
1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2630803, IEEE
Transactions on Smart Grid

IEEE TRANSACTIONS ON SMART GRID, VOL. XY, NO. Z, DECEMBER 2015 1

Error-resilient Masking Approaches
for Privacy Preserving Data Aggregation

Fabian Knirsch, Student Member, IEEE, Günther Eibl, Member, IEEE, and Dominik Engel, Member, IEEE

Abstract—The deployment of future energy systems promises a
number of advantages for a more stable and reliable grid as well
as for a sustainable usage of energy resources. The efficiency and
effectiveness of such smart grids rely on customer consumption
data that is collected, processed and analyzed. This data is used
for billing, monitoring and prediction. However, this implies
privacy threats. Approaches exist that aim to either encrypt data
in certain ways, to reduce the resolution of data or to mask data in
a way so that an individuals’ contribution is untraceable. While
the latter is an effective way for protecting customer privacy
when aggregating over space or time, one of the drawbacks of
these approaches is the limitation or full negligence of device
failures. In this paper we therefore propose a masking approach
for spatio-temporal aggregation of time series for protecting
individual privacy while still providing sufficient error-resilience
and reliability.

Index Terms—Privacy, smart metering, masking, fault toler-
ance

I. INTRODUCTION

The movement towards intelligent and integrated future
energy systems (smart grids) promises a more stable and
reliable grid as well as the integration of renewable energy
resources. However, this requires the processing and analysis
of detailed data from a number of decentralized entities.
Typical applications are billing, demand response and network
monitoring. Data granularity needs to include both, scalable
spatial resolution and sufficiently high time resolution. This
poses a number of threats to customer privacy [1], [2].

Recent development in the domain of the smart grid has
shown the need for reliable, secure and privacy-aware data
collection and aggregation (see, e.g., [3]).

In order to protect customer privacy in the smart grid,
approaches have been developed that obfuscate individual con-
sumption at the household-level, e.g., battery based approaches
such as [4] and [5], [6]. Another approach for obfuscating a
households load curve is to adapt the load curve of existing
appliances, such as electrical water heaters [7]. While these
approaches protect the privacy of single load curves, the scope
of this paper is, on the aggregation of load curves over a
number of households. In contrast to these approaches, where
privacy depends e.g. on the capacity of the energy storage
device, masking is provably privacy-preserving [8].

When data is aggregated over a number of participants it
has to be assured that (i) the data minimization principle is
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fulfilled, e.g., the recipient only receives the aggregate; and (ii)
any other node in the network cannot gain information about
anyone’s contribution. Similarly, when data is aggregated over
time, the receiver should only receive the sum for the previously
agreed time slot. There are a number of approaches that aim
at increasing privacy in smart metering. Related work in this
domain mainly addresses (i) homomorphic encryption; (ii)
masking; (iii) differential privacy; and (iv) multiple resolutions.
Schemes and protocols that draw on homomorphic encryption
(e.g., [9] and [10]) allow to process and aggregate data without
access to the plaintext. Most of these approaches apply the
Paillier crypto scheme [11] and therefore each smart meter uses
the aggregator’s public key to encrypt. Encrypted values may be
sent in a hop-by-hop manner to all smart meters and finally to
the aggregator. While homomorphic encryption is a reliable and
powerful method for aggregating values, one of the drawbacks
is its moderate efficiency in terms of computational complexity
and data expansion, such as for the Paillier crypto scheme,
where a plaintext in Z∗n expands to a cyphertext in Z∗n2 [11].
Another approach for spatio-temporal aggregation of power
consumptions is presented in [9]. This approach combines the
Paillier crypto scheme, which is used for its homomorphic
property, and random shares. Although all participants possess
the private key, decryption is prevented by using random shares
in the exponent. In case of a faulty smart meter in the protocol
an additional round is necessary.

Differential privacy is given if – with high probability
– it cannot be seen from the aggregated values whether
an individual participates in a database or not. Therefore
an individual’s participation only reveals limited personal
information. While differential privacy itself is error-resilient
and can be used alone [12], it is often combined with other
methods that are not error-resilient, such as masking, e.g., [13]
and [14]. Since differential privacy is achieved by the addition
of noise, the resulting aggregate is not exact. As a consequence,
the utility of the aggregated load curve decreases.

In order to achieve fault tolerance, Chan et al. [15] extend
the protocol of [14], by organizing user groups in a tree. Since
each user is in log n user groups, fault tolerance increases total
communication from O(n) to O(n log n).

Multi-resolution approaches such as [16] and [17] propose to
increase privacy by splitting a load curve into a number of time-
domain resolutions that are distributed to different recipients.
While this is an effective method for not revealing details of
an individual’s load curve, it is not feasible for applications
that need data in real-time.

Finally, there are a number of approaches suggesting the
masking of meter values for a privacy-aware aggregation
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protocol. In [18], Kursawe et al. present a set of four protocols
and distinguish between aggregation protocols and comparison
protocols. The former are designed to compute the aggregated
sum, whereas the latter require that the aggregator already
knows the approximate sum. The proposed low-overhead
protocol is extremely efficient in terms of computational
complexity and communication needs, however it lacks the
ability to deal with smart meter outages. This means that the
final aggregate is invalid, if one of the key shares is missing.
In order to retrieve a valid sum the aggregator has to start over
the aggregation process.

In [19], Marmol et al. present a privacy enhancing ag-
gregation protocol based on the Castellucia-Mykletun-Tsudik
encryption scheme, which in order to be secure, requires that
keys are not reused. The aggregation protocol therefore uses a
ring-based topology that sequentially updates the smart meter
keys before masking each values and the aggregator decrypts
with a single static key. The protocol can be extended in order
to deal with faulty smart meters, however this poses additional
overhead and is not covered by the basic protocol.

