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Abstract—The research of anomaly-based intrusion detection 
within smart grids is a current topic and is investigated by many 
researchers. Thus, little experience is available on how to address 
the problem of detecting anomalies in smart grids. Another 
problem emerges when one tries to use common approaches of 
pattern recognition. As the data in such systems is typically highly 
imbalanced – there are many more normal instances than attack 
instances – there is often a high rate of misclassification when 
considering the attack, or minority class. In order to study this 
issue, this paper investigates the use of resampling techniques for 
intrusion detection inside of a hierarchical, three-layer smart grid 
communication system using a relatively new data set called 
ADFA-LD (this dataset includes contemporary attacks and is well-
known for evaluating the performance of anomaly-based intrusion 
detection systems). Results compare the performance of typical 
and resampled techniques, demonstrating that the use of 
resampling leads to improved detection of attacks with a smart 
grid communication system. 

Keywords—smart grid, anomaly-based intrusion detection, 
imbalanced data, cost-sensitive learning, under- and over-sampling 

I. INTRODUCTION 
Over 100 years ago, the world’s largest engineered system, 

the electric grid, was built. The electric grid consists of many 
different systems, components and owners but was not built for 
the requirements of the 21st century. Thus, the electric grid 
struggles with many weaknesses. For instance, as it is difficult 
to match the energy generation to the demand, energy utilities 
need to over-generate electricity to ensure a complete supply. 
Nonetheless, power outages can occur and these outages are 
usually recognized only after a customer complaint. 
Additionally, due to the unidirectional architecture of the grid, it 
is difficult to integrate renewable energy power plants (e.g., 
wind farms or photovoltaic systems) into the electric grid. To 
overcome these shortcomings, the so-called “smart grid” has 
emerged. Within a smart grid, intelligent communication and 
information systems are used, for instance, to flatten peak 
demands, to predict demand while balancing power generation 
or to transmit price information so that intelligent devices can be 
activated automatically. This intelligent system is comprised of 
a variety of sensors and communication devices, resulting in 
data flows between all grid components, utility providers and 
customers of the grid. This leads to various algorithms for 
estimation, control and pricing [1].  

 Unfortunately, through the integration of such systems many 
vulnerabilities arise [1]. Therefore, it is suggested in [2] to use 
methods from data analytics to monitor the communication in a 
smart grid to detect potential anomalies. But since most of the 
data is in a system such as the smart grid is typically associated 
with normal behavior and not disturbances or attacks, one must 
deal with an imbalanced data problem, where algorithms 
typically fail to classify the minority class with a high accuracy 
rate. However, methods exist to overcome these shortcomings.  

Within this paper, these improved methods for the 
classification of imbalanced datasets will be investigated 
comprehensively using the Australian Defense Force Academy 
Linux Dataset (ADFA-LD). These methodologies are then 
transferred, using the same dataset, to a hierarchical 
communication model for the smart grid in order to develop an 
intrusion detection system that is capable of handling 
imbalanced data. 

 The remainder of the paper is organized as follows: In 
Section II, a thorough literature review will be presented; In 
Section III, the ADFA-LD will be discussed in detail; Section 
IV will describe the proposed methodology for the evaluation 
process of the ADFA-LD and the construction of a prototypical 
hierarchical smart grid intrusion detection system, in which a 
test for the ADFA-LD with the best common approaches and the 
best imbalanced data method will be executed; In Section V, the 
results for the evaluation process and the smart grid IDS will be 
presented and compared; Finally, the paper is concluded in 
section VI. 

II. LITERATURE REVIEW 

A. Intrusion Detection for Smart Grids 
An Automated Metering Infrastructure (AMI) represents a 

communication network including smart meters, monitoring 
systems, computer hard- and software, data management 
systems and lots of sensors. An AMI is used for the bidirectional 
communication in a smart grid between utilities and the demand 
side. Since an AMI will consist mainly of wireless (mesh) 
networks with a lot of nodes, it is on the one hand more 
vulnerable for network-related attacks and unauthorized 
physical access and on the other hand it is more difficult to 
monitor such topologies [2]. 
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But it is learned from information technology security that a 
comprehensive security system needs to include monitoring 
systems. So, this study considers using an IDS within the smart 
grid network for monitoring purposes. To deploy an IDS within 
a smart grid, one must consider the requirements (e.g., 
encryption and real-time transmissions) and constraints (e.g., 
topology and bandwidth) of smart grid communication systems. 
These considerations can help to define impacts and limitations 
on functionalities and security for the communication 
architecture and the monitoring system. For example, a 
constraint for the implementation of an IDS in a smart grid is a 
high detection rate including zero-day attacks while causing 
only a low overhead [2]. 

