated
traceability, this simplicity ensures that the overview is not
lost. The evaluation in Section V finally shows, that these
basic goals have been achieved satisfyingly. However, it also
depicts great potential regarding the extensibility of the chosen
approach, which could possibly be part of future research.

A. Future Work

Considering SGAM and DSSE, the effort already spent,
points to the relevance of the selected research field. The
achievements of the present research are further steps towards
a sustainable approach developing dependable Smart Grid
systems. Especially for practically integrating new systems to
the Smart Grid, the output of the present paper could also
be applicable combined with Co-Simulation. As part of the
SoS integration toolchain, the outcome of the implemented
code generator then could first be analyzed based on a power
system simulation. Therewith, on the one hand, the traceability
of relevant requirements could be extended throughout the Co-
Simulation. On the other hand, this concept would increasingly
enhance the process by automatically evaluating emergent
behavior in the Smart Grid, which is recommended to be done
before the system integration.

Besides to this linkage with the Co-Simulation, the interface
itself could be further extended. First, the automation of the
code generation could be further enhanced by implementing
a SGAM-toolbox Add-in. Then the approach could be broad-
ened to meet the demands of different target platforms. Finally,
going away from functional system aspects, communication
and information services of Smart Grid devices could be pre-
configured based on those layers of the SGAM-model.

In addition to the mentioned automation approaches,
security-related aspects should never be neglected in any case.
FREDOSAR generally provides a security-aware platform to
ensure trustability issues. Finally, the integrity of a software
should therefore also be comprehensible right up to its connec-
tion to the SGAM-model. Hence, the integration of adequate
concepts is recommended.
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