In [14], Shi et al. propose a method that combines masking
and distributed differential privacy. Each participating meter
masks its reading with noise and the aggregator is able to
finally compute a noisy version of the desired statistics, e.g.,
the summation of values. This method (by design) does not
take into account the failure of participants, as privacy cannot
be guaranteed for partial decryption.

In [20], Danezis et al. present an approach which is also
based on masking. In contrast to this paper, their aim is to
evaluate complex functions on one or more smart meters’
values by splitting them up into Boolean circuits. However,
this comes at the cost of more computing rounds, negatively
affecting bandwidth and latency.

In summary, multiple resolutions are not suitable for real-
time applications, homomorphic encryption is prone to high
computational complexity on the smart meter side and differ-
ential privacy does not yield the correct sum. While there are
promising approaches for spatial or temporal aggregation that
protect customer privacy by using a masking approach, state
of the art protocols exhibit none or only limited resilience for
smart meter failures. Table I compares related work to our
approach with respect to the ability for achieving the exact
aggregation result, spatial and/or temporal aggregation, error-
resilience and the requirement for a trusted third party (TTP),
e.g., for key distribution or authentication. Categories denoted
in the table are homomorphic encryption (HE), differential
privacy (DP), masking (M) multi-resolution (MR) and Boolean
circuits (BC). Half of the approaches are not error-resilient or
at least error resilience is not discussed. For the remaining error
resilient approaches, the overhead is categorized as negligible
or not negligible. Negligible overhead consists of awaiting
timeouts or rerouting requests for some smart meters along a
line. The overhead is not negligible if any of the following is
needed: additional rounds ([10], [13]), additional parties (in
[9] the manufacturer is contacted) and additional messages
to or from each smart meter involved in the protocol ([19]).
Note that in the billing protocol of [12], the exact result is
not provided immediately, but customers might pay more than

actually needed and get a deposit on that amount. Compared
to other approaches, our protocol contributes to the state of the
art as it yields the exact result, is error-resilient, is suitable for
spatial and temporal masking at negligible overhead, does not
rely on a TTP for privacy and has a low complexity compared
to approaches using homomorphic encryption.

In this paper, we present a privacy-aware approach for spatio-
temporal aggregation of time series data. We apply a masking
scheme that obfuscates individual contributions and yields
the correct result upon aggregation. Since a single, invalid
random share can have a devastating effect on the aggregate,
the proper use of random shares is checked using homomorphic
hashes. We do not restrict ourselves to a concrete operation,
however we will prove correctness for summation, which is
the most common aggregation. While this approach can be
applied to any time series data, we will focus on use cases
with smart meter readings for power consumption. In addition,
we focus on a high degree of error-resilience which is crucial
in terms of the distributed nature of the smart grid. If one
or more smart meters fail during the aggregation process, the
protocol is capable of providing an accurate aggregation at
the same level of privacy. The term error resilience in this
paper explicitly refers to the outage of a smart meter or the
malfunctioning of communication links and not to an outage
of the data concentrator.

The rest of the paper is structured as follows: Section
II motivates the use of a more error-resilient aggregation
protocol and introduces the notation. Section III introduces
the preliminaries for this paper, including the masking scheme
and homomorphic hashes. Section IV discusses the proposed
protocol for token-based sequential masking. In Section V
the scheme is analyzed with respect to adversarial models
and attack scenarios. Section VI describes the prototypical
implementation and Section VII summarizes this work and
gives an outlook to future research.

II. APPLICATION SCENARIO

This section describes the problem domain and motivates
spatial, temporal and spatio-temporal aggregation of time series
in the smart grid. Further, the general masking approach and
the underlying privacy considerations are introduced.

A. Use Case Description

Aggregating data in the smart grid is a basis for many use
cases. In addition, aggregating data is a method for protecting
customers’ privacy. In [9], Erkin and Tsudik, in [21], Jawurek
et al. and in [22] McKenna et al. propose typical use cases
that pose a need for privacy-preserving spatial and temporal
aggregation:
• Network Stability and Monitoring. The stability of the

power grid is maintained by network operators and utilities
by collecting high-frequency measurements for voltage
levels, phase shifts and power consumptions. While this
application requires a high temporal resolution, privacy can
be protected by aggregating over a number of households,
e.g., over those connected to the same substation.
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TABLE I
COMPARISON OF RELATED WORK. METHODS ARE HOMOMORPHIC ENCRYPTION (HE), DIFFERENTIAL PRIVACY (DP), MASKING (M), MULTI-RESOLUTION
(MR) AND BOOLEAN CIRCUITS (BC). OUR APPROACH GIVES THE EXACT RESULT FOR BOTH, SPATIAL AND TEMPORAL AGGREGATION AT NEGLIGIBLE

OVERHEAD EVEN IF ONE OR MORE SMART METERS FAIL. A TRUSTED THIRD PARTY (TTP) IS REQUIRED FOR AUTHENTICATION PURPOSES ONLY.

Approach Methods Exact result Spatial Temporal Error TTP
Resilience

Erkin et al. [9] HE X X X X key distr.
Li et al. [10] HE X X – X key distr.
Danezis et al. [12] DP – – X – key mgmt.
Chan et al. [15] HE, DP – X – X key distr.
Acs et al. [13] M, DP – X – X key distr.
Shi et al. [14] HE, M, DP – X – – key distr.
Efthymiou et al. [16] MR X – X – key distr.
Engel et al. [17] HE, MR X X X – key distr.
Kursawe et al. [18] M X X – – share distr.
Marmol et al. [19] HE, M X X – X key mgmt.
Our approach M X X X X authentication

• Settlement and Profiling. Energy providers trade at a
wholesale market which requires them to have detailed
information about the current energy demand at a high
temporal resolution. Similarly to network monitoring,
privacy can be protected by aggregating over a number
of households.

• Billing. Billing is a transaction between the customer
(smart meter) and the utility. For billing, spatial aggrega-
tion is not applicable. Time-of use pricing with fixed rates
where the price is piecewise constant can be handled
by temporal aggregation over the corresponding time
intervals.