However, it is a challenge to apply the knowledge of 
intrusion detection systems to smart grids to cover the 
vulnerabilities and yet to consider industry strengths. The main 
limitation of a traditional IDS architecture is to make it scalable 
for the size of a smart grid network since the processing of the 
data from millions of nodes on a central system would be too 
inefficient. To circumvent this problem, it would be for example 
possible to outsource some of the processing load directly to the 
sensors whereby the central management station is only 
responsible for coordinating sensors and collecting high-level 
alerts. Another requirement is the robustness against failures and 
attacks. So, the system is supposed to operate even when a 
subset of sensors or the management station are unavailable or 
compromised. While sensors can be protected through 
virtualization or by using a separate hardware, the approach for 
management stations is to use redundant systems. To detect 
compromised systems, various methods exist (e.g., a reputation 
system or a distributed proof system). Finally, it is suggested to 
use separated communication networks between sensors and 
management servers [2]. 

Existing approaches and concepts to implement an intrusion 
detection system within smart grids include a Model-Based IDS 
[3], a Behavior-Rule-Based IDS [4], an IDS with Domain 
Knowledge [5] and the Smart Grid Intrusion Detection System 
(SGDIDS) [6]. Since this paper considers the anomaly-based 
approach for the intrusion detection and the SGDIDS is based 
on an anomaly-based approach, this concept will be used as 
reference model later. Basically, the SGDIDS works with the 
three layers Home-Area Network (HAN), Neighborhood-Area 
Network (NAN) and Wide-Area Network (WAN) as detection 
architecture with a top-down and vice versa communication and 
information flow [6]. 

B. The Imbalanced Data Problem 
An imbalanced data problem means that a dataset has an 

unequal distribution between the classes. The issue thereby is to 
achieve the same performance as for balanced datasets since 
common algorithms or classifiers are only optimized for 
balanced datasets or equal misclassification costs. In case of a 
two-class problem, an imbalanced data problem means that one 
class has significantly more instances than the other class. As 
example, consider the real-world medicine problem of detecting 
cancer with the two occurring classes healthy (negative) and 
cancerous (positive). This domain has imbalanced data in its 
nature since more healthy than cancerous patients exist. For 
example, the real-world “Mammography Data Set” contains 

10,923 negative examples, denoted as the majority class, and 
only 260 positive examples, denoted as minority class. Usually, 
one wants to achieve a high classification performance for both 
classes. But with such a dataset the performance might be very 
high for the majority class (close to 100% correct classifications) 
and tends to be bad for the minority class (e.g., between 0% and 
10% correct classifications). This implies, that from the 260 
cancerous patients 90% to 100% would be classified as healthy. 
Since within the medical domain it is costlier to classify a 
cancerous patient as healthy than vice versa, it is important to 
improve the accuracy of the minority class. This problem can be 
assigned to other domains such as fraud detection or network 
intrusion, too [7]. 

A lot of different solutions to address the imbalanced data 
problem exist. They can be categorized by data-level solutions, 
algorithm-level solutions and ensemble solutions [8]. The data-
level and algorithm-level solutions will be used within this paper 
and will be explained subsequently. 

1) Data-level solutions 
The approach for data-level solutions is to change the 

distribution of an imbalanced dataset to build a (more) balanced 
set. A sampled dataset is then used for the learning procedure 
and then the classifier might achieve better classification results. 
In a lot of studies, it was proved that some classifiers achieved a 
better overall performance with a sampled and (more) balanced 
dataset [7]. 