In a practical setting, smart meters are connected to a data
concentrator or aggregator. Depending on the use case the smart
meter will participate in either a spatial, temporal or spatio-
temporal aggregation protocol. Basic temporal aggregation
can be achieved in practice by simply holding back values
for a certain period of time and then submitting the sum of
these values at once. The protocol presented in this paper,
is designed for efficient, error-resilient spatial aggregation,
however, also allows for temporal masking at negligible
additional computational and communication cost.

B. Problem Statement and Notation

The system consists of the following actors: a single data
concentrator DC and a set of participating smart meters
SM1, . . . ,SMN . Each smart meter SMi measures a time series
of values, i.e., at time t it measures mi,t. Each measurement
mi,t is a scalar integer value in the range {0, . . . , c− 1}, e.g.,
in practice c could be chosen as 216. The goal is to provide
the aggregate At =

∑
i mi,t to the data concentrator without

revealing the load profiles of the individual smart meters. N
should be large enough for successfully hiding individual load
profiles in the aggregated load profile. Later we will show that
the protocol is also capable of providing a temporal aggregation
for each individual smart meter to DC with negligible overhead.
Even more, arbitrary subsets of aggregations over space and
time can be calculated.

1) Spatial Aggregation: Spatial aggregation is any aggrega-
tion over a set of smart meters G = {SMi; i = 1, . . . , N} at a
fixed time t, i.e., the calculation of At =

∑
i mi,t. This is typ-

ically applied for calculating the total consumption at a certain
point in time for a defined neighborhood. Such aggregations
are needed for network monitoring and load balancing. In the
following it will be convenient to use another representation for
G as a tuple G = (ID1, . . . , IDN ) that contains the IDs of the
smart meters participating in spatial aggregation. The desired
order of the smart meters can be easily saved in the sending list
L = (IDDC, G, IDDC) = (IDDC, ID1, . . . , IDN , IDDC) which
contains the ordered IDs of the smart meters of the aggregation
group with the ID of the DC prepended and appended.

2) Temporal Aggregation: Temporal aggregation is any
aggregation over a (sequential) series of values (mi,t)t=1,...,T

for a fixed smart meter SMi, i.e., the calculation of Ai =∑
t=1,...,T mi,t. This is typically applied for billing, where

the total energy consumption in a given period of time is of
interest for the aggregator. For large billing periods T privacy
is preserved, whereas for small billing periods privacy is not
guaranteed. This issue of the impact of time series resolution
on privacy is discussed in [1] and [2].

3) Spatio-Temporal Aggregation: The protocol that is pro-
posed in this paper is particularly designed for spatio-temporal
aggregation, hence given a set of smart meters and a series
of values for each smart meter, arbitrary sets of aggregations
over space G and time intervals [t0, t1] can be calculated, i.e.,
AG,[t0,t1] =

∑
i∈G

∑
t∈[t0,t1] mi,t. Figure 1 illustrates the two

dimensional space and an arbitrary spatio-temporal aggregation
over a group G, which is represented as a rectangle.

We assume that smart meters are able to bidirectionally
communicate with the DC and with each other. Therefore it
is likely, that in practice aggregation groups are restricted to
contain only smart meters that can communicate with each
other.

III. PRELIMINARIES

This section describes the preliminaries for the proposed
protocol. The protocol builds on masking, a lightweight and
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Fig. 1. Illustration of spatio-temporal aggregation over a group G as a rectangle
in the two dimensional space.

established scheme for hiding individual contributions in
aggregation protocols. Further, the protocol uses homomorphic
hashes that allow the aggregator to check the correctness of
shares.

A. Masking Approach

For masking, a value mi,t, is combined with a random share
si,t in the range {0, . . . , k − 1} resulting in a masked value

m̃i,t = mi,t + si,t mod k, (1)

where the modulus k must be larger than the highest possible
aggregation value. If a cryptographic pseudo random number
generator exploits the full range of the plain value, masking
is secure [8]. Therefore, k could be chosen as k = TNc ≥∑

t=1...T

∑
i=1...N mi,t in the most general case of spatio-

temporal aggregation, where c is the upper bound of the range
for the measurement values. Each smart meter sends the masked
value m̃i,t to the DC which calculates their sum

∑
i=1...N m̃i,t.

Due to the masking, an individual load profile has all properties
of a random number time series and therefore reveals no
information to the DC. However, at each time t, typically
the random shares si,t of the N smart meters are created in a
way that they cancel each other out when the sum is formed, i.e.,∑

i=1...N si,t = 0. As a consequence, the spatially aggregated
masked values

∑
i=1...N m̃i,t are equal to the desired sum of

spatially aggregated measurements
∑

i=1...N mi,t. Masking for
smart grid applications is proposed by e.g., [18], [19].

B. Homomorphic Hash

An additive homomorphic hash function H is a hash function
with the property that for all x and y the equality H(x+ y) =
H(x)H(y) holds (note that here the group operation in the
output domain is arbitrary, but usually a product). Such a hash
function H : Zp 7→ Zl can, e.g., be constructed around the
discrete-log assumption by a generator g as H(v) = gv mod l,
which yields a collision-resistant hash as discussed in [23]. The
homomorphic property can easily be verified by calculating

H(v1)H(v2) = gv1gv2 = gv1+v2

= H(v1 + v2) (all mod l).
(2)

Choosing a suitable generator is also discussed in literature,
e.g., [24]. In Section VI, p is chosen as p = 216 and l is
suggested to be set to l = 2256 for a good privacy-efficiency
tradeoff.

IV. PRIVACY-PRESERVING PROTOCOL

In this section, our privacy-preserving protocol is developed
step by step. First, a basic protocol for spatial aggregation is
explained which is subsequently expanded in order to increase
fault-tolerance, enable spatio-temporal aggregation and include
principal verification elements.

A. Privacy for Spatial Aggregation

In this section a basic spatial aggregation algorithm is
presented which still suffers from some flaws that will later
be eliminated by the actual algorithm. This algorithm is not
yet capable of handling failures, but introduces the principal
masking scheme. In this protocol the masked values are directly
sent to the DC. In contrast to other protocols, here the shares
si,t are created independently from each other by sampling
from {1, . . . , k−1}. As a consequence, they do not sum to zero.
Here, their sum is calculated using the ring part of the topology
(Figure 2), i.e., the random shares are sent and summed up
between the smart meters of the aggregation group G. Then,
the obtained aggregated sum of shares is subtracted from the
sum of the masked measurements yielding the desired sum
of measurements

∑
i=1...N mi,t. The process for one round is

shown in Figure 2. For sake of readability the time index t is
often omitted and the notation Si =

∑
j=1...i sj,t is introduced.

The DC sends an initial random share S0 = s0 to the first
smart meter SM1 which creates its own random share s1. This
share is added to its measurement value m1 yielding m̃1 which
is sent directly to the DC. Additionally, the smart meter adds
up the two shares calculating S1 = s0 + s1 which it sends
to node SM2. This continues up to the last node N which
calculates

SN = SN−1 + sn = SN−2 + sn−1 + sn = . . . =
N∑
i=1

si

and sends it to the DC. Finally, DC calculates
∑

i m̃i−SN =∑
i mi which is the desired aggregated load. The corresponding

algorithm is shown in Algorithm 1.
As already reasoned above, the data concentrator retrieves

the correctly aggregated value. Privacy is preserved because
DC only gets masked values. Since the DC only gets the sum
of the shares, only the aggregated sum of the measurements
can be recovered. The measurement of a smart meter is also
hidden from other smart meters because only the shares are
sent between them. The DC can itself add a random share
s0 in order to increase the difficulty for obtaining the value
of SM1. Thus, for spatial aggregation, the logic topology for
the masking algorithm is a combination of a star and ring
topology (Figure 2). All smart meters are connected to the DC
in a star-shaped topology. These links are used for submitting
masked values to the DC. In addition, the DC and all smart
meters are connected in a ring-shaped topology, with each actor
having a designated predecessor and a designated successor.
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Fig. 2. Error-resilient spatial masking scheme for one round. The data
concentrator (DC) triggers the token-based sequential reading. Each SMi

calculates a share, submits the masked value to DC and submits its share to
the successive smart meter.

Algorithm 1: Preliminary spatial aggregation algorithm.

Initialization
Provide sending list L to all smart meters and to DC

One round of reading t
All participating parties i generate a random share si,t
p = 0
DC sends MDC→1 = (S0||ID0) = (s0,t||IDDC) to SM1
for i← 1 to N do

m̃i,t = mi,t + si,t mod k
SMi sends Mi→DC = m̃i,t directly to DC
Si = Sp + si,t mod k
SMi sends Mi→i+1 = Si to L(i + 1)
p = i

end
Aggregation
DC calculates At =

∑
i m̃i,t − SN

B. Fault Tolerance

In order to obtain the correct sum of the measurements it is
crucial that the sum of the shares cancel each other out, as in our
case, where SN exactly equals

∑
i si which is subtracted at the

end. As a consequence, even one wrong share can destroy the
correctness of the result. For some privacy preserving methods
that combine encryption with masking even a small error can
have the devastating effect that the resulting aggregate cannot
be decrypted at all. For the basic algorithm above, the effect
of a wrong share would be an incorrect aggregation result. In
this section we modify the basic algorithm in order to improve
the fault tolerance.

There are four cases where a fault can occur:
(i) Failure of smart meter at initialization;

(ii) Failure of connection between smart meter and DC;
(iii) Failure of connection between smart meters; and
(iv) Failure of smart meter during normal operation.

If a smart meter does not respond in the initialization phase
(i), it is not a member of the sending list and the smart meter
is not included in the aggregation process at all. The system
may attempt a new initialization after a certain amount of time
or once the smart meter is available.

In the case that only the connection between a smart meter
and the DC fails (ii), the value m̃i,t is not available, which
enables the DC to detect the communication failure with the
smart meter. However, the connection to other smart meters
still works and consequently the shares of the faulty smart
meter will be part of the sum of shares SN . As a consequence,
the aggregation result cannot be corrected by the DC because
it does not have, and should not have, the value of the share
of the faulty smart meter si,t.

If the connection between smart meters i−1 and i fails (iii),
smart meter i− 1 eventually realizes that its message has not
reached smart meter i, depending on the protocol and the type
of connection failure. Still, the basic algorithm fails, since it
allows smart meter i − 1 only to send its value Si−1 to the
next smart meter in the sending list.

If a smart meter fails during normal operation (iv), in terms
of communication errors this fault can be viewed and treated
as the combination of the preceding two faults.

The solution to these problem consists of: (i) providing a
means for the preceding smart meters to detect the failure of
the connection to its faulty neighbor. This can be achieved by
requiring the sending of an acknowledgment (Ack) signal of
a smart meter to its predecessor; and (ii) providing a way to
skip a faulty smart meter in the ring part where the shares are
summed up and in the calculation of the sum of the masked
measurement at the DC. This is achieved by selecting the next
smart meter from the sending list. Algorithm 2 is an extension
of the preliminary algorithm that handles these cases.

Now that the algorithm is resistant to failures of smart
meters and connections, the algorithm will later also be made
more resistant with respect to failures occurring in sent shares
(Section IV-D).

Algorithm 2: Fault tolerant spatial aggregation

Initialization
Provide sending list L to all smart meters and to DC

One round of reading t
All participating parties i generate a random share si,t
i = 1, p = 0, n = 2
DC sends MDC→1 = (S0||ID0) = (s0,t||IDDC) to SM1
while i ≤ N do

SMi checks that the received ID is a predecessor of
SMi in L
SMi sends an Ack-signal MAck

i→p to L(p)
m̃i,t = mi,t + si,t mod k
SMi sends Mi→DC = m̃i,t directly to DC
Si = Sp + si,t mod k
SMi sends Mi→n = Si to L(n).
p = i
if SMi gets an Ack-signal within ∆t then

i = n
else

n = n + 1
send Si to L(n)

end
end
Aggregation
DC calculates At =

∑
i m̃i,t − SN
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Fig. 3. Temporal aggregation masking scheme for one smart meter. The smart
meter (SMi) sends masked values to the data concentrator DC. At the end of
period T , the sum of shares is sent to the aggregator.