In general, one can distinguish between under-sampling and 
over-sampling. While under-sampling removes data from the 
majority class in the original imbalanced dataset, the over-
sampling algorithm adds data to the minority class. Both 
sampling techniques have their own pros and cons. While under-
sampling might lose some important concepts through removing 
instances from the majority class but might achieve a better 
performance in terms of the processing time, over-sampling 
might have a better detection performance but might lead to 
overfitting since some instances might be simply duplicated 
through the randomness. Therefore, some intelligent approaches 
exist to overcome these shortcomings [7]. 

In addition to various under- and over-sampling approaches, 
hybrid-sampling approaches exist, too. Basically, hybrid 
sampling combines under- and over-sampling in diverse ways to 
improve the performance [7]. The different approaches for 
under-sampling, over-sampling and hybrid-sampling will be 
explained following. 

a) Under-Sampling 
 First, the RandomUnderSampler (RUS) simply chooses and 
removes majority samples randomly until the classes are 
balanced. To start with the more intelligent approaches, the 
CondensedNearestNeighbour (CNN) is based on the nearest 
neighbor rule. But a shortcoming of this method is that the 
classifier must store all training instances. So, CNN under-
sampling is an improved method of the nearest neighbor rule 
which needs finally less space for storing. The 
EditedNearestNeighbours (ENN) under-sampling is based on 
the k-nearest neighbor rule. Basically, under-sampling 
performed by ENN creates a more balanced dataset distribution 
by accepting only instances which were correctly classified by 



the k-nearest neighbor rule. RepeatedEditedNearestNeighbor 
(RENN) works identically as ENN. The only difference is that 
the process of removing wrongly classified instances is repeated 
infinite times resp. as long as no more eliminations are possible. 
However, this method has no proof of performance 
improvement in comparison to the ENN under-sampling [9]. 
The next under-sampling approach, All-KNN, iterates from k=1 
to n over a given distribution of a dataset. For each round, the k-
nearest neighbors are calculated and then each instance within 
the distribution is classified. If most of the n predictions for an 
instance are wrong, then this instance will be removed [10]. The 
InstanceHardnessThreshold (IHT) assumes a value denoted as 
hardness for each instance within a dataset. This value indicates 
the probability of misclassification. So, this method comprises 
an algorithm to measure the hardness to filter the instances based 
on a given threshold. NearMiss consists of three different 
versions, but all focus on the relation between minority and 
majority class. While version 1 selects instances with the lowest 
average distance between majority instances and three minority 
instances, version 2 calculates the distance to all minority 
instances and selects then the instances with the average distance 
to the three farthest minority examples. Finally, version 3 selects 
majority instances which are surrounded by minority instances. 
The under-sampling technique TomekLinks is based on CNN. 
Since CNN might have some shortcomings (e.g., random 
selection of instances at the beginning of the algorithm, which 
might lead to a disregarding of boundary instances), 
TomekLinks uses two modifications for an increased 
consideration of boundary instances. The OneSidedSelection 
(OSS) method creates subsets of all minority instances and only 
a single majority instance. Then, the original dataset is 
reclassified by the one-nearest neighbor rule and the 
misclassifications are added to the generated subset. Finally, 
TomekLinks under-sampling is used to remove noisy and 
borderline instances of the majority class. Finally, the 
NeighbourhoodCleaningRule (NCR) works like OSS but 
changes the one-nearest neighbor rule since the rule might be 
too sensitive to noise in the data. So, NCR under-sampling uses 
ENN under-sampling for the majority class to remove noisy 
instances. Then, misclassified instances are removed from both 
the minority and majority class with the 3-nearest neighbor rule 
[9]. 

b) Over-Sampling 
First, the RandomOverSampler (ROS) is simply the reversed 

version of the RandomUnderSampler. ROS replicates minority 
instances randomly until the dataset is balanced [9]. 