C. Spatio-Temporal Aggregation

In this section, the spatio-temporal aggregation is outlined.
Since temporal aggregation is performed separately for each
smart meter, only the star topology is required (Figure 3).
Temporal masking and aggregation can be done in a straight-
forward way, (Algorithm 3), with ST =

∑T
t̃=0 si,t̃. For sake

of readability the smart meter index i is omitted.
With both, spatial and temporal aggregation available, spatio-

temporal aggregation AG∗,[t0,t1] – where G∗ denotes an
arbitrary subset of smart meters and [t0, t1] denotes the time
period of interest – can easily be obtained with only little
overhead by calculating

AG∗,[t0,t1] :=
∑
i∈G∗

∑
t∈[t0,t1]

mi,t (3)

=
∑

t∈[t0,t1]

∑
i∈G

mi,t −
∑
i/∈G∗

∑
t∈[t0,t1]

mi,t (4)

=
∑

t∈[t0...t1]

At −
∑
i/∈G∗

Ai. (5)

The whole algorithm (Algorithm 4) is subject to some
practical restrictions. In the algorithm, spatial aggregation is
performed over all smart meters (aggregation group G) con-
nected to a data concentrator. Spatio-temporal aggregation can
then be done over arbitrary spatial subgroups (G∗ ∈ G, [t0, t1])
in the last step, but with the limitation of a pre-specified time
interval, which must be the same for all smart meters. For
sake of readability, the steps for calculating ST as shown in
Algorithm 3 are omitted. Note that choosing the appropriate
(sub-)groups is relevant for ensuring privacy, in the sense that
a single smart meter’s value cannot be recovered by combining
aggregated values, e.g., when two groups are identical except
for a single smart meter. Choosing more spatial groups over
which to aggregate for a specific time would result in an
increase of spatially aggregated shares (one value per group)
on the ring part of the topology. The number of values to be
transferred between smart meters and the DC on the star part
of the topology would not be influenced.

For the algorithm as stated here, the aggregation period must
be known in advance. Alternatively, the smart meter could

Algorithm 3: Temporal Aggregation

Reading of T values
S0 = 0
for t← 0 to T do

Generate a random share si,t
m̃i,t = mi,t + si,t mod k
St = St−1 + si,t
Send M t

i→DC := m̃i,t to DC
end
Send Mi→DC := ST to DC

Aggregation DC calculates Ai =
∑

t m̃i,t − ST

internally save its random shares and deliver the sum of the
shares needed for temporal aggregation on request, providing
more flexibility in choosing the aggregation period [t0, t1]. In
any case, while the smart meter has nearly no control over the
spatial extent of aggregation, it has full control regarding purely
temporal aggregation allowing, e.g., only temporal aggregation
over periods that are longer than a user-specific “privacy-safe”
duration.

D. Correctness of Shares

While the algorithm so far is fault-tolerant with respect to
complete failures of communication links or smart meters, still
a single, wrong share si,t would suffice to produce a wrong
aggregation result. Consequently, the network operator is likely
to be interested in also having some insight, especially into the
correctness of the shares sent between the smart meters. For
the correctness of the aggregated spatial value, it is necessary
that the value for the sum of shares provided to the DC,
SN , is indeed the sum of the shares used by the individual
smart meters in the calculation of the masked value. More
precisely, a check that (i) SN =

∑
i si,t and a check that (ii)

m̃i,t = mi,t + si,t + s0i is desired. Additionally, a static secret
s0i shared between the DC and each SMi is introduced in
order to further increase privacy for intercepted messages as
discussed in Section V.

Since both checks are additions of values, they can be
performed by applying additively homomorphic hash functions
to the messages. The properties of such a hash function are
described in the preliminaries in Section III.

In the algorithm, for each m̃i,t, SMi additionally sends the
homomorphic hashes H(mi,t) and H(si,t) to the DC. Given
the homomorphic property of H , DC can check that no share
has been altered through comparing

H(SN ) =
∏
i

H(si,t) (6)

before aggregating; and DC can check that si,t has been used
for calculating m̃i,t by comparing

H(m̃i,t) = H(mi,t)H(si,t)H(s0i ). (7)

The static secret share s0i has been provided to each smart
meter upon initialization.

In order to enable a fast correction of errors of shares, a
method is needed that pinpoints the place of the error in case
that check (6) shows a difference between the shares. The
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Algorithm 4: Final aggregation algorithm

Initialization
Provide sending list L to all smart meters and to DC
∀i: DC sends static secret share s0i to SMi, S0 =

∑
i s

0
i

while t ≤ T do
For all i: Ai = 0
One round of reading t
All participating parties i generate a random share si,t
n = 1
DC sends MDC→1 = (S0||ID0) = (s0,t||IDDC) to
SM1
while
DC does not get MAck

n→0 from SMn within ∆t do
n = n + 1
DC sends MDC→1 to SMn.

end
i = n, p = 0, n = i + 1
while i ≤ N do

/* Only SMi acts */
Parse Mp→i and check that IDp is a predecessor
of SMi in L
Send an Ack-signal MAck

i→p to L(p)
m̃i,t = mi,t + si,t + s0i mod k
Si = Sp + si,t mod k
Ai = Ai + mi,t

Send Mi→DC := (m̃i,t||H(mi,t)||H(si,t)||t) to
DC
Send Mi→n = Si to L(n).
while SMi does not get MAck

n→i within ∆t do
n = n + 1
send Si to L(n)

end
p = i, i = n

end
Aggregation
/* Only DC acts */
Check if H(SN ) =

∏
i H(si,t)