The Synthetic Minority Over sampling TEchnique 
(SMOTE) uses synthetic instances to achieve a more balanced 
dataset. The regular version calculates the distance between an 
instance and the nearest neighbor and then multiplies this 
distance with a random number between 0 and 1. SMOTE 
borderline 1 and 2 assume that borderline instances are more 
likely to get misclassified. Thus, they are more important and so 
these over-sampling methods try to synthetize only borderline 
instances. Last, SMOTE SVM focuses on the borders of the 
minority and majority class. Finally, Adaptive Synthetic 
(ADASYN) over-sampling is based on SMOTE. The key 
difference is that ADASYN uses the k-nearest neighbors of an 
instance from the majority class and decides then, based on a 

weighting algorithm, how many minority instances the 
algorithm should synthetize. This is done with the intention to 
reduce bias through imbalance and to shift boundaries towards 
harder examples [9]. 

c) Hybrid-Sampling 
The first approach, SMOTETomek, starts with over-

sampling the dataset using SMOTE and then uses Tomek to 
under-sample the dataset. Since both under- and over-sampling 
have their shortcomings, the idea is to improve the results with 
a combination of both methods. The other hybrid-sampling 
approach, SMOTEENN, performs a similar procedure like 
SMOTETomek except using ENN to remove samples after the 
SMOTE over-sampling process. Since ENN is used instead of 
Tomek, this might lead to more removed instances which might 
further lead to a better performance [9]. 

2) Algorithm-level solutions 
Beside cost-sensitive learning methods, the kernel-based 

learning framework, one-class learning and active learning 
approaches exist. However, this paper will focus only on cost-
sensitive learning methods [7][8].  

Regarding cost-sensitive learning, a misclassification of a 
data instance might be associated with different costs. These 
costs are represented as so-called cost-matrix. A cost-matrix 
contains numerical values with costs/penalties for 
misclassifying a pattern whereby there are usually no costs 
assigned for classifying a class correctly. However, if the actual 
cost values are unavailable, a common way to build a cost matrix 
for imbalanced data problems is to assign the imbalanced ratios 
inversely. Then, as soon as the cost matrix is built, the goal for 
cost-sensitive learning is to minimize the overall costs for the 
training set [7]. 

In general, methods for cost-sensitive learning can be 
distinguished by three distinct categories. These categories are 
data-space weighting, meta-techniques and classifiers with 
built-in cost-sensitive functions or features. 

a) Data-space weighting 
To apply cost-sensitive learning through data-space 

weighting, the misclassification costs are used to change the 
training data distribution. This approach is strongly based on the 
theoretical foundations of the Translation Theorem in [11]. So, 
the training distribution is changed to minimize the costs and to 
get the best possible distribution by multiplying each case by its 
relative cost. This can be performed either as transparent box or 
black box [12].  

The transparent box passes the cost-matrix directly to the 
classifiers while the black box performs a re-sampling with the 
same cost-matrix before handing the data over to the classifier. 
However, this method might lead to overfitting [12]. 

b) Meta-techniques 
The second category is built on theoretical foundations of the 

MetaCost Framework by [13]. In contrast to data-space 
weighting, a meta-technique does not sample the data 
distribution and is also called non-sampling cost-sensitive meta-
learning. With cost-sensitive meta-learning it is possible to 
convert cost-insensitive classifiers into cost-sensitive classifiers 



without modifying them. This is done either with pre-processing 
the training data or post-processing the output. However, this 
category can be further divided into the subcategories relabeling, 
weighting and threshold adjusting.  

The first subcategory, relabeling, changes the classes of 
single instances by the minimum expected cost criterium. 
Relabeling can be either done for the training or test data. The 
next method, weighting, basically assigns a given weight (based 
on the cost-matrix resp. misclassification costs) to classes and so 
classes with higher weights get more consideration. The last 
method, threshold adjusting or also referred to as Thresholding, 
investigates the output probabilities and optimizes the threshold 
to minimize the total misclassification costs based on a given 
cost-matrix. In general, the output probabilities from the training 
instances are used to calculate a new optimal threshold. Then, 
the new calculated threshold is used as decision criterion to 
classify the output probabilities from the test instances. If the 
probability of a pattern is above the new threshold, the instance 
is predicted as positive and if the probability is lower than the 
new threshold then the instance is labelled as negative. This 
method avoids overfitting, too [14]. 

c) Built-in cost-sensitive functions 
The last category integrates cost-sensitive learning methods 

directly into various classifiers. Since the way how functions are 
integrated or features are changed are very different, no unifying 
framework is available [7]. Classifiers used for such 
modifications are for example decision trees [7] [15], neural 
networks [7], random forests [15], bagging classifier [15], 
pasting classifier [15] and random patches classifier [15]. 