For all m̃i,t: check H(m̃i,t) = H(mi,t)H(si,t)H(s0i )
Calculate spatial aggregate At =

∑
i m̃i,t − ST − S0

Increase t
end
DC calculates spatio-temporal
AG,[0,T ] =

∑
t At −

∑
i/∈G Ai

idea for locating the difference is to perform one additional
round of aggregation with the difference that, instead of the
masked measurement m̃i,t, the aggregated share obtained from
the previous smart meter Sp is sent to the DC. The correct
use of share si,t can be checked as follows: the DC obtains
m̃i,t = Sp and H(si,t) from SMi and m̃n,t = Si from SMn.
If the same share si,t is not used for both, for the message to
the DC and the message to the next smart meter, the equality

H(Si − Sp) = H(si,t) (8)

should not hold, indicating a problem between SMp and SMi.
Due to check (7), a problem between SMi and the DC can
be identified directly, as the smart meters are assumed to act
honestly. In the purely temporal scenario where the primary
use case is billing, the user is as well likely to be interested in
a check that the DC obtained the correct aggregated value. At
the end of the billing scenario, the DC could provide H(Ai)
which can be compared to

∑
t H(mi,t) by the smart meter.

It should be emphasized that these hashes are intended as

checks for the correctness of data and calculations. They are
neither intended to proof data integrity and authenticity nor
are they intended as a proof for correctness of the calculation
(also compare with Section V).

V. SECURITY AND PRIVACY ANALYSIS

This section conducts a security and privacy analysis of the
proposed protocol.

A. General assumptions

We generally assume all devices to be tamper proof and
that attackers do not have physical access, thus the meter
value itself cannot be manipulated. We further assume that
communication is handled over a secure channel using state-of-
the art symmetric encryption, e.g., AES [25] and some sort of
authentication to tackle man-in-the-middle attacks, e.g., X.509
certificates [26].

B. Privacy-preserving property of masking

Masking is proposed by many authors as a method for
the privacy-preserving aggregation of data in the smart grid
(e.g., [13], [14], [18], [19]). For masking a value, the value
is added to a random share modulo the upper bound of the
range of the aggregate. The random shares (e.g., generated by a
cryptographic pseudo random number generator) have to fully
exploit the range of the possible values. The computational
security of such a scheme is shown in [8]. Note that for perfect
secrecy all the properties of the one-time pad would apply, i.e.,
key length equal to the length of the plaintext, the source of
randomness and the freshness of random numbers are crucial.

C. Adversaries and privacy breaks

This protocol involves two different parties that can act as
potential adversaries, smart meters and the data concentrator.
In addition, for the malicious adversary model an external
adversary as well as a covert adversary are considered.

A privacy break in this protocol occurs if (i) the data
concentrator learns anything beyond the sending list, the spatial
aggregate and the temporal aggregate; if (ii) any of the smart
meters learns anything except for the sending list; and if
(iii) any of the participants can tamper with the aggregate,
i.e., manipulate contributions such that the aggregate becomes
void. It is of particular interest that no party learns a single
measurement value mi,t.

D. Single honest-but-curious participants

In this scenario, all participants follow the proposed protocol
but a single party may attempt to gain additional information.
Therefore a single smart meter or the data concentrator is
honest-but-curious (semi honest).

A smart meter SMi receives from another smart meter,
its predecessor, only the value Si−1. Since this value is
only the sum of the previous shares, SMi cannot infer any
information about any measurement values from this sum. The
data concentrator DC is not able to infer either a subset of
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values or a single value mi,t of one smart meter SMi at one
point in time t. This is achieved by masking each smart meters
value with a random share si,t in

m̃i,t = mi,t + si,t + s0i mod k. (9)

The random share si,t is sampled at the smart meter and the
meter value mi,t is never released as a plain value and therefore
remains untraceable. SMi forwards its share si,t combined with
the share from its predecessor as Si = Si−1 + si,t mod k.
The DC only gets SN from which it cannot infer si,t.

In order to ensure the correctness of shares, each SMi does
not only submit m̃i,t to DC, but also H(mi,t) and H(si,t),
where H(·) is a collision-resistant homomorphic hash function
constructed around the discrete-log assumption. Since the same
hash value of the secret share si,t is used in the checks that Si =
Si−1 + si,t mod k and that m̃i,t = mi,t + si,t + s0i mod k,
it is ensured that the same share is used in both calculations. If
one or more smart meters fail, the aggregator still receives the
exact sum of the remaining smart meters and the aggregator
still does not learn anything beyond that aggregate.

The length of the time interval as well as the group size will
have significant impact on the privacy. However, the check if
these sizes are sufficiently large can be done by the smart meter
itself too, i.e., if the requested time interval or the sending list,
are to short, the smart meters can decline the submission or
forwarding of a value. Note that due to many failing smart
meters the group size could drop below a privacy-preserving
level. However, the algorithm could easily be expanded to
monitor the number of remaining active smart meters and
therefore refuse participation in this case. Finding suitable
group sizes and time intervals in order to guarantee a certain
level of privacy for practical smart grid applications is still an
open research question.

E. Collusion of honest-but-curious participants

Collusions of honest-but-curious participants can occur in
two different ways (i) either a subset of smart meters can
collude; or (ii) one or more smart meters can collude with the
data concentrator.

In the first case, a subset of smart meters collude in order
to get information about some other SMi. SMi sends Si =
Si−1 + si,t to its subsequent smart meter SMi+1. If SMi+1

and SMi−1, owning Si−1, are part of the collusion, they can
easily reconstruct the secret shares of SMi by calculating
si,t = Si − Si−1. However, since they do neither possess any
message containing SMi’s consumption value mi,t nor do they
possess the static secret share s0i , the measurement value still
cannot be deduced.

However, in the latter case, where DC is also part of the
collusion, this changes, because si,t is the information that the
data concentrator (which in addition knows s0i ) needs, in order
to calculate mi,t from equation (9). In order to infer a single
load value, the colluding set therefore needs to contain at least
the DC and the two smart meters preceding and following the
attacked smart meter.

F. Malicious adversaries

While homomorphic hashes were introduced in order to
detect faults and enable fast error correction, they do not
suffice for detecting maliciously modified values. In this case
security relies on the security measures ensuring data integrity
and authenticity. In order to illustrate this point we next show
how much additional effort an external malicious adversary
would need in order to reach his goals.

A malicious external adversary with the goal of getting
a single metered value would need to break all the secure
channels connecting a smart meter to other smart meters and
the data concentrator. In this case it gets the same information
as the collusion set above. In contrast to the collusion scenario,
it doesn’t know s0i . However, a static value only offers very
limited privacy protection, e.g., typically non-intrusive load
monitoring analyses [27] consider differences of subsequent
values, which are not effected by a static value.

Now, a covert adversary is considered, whose goal is not
only to obtain, but also to change a measurement and thereby
forge the aggregation result without being detected. In this case,
the adversary would need to break all the secure channels of a
smart meter and additionally change the hashes in such a way
that the checks of the hashes still work. Through a man-in-the-
middle attack, the adversary could consistently forge a meter
value mi,t → mi,t + ∆m and the share si,t → si,t − ∆m.
This has the effect that the unknown value m̃i,t stays the
same. Additionally changing H(mi,t) → H(mi,t)H(∆m),
H(si,t)→ H(si,t)H(∆m)−1 and Si → Si−∆m would then
ensure, that both checks preceding the aggregation step of
Algorithm 4 would fail in detecting the forgery.

G. Summary

In summary, we showed the security and privacy preserving
property of our protocol for single honest-but-curious partici-
pants. In case of a collusion of honest-but-curious participants,
in order to attack a single smart meter, at least the data
concentrator and the preceding and the following smart meter
are needed. Finally, a malicious adversary would have to
break all the secure communication links in order to learn
measurement values or forge the aggregation result. However,
given state-of-the-art cryptographic protocols and algorithms
for the authentication and encryption of communication links,
this is likely to be infeasible. In the case that a smart meter
has been compromised, it is impossible to assure a correct
reporting of measurements. While this is out of scope for this
paper, smart meters could be equipped with trusted hardware
(e.g., based on a Trusted Platform Module as proposed by
[28]).

VI. EVALUATION

In this section we evaluate the proposed masking protocol
with respect to complexity, network traffic and its applicability
to efficiently run on low-end devices.

A. Complexity

In terms of complexity we consider the final algorithm as
listed in Algorithm 4. Table II shows a detailed analysis of the
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complexity for initialization where N denotes the number of
smart meters in the sending list. Each value is given as both,
the total number and the corresponding complexity.

TABLE II
COMPLEXITY FOR INITIALIZATION.

SMi DC
Gen. of random number O(1)
Messages inbound O(1) O(1)
Messages outbound O(1) O(N)

Table III shows the complexity for one round of reading
including the calculation of the spatial aggregate if no faults
occur and if k smart meter fail. Without faults, all operations
conducted in the smart meter are of constant time. For DC,
complexity is not of constant time, but linearly growing with
the number of smart meters in the group. Generally, while
the smart meter has limited computational capacities, the data
concentrator will be a much more powerful device, and thus
the protocol scales well with the size of the grid.

TABLE III
COMPLEXITY FOR ONE ROUND OF SPATIAL AGGREGATION (WITH NO

FAULTS AND k FAULTS) FOR A SINGLE SMi AND THE DC. IN THE CASE OF
FAULTS IT IS ASSUMED THAT THE k SMART METERS FOLLOWING SMi FAIL,

WHICH IS THE WORST CASE FOR SMi . IF THE COMPLEXITY CHANGES,
ENTRIES ARE MARKED BOLD.

SMi DC
no k no k

Addition O(1) O(1) O(N) O(N−k)
Multiplication O(N) O(N−k)
Random number O(1) O(1) O(1) O(1)
Hash O(1) O(1) O(N) O(N−k)
Messages in O(1) O(1) O(N−k) O(N−k)
Messages out O(1) O(k) O(1) O(1)

In case faults occur, e.g., the k smart meters following SMi

are unavailable, the complexity for outbound messages for
SMi changes from O(1) to O(k), as the smart meter attempts
to send the message to all k following smart meters in the
sending list. In worst case, all smart meters following the first
smart meter fail, which results in a complexity of O(N). While
the complexity for the smart meter increases in this case, the
complexity for the data concentrator is decreased from O(N)
to O(N−k).

Table IV shows the additional complexity if the temporal
aggregate over T measurements is calculated in addition to the
spatial aggregate. Although, the number of additions for DC
is NT , these calculations do not need to be performed upon
requesting the temporal aggregate, but can be done in each
round leading to only N additions at the end of each round.

TABLE IV
ADDITIONAL COMPLEXITY FOR TEMPORAL AGGREGATION OF T

MEASUREMENTS.

SMi DC
Addition O(T ) O(NT )
Messages inbound O(1) O(N)
Messages outbound O(1) O(N)

B. Implementation

This protocol has been prototypically implemented in Java
(Oracle Java JDK 1.7 for ARM) and is designed to run on a
Raspberry Pi 2. This small computer is a low-cost and low-
power device that resembles the computational abilities of a
smart meter. Our implementation will be available open source.
For evaluating the prototypical implementation, two settings are
prepared: (i) in our lab setting, a standard personal computer
serves as the data concentrator and Raspberry Pis serve as
smart meters, all connected in a LAN environment; and (ii) in
our virtualized setting up to 100 smart meters are simulated in
order to evaluate the behavior of the protocol if smart meters
fail.