C. Performance Metrics 
The performance of a two-class classification problem can 

be generally represented with a so-called confusion matrix 
including True Positives (TP), False Positives (FP), False 
Negatives (FN) and True Negatives (TN) and in general, all 
metrics are based on these values [7]. The most common metrics 
to evaluate the performance are the accuracy (ACC) and the 
error rate. While the error rate is just 1 −  the accuracy is ,ܥܥܣ
expressed as seen in (1) where equation expresses the correct 
classification rate over all instances and is calculated by adding 
up all correct classifications and then dividing them by all 
instances. 

ܥܥܣ = ்௉ା்ே்௉ାிேା்ேାி௉
Since in this paper, the performance for imbalanced data are 

evaluated, this metric is not very meaningful. Let us assume that 
an imbalanced ratio of 1:99 is present, which means that the 
minority class consists only of 1% of all data instances and the 
majority class consists of the remaining 99%. If an accuracy of 
99% is achieved, that could mean that all majority instances 
were classified correctly but all minority instances wrongly [12]. 
To overcome this shortcoming, various other evaluation metrics 
exist which are more suited for the imbalanced domain [12] [16]. 
These metrics include Precision, True Positive Rate 
(TPR)/Recall/Sensitivity, True Negative Rate (TNR)/Specifity, 

False Positive Rate (FPR) and False Negative Rate (FNR) which 
are shown in (2)-(6). 

݊݋݅ݏ݅ܿ݁ݎܲ = ்௉்௉ାி௉
ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ / ݈݈ܴܽܿ݁ / ܴܲܶ = ்௉்௉ାிே

ݕݐ݂݅݅ܿ݁݌ܵ / ܴܰܶ = ்ே்ேାி௉
ܴܲܨ = ி௉ி௉ା்ே
ܴܰܨ = ிேிேା்௉

Precision measures the exactness which means how many of 
all predicted positives are classified correctly. On the other hand, 
TPR or Recall/Sensitivity measures the completeness which 
means how many instances of all real positives are predicted 
correctly [16]. Intuitively, TNR computes how many instances 
of all real negatives are predicted correctly. FNR and FPR have 
an inverse relationship to TPR and TNR respectively. FNR 
states how many instances of all real positives are predicted 
wrongly and FPR calculates how many instances of all real 
negatives are predicted wrongly.  

In addition to these metrics, other measures such as the F-
Measure and G-Mean are commonly used and are shown in (7)-
(8). 

ܨ − ݁ݎݑݏܽ݁ܯ = (ଵାßమ)∗ோ௘௖௔௟௟∗௉௥௘௖௜௦௜௢௡ßమ∗ோ௘௖௔௟௟ା௉௥௘௖௜௦௜௢௡
ܩ − ݉݁ܽ݊ = ඥݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ∗ ݕݐ݂݅݅ܿ݁݌ݏ

The F-Measure combines Recall and Precision as a weighted 
ratio to represent the effectiveness of the classifier. The weight 
is based on the ß parameter. Usually, this parameter is set to 1 
and so a balanced weight of Precision and Recall is achieved 
(so-called “F1-Measure”). Even though this metric gives more 
insight than the accuracy metric, it is still sensitive to 
imbalanced data distributions. Finally, the G-mean calculates 
the ratio of positive accuracy and negative accuracy which 
represents the degree of inductive bias [16]. 

Additionally, the Receiver Operating Characteristics (ROC) 
curve plots the TPR against the FPR. Each point within this 
graph represents a single classifier at a specific data distribution. 
This means, that such a graph yields to a visual representation 
between benefits (TPR) and costs (FPR) for various data 
distributions. A single point within the plot originates from hard-
type classifiers which are only able to produce a single {ܴܶܲ,  pair. On the other hand, a series of ROC points {ܴܲܨ
produced by a threshold can generate full-featured ROC curves, 



which are provided by soft-type classifiers. To compare the 
average performance of different classifiers, the area under 
curve (AUC) can be calculated [7]. 

III. THE ADFA-LD 
The ADFA-LD was made for anomaly based intrusion 

detection systems and created due to missing datasets containing 
contemporary attack protocols. One example of an outdated 
dataset is the Knowledge Discovery and Data Mining (KDD) 
dataset which was generated in 1998. The KDD dataset was 
historically the most used dataset for IDS research [17] [18]. 

To generate the ADFA-LD, an Ubuntu Linux Server Version 
11.04 was used as operating system. To allow different attacks, 
Apache Version 2.2.17 with PHP Version 5.3.5 and MySQL in 
Version 14.14 were installed and started. The File Transfer 
Protocol (FTP) and the Secure Shell (SSH) services were 
enabled, too. To add additional vulnerability, TikiWiki Version 
8.1 was installed and started. After the full installation of the 
software and the installation of all available patches, different 
payloads to attack the operating system were generated. These 
payloads include password brute forcing, adding new 
superusers, a Java Based Meterpreter, a Linux Meterpreter 
Payload and a C100 Webshell. The vectors used for the 
password brute force attack were FTP by Hydra and SSH by 
Hydra. A client-side poisoned executable vector was used for 
both adding new superusers and to transfer the Linux 
Meterpreter Payload. To get a Java Based Meterpreter session, 
a TikiWiki vulnerability exploit was sent to the server. Finally, 
for the C100 Webshell payload a PHP Remote File Inclusion 
vulnerability was exploited [17] [18]. 

Altogether, these payloads and attack vectors represent 
current practices to exploit a system. Considering the 
preparation of the server, a realistic defense environment was 
provided, too. Through several tests with different algorithms 
and the comparison with the KDD dataset, the ADFA-LD was 
validated as challenging and representative dataset for current 
cyber-attacks [17] [18]. 

A. Structure 
During normal operations like web browsing or document 

operations, 833 traces of system calls for normal training data 
and 4373 traces of system calls for normal validation data were 
collected. The normal training data traces contain only traces 
with a file size between 300 Bytes and 6 Kilobytes while the 
normal validation data traces contain traces with a file size 
between 300 Bytes and 10 Kilobytes. The separation was done 
as trade-off between data fidelity and processing time. Since the 
goal of this paper is to gain the best detection rate, all normal 
data traces were combined. This results in a total of 5206 normal 
behavior traces. For the generation of the attack data, ten attacks 
were executed for each attack vector, which results in totally 746 
attack data traces. Consequently, the imbalanced ratio is 
approximately 1:7 [17].  

B. Processing 
Each single data instance is an individual file and equals a 

system call trace whereby the term “trace” refers to a sequence 
of single system calls for a privileged process. Each different 

system call has a different unique system call identification (ID). 
In the dataset, a sequence of system call IDs is saved for each 
system call trace and is therefore a single data instance. Since 
system call traces have different lengths, it is not possible to 
process them directly with a machine learning algorithm. 
Different solutions to bypass this problem consider for example, 
trace lengths, the usage of common patterns or to count the 
frequencies. In [18] the author stated, that the trace length is not 
an effective way to find anomalies. Whereas common patterns 
like consecutive system call IDs are effective but highly time-
consuming. Thus, a frequency based counting to gain a common 
sample length for system call traces was used.  

C. Previous performance 
Regarding [19], the highest percentage achieved for the 

ADFA-LD measured by the area under the curve for a ROC 
curve is 95.32%. This value was achieved by a classification 
with a semantic Extreme Learning Machine [20]. In comparison, 
88.93%, 76.22% and 86.87% were achieved with a semantic 
SVM, a syntactic Hidden Markov Model [21] and the Sequence 
Time-Delay Embedding 10 method [19] respectively. 

IV. PROPOSED METHODOLOGY 
For this study, all evaluation tasks were executed with the 

Python programing language and all performances for the 
common approaches were achieved with the help of NumPy, 
SciPy, Matplotlib and especially Scikit-Learn [22]. To execute 
the cost-sensitive learning methods, the 
CostsensitiveClassification package [15] includes the stated 
cost-sensitive classifiers and was also used to perform 
Thresholding. To add weights to the classifiers, the classifiers 
within the Scikit-Learn package could be used. Finally, for all 
sampling methods, the Imbalanced-Learn package [23] was 
used.  