In order to account for the hot-spot property of the used Java
virtual machine, i.e., the run-time optimization of frequently
executed code, the first measurements are discarded. For evalu-
ating the performance on low-power devices we investigate the
following setting in our lab: we start with one data concentrator
that collects spatio-temporally aggregated data and a group
size of four smart meters. The generator for the homomorphic
hash implementation uses safe primes with a bit length b. The
bit length b has to be chosen such that

∑N
i=1 mi ≤ 2b−1

N . The
random shares are less or equal than 2b−2.

The methodology for measuring is as follows:
1) Initialization. DC and SM1, . . . ,SMN are started, with

N = 4 in the lab setting and N = {20, 40, 60, 80, 100}
in the virtualized setting. All smart meters connect to DC
and report themselves as available. Finally, DC provides
the sending list and other initialization material to all
SMi.

2) Spatial Aggregation. A controller program triggers DC
to start the spatial aggregation and all SMi report their
consumption and forward their share, respectively. In our
implementation a smart meter receives the share from the
previous smart meter, then generates its own share, submits
the masked share to the data concentrator and finally
calculates and forwards the new share to its successor.
Some of these operations can be parallelized or even
precomputed. However, it leads to a high load on the
communication link of the DC if all smart meters report
their consumption at the same time.

3) Temporal Aggregation. For temporal aggregation the
controller again triggers DC and all SMi are requested
to report their time-aggergated share ST for revealing the
temporal sum. Again, all smart meters are triggered in a
sequence.

We do not consider communication time, i.e., sending values
from one device to another as this highly depends on the setting
in the field (e.g., power line communication, radio, . . . ) which
is hardly reflected in the lab setup. For each smart meter in
our lab setting we measure (i) the time tM for computing si,t,
m̃i,t and Si; and (ii) the time tH for computing H(mi,t)
and H(si,t). This measurement is performed for variable
bit lengths b ∈ {32, 64, 128, 256, 512}. Table V shows the
resulting values (median from 1000 samples). For larger bit
sizes the homomorphic hash takes up most of the computation
time, e.g., for b = 256 this yields the following measurements:
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tM +tH = 6.2048ms and the homomorphic hash has a fraction
of tH

tM+tH
= 94.95%.

TABLE V
COMPUTATION TIMES FOR THE HASH tH AND FOR MASKING tM FOR

VARIABLE BIT LENGTHS b (MEDIAN, 1000 SAMPLES EACH).

Bit length b tH [ms] tM [ms]
32 0.1933 0.2435
64 0.3202 0.2437
128 1.0932 0.2597
256 5.8914 0.3134
512 37.4880 0.4674

In order to evaluate the behavior of the protocol when smart
meters fail during one round of reading, 20, 40, 60, 80 and
100 smart meters are virtualized. For each group size, the time
for one round of spatial aggregation is measured with all smart
meters being available and with 10 smart meters randomly
failing during normal operation. The methodology is the same
as described for the lab setting above and the bit length is set
to b = 256.

The timing results are shown in Figure 4. The box indicates
the first and third quantile and the horizontal bar in the box is
the median. The time needed for spatial aggregation increases
with the group size. If 10 smart meters fail at random, the
average time for aggregation is lower than if no smart meters
fail. This is the case, since for 10 smart meters neither the hash
nor the masking needs to be calculated. The time saved for
calculating the masking of the value and especially the hash
(compare Tables III and V) is greater than the additional time
needed for skipping the smart meter and addressing the next
one in the sending list. However, we do not consider network
delays due to packet loss or low bandwidth (which may occur
when using PLC or radio links in the field).

C. Network Traffic

In terms of network traffic, the message size is determined
by the bit length b, that in turn provides the basis for the
upper length of the values and the hashes. In Table VI an
estimation is provided for the upper length of the messages,
expressed as multiples of the bit length. The length of Ack
messages and the message for requesting ST are of negligible
size. It can be seen, that initialization is achieved with low
overhead and that temporal aggregation is very efficient in
terms of network traffic. In addition, for one round of reading,
the bulk of the communication is between smart meters and
the data concentrator, whereas smart meters only exchange
short messages.

Fig. 4. Timing results for one round of reading with a group size of 20, 40,
60, 80 and 100 virtualized smart meters. Results are shown for no faults and
for 10 randomly failing smart meters.The box indicates the first and third
quantile and the horizontal bar in the box is the median.

TABLE VI
MESSAGE SIZES FOR ONE ROUND OF READING.

Message Bit length
DC→ SM1 S0 b
DC→ SMi Ack
SMi → DC m̃i,t||H(mi,t)||H(si,t)||t 4b
SMN → DC SN b
SMi → SMi+1 Si b
SMi+1 → SMi Ack

VII. CONCLUSION AND FUTURE WORK

In this paper we discussed a novel approach for an error-
resilient spatio-temporal masking protocol. The protocol is
capable of privacy-aware aggregation over a number of smart
meters in terms of space (as used for network monitoring)
and time (as used for billing). While our basic algorithm still
suffered from some flaws, such as only limited fault tolerance
and the lack of an ability to proof correctness of shares, the
final algorithm fulfills all of these requirements. Our protocol
is designed for protecting end-user privacy and therefore we
conducted a thorough privacy analysis with respect to honest-
but-curious and passive adversaries. Evaluation has shown
that this approach is feasible for practical implementations,
especially as all computations on the smart meter are of constant
time for normal operation and that the computation time for
masking is negligible compared to the homomorphic hashes.
The protocol which is presented in this paper contributes in
terms of error-resilience and spatio-temporal masking. State
of the art approaches have no or only limited support for
efficiently treating with faulty smart meters.

For the proposed protocol, it will be interesting to increase
security using, e.g., signatures that are specifically designed



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2630803, IEEE
Transactions on Smart Grid

IEEE TRANSACTIONS ON SMART GRID, VOL. XY, NO. Z, DECEMBER 2015 11

for this situation. Additionally, verification could eventually be
improved using, e.g., commitments.
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