The main goal of this study – implementing improved 
anomaly detection methods for imbalanced datasets in a smart 
grid communication hierarchy – was achieved through multiple 
steps.  

 First, common approaches and the mentioned imbalanced 
data methods were evaluated considering the ADFA-LD. The 
used classifiers included the k-nearest neighbor (k-NN) rule, a 
Multilayer Perceptron (MLP) classifier, the Quadratic 
Discriminant Analysis (QDA), Support Vector Machines 
(SVM), a boosting ensemble classifier with decision trees as 
base learner (“DTBoost”), a bagging ensemble classifier with 
decision trees as base learner (“DTBagg”) and a Random Forest 
classifier (“RForest”) To improve the performances for these 
classifiers, a grid search within their hyper-parameter space was 
executed. Additionally, a Plurality Voting classifier (“PlurVt”) 
and a Weighted Voting classifier (“WeighVt”) were used, too.   

  While the common methods and all sampling methods can 
use all stated classifiers, the cost-sensitive learning methods 
have restricted possibilities. The cost-sensitive weighting 
method is only executable for selected classifiers such as 
decision trees and SVMs. Therefore, the weighted classifier set 
consists of the classifiers SVM, DTBoost, DTBagg, RForest and 
the two voting classifiers PlurVt and WeighVt. Since 
thresholding is only possible for classifiers which can produce 



probability outputs, the classifier set is restricted to the 
classifiers k-NN, MLP, QDA, SVM, DTBoost, DTBagg and 
RForest (voting classifiers cannot produce probability outputs). 
The cost-sensitive classifier set, with directly built-in cost-
sensitivity, consists of a decision tree and Bagging, Pasting, 
Random Forests and Random Patches classifiers.  

 To execute the imbalanced methods, some individual 
changes in the common classification process are necessary. Let 
us start with the changes for cost-sensitive weighting and cost-
sensitive classifiers. The only relevant change is that a cost-
matrix is created which is either directly integrated into the 
classifier (weighting) or passed to train the cost-sensitive 
classifier. More changes are necessary for cost-sensitive 
thresholding. Once the original classifier is trained, the classifier 
is used to predict probabilities for test and training data. Then, a 
cost-matrix is created and the thresholding classifier is trained 
by the predicted training data probabilities and the cost-matrix. 
Finally, the targets are predicted with the thresholding classifier 
by the predicted test data probabilities. To execute the evaluation 
process with sampling methods, only a single change is 
necessary. The training data is sampled with the according 
sampling method and then the classifier is trained with the 
sampled training data. Then, each round is executed with a 5-
fold cross validation and 20 repetitions to create robust 
classifiers and performances. 

 The next task is to build a hierarchical smart grid IDS to 
simulate a communication flow within a smart grid. To evaluate 
the performance of this communication system, the ADFA-LD 
is used to provide normal and attack data. One simulation round 
will use the unchanged dataset and another simulation round will 
use the previously chosen best imbalanced data method. Then, 
the two performances for the smart grid IDS will be compared.  

So, a three-layer hierarchy smart grid architecture will be 
built similar to the hierarchical smart grid IDS system as 
described in [6]. Since the used architecture and communication 
flow for this hierarchical smart grid IDS are very complex, a 
prototypical implementation with a more simplified 
communication flow will be created. Therefore, the created 
prototype uses only a single IDS at each layer and is simulated 
only with if/else decisions.  

For a better understanding of the created three-layer smart 
grid architecture, a single decision process for a single data 
instance will be described. This process illustrates the 
communication flow of a single data instance. First, a single data 
instance is passed to the HAN layer. Since the devices used in 
HANs (e.g., smart meters) have usually a low-performance, just 
the two fastest but still well performing classifiers were chosen 
for the HAN IDS. The used classifiers are the k-NN rule and the 
SVM classifier. The single data instance is then predicted with 
both classifiers. If both the k-NN rule and the SVM classifier 
predict the same class, then this prediction is a final decision. If 
they disagree in their decision, the data instance is passed to the 
next layer. Within the NAN layer, the data instance is now 
predicted from an IDS with four different classifiers, namely k-
NN, MLP, SVM and Random Forests. If most of the classifiers 
decide for one class, then this class is the final decision. On the 
other hand, if two of the classifiers predict one class and the 
other two classifiers predict the other class, then the data 

instance is again forwarded to the next and last layer. In the 
WAN layer, the data instance is predicted by the plurality voting 
classifier. Since this is the last layer, no further decision is 
necessary. Consequently, this prediction is the final decision. 

V. RESULTS 
For all results, the F1-Measure is denoted as “F1” and the 

G-mean is denoted as “G”. 

A. Performance Evaluation 
The results for the performance evaluation task can be found 

in Table I. Since the comparison of all imbalanced data methods 
would be beyond the scope of this study, only the best method 
for each sampling type and the cost-sensitive methods are stated. 

The common approaches were compared to the imbalanced 
data methods. All sampling methods were able to improve the 
AUC score. But on the other hand, nearly all cost-sensitive 
learning methods decreased the AUC performance. The RENN 
under-sampling method can best improve the AUC performance 
of each single classifier and ensemble learner. An improvement 
of the AUC between 0.30% and 1.50% was achieved by a more 
balanced detection rate. This means, that there are less detected 
majority instances but therefore a lot more detected minority 
instances. This behavior is exactly as expected and improves the 
overall detection rate (based on the AUC metric) while a much 
better detection rate for the minority class was achieved. 
Although the RENN under-sampling achieved the best detection 
rates for the minority class, with ADASYN over-sampling the 
AUC score could be raised again. Comparing the best single 
classifiers, the common approach achieved an AUC of 93.58% 
with the plurality voting classifier, the RENN under-sampling 
achieved an AUC of 94.56% with the weighted voting classifier 
and through ADASYN over-sampling the plurality voting 
classifier achieved an AUC score of 95.10%. SMOTETomek 
hybrid-sampling achieved also for each classifier a better AUC 
score than the common approach. But, the detection rate for the 
minority class is worse than the detection rate achieved by 
under- or over-sampling. Anyway, a slightly better detection 
rate for the majority class was achieved. Nevertheless, the best 
classifier from SMOTETomek hybrid-sampling achieved in 
terms of the AUC metric a 0.10% better performance than the 
best classifier from RENN and a 0.50% worse performance than 
ADASYN. The cost-sensitive weighting had only insignificant 
impact on the performance. While individual classifiers are 
slightly better, other classifiers are slightly worse and the voting 
classifiers achieve also a worse performance since there are less 
single classifiers to consider for the voting. So, the overall 
performance of cost-sensitive weighting is worse than the 
normal scenario.  

All in all, the cost-sensitive classifiers are very 
disappointing, since cost-sensitive weighting achieved only a 
similar performance to the normal scenario and thresholding and 
the cost-sensitive classifiers even decreased the performance. 
But the sampling methods compensate this deficient 
performance. 

 

 



TABLE I.  ADFA-LD PERFORMANCE RESULTS 

ADFA-LD FPR FNR AUC ACC F1 G 

C
om

m
on

 a
pp

ro
ac

he
s k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266 

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232 
QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985 
SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189 

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164 
DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199 
RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209 
PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343 

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339 

R
EN

N
 

U
nd

er
-S

am
pl

in
g 

k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367 
MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379 
QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015 
SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340 

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215 
DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338 
RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385 
PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437 

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456 

A
D

A
SY

N
 

O
ve

r-
Sa

m
pl

in
g 

k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428 
MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399 
QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652 
SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361 

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285 
DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415 
RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411 
PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508 

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497 

SM
O

TE
To

m
ek

 
H

yb
ri

d-
Sa

m
pl

in
g 

k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446 
MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313 
QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025 
SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260 

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244 
DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334 
RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375 
PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455 

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458 

C
os

t-
se

ns
iti

ve
 

w
ei

gh
tin

g 

SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647 
DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127 
DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191 
RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204 
PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106 

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203 

C
os

t-s
en

sit
iv

e 
Th

re
sh

ol
di

ng
 k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395 

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955 
QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279 
SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955 
DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 
RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278 

C
os

t-
se

ns
iti

ve
 

cl
as

sif
ie

rs
 DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011 

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061 
Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078 
RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141 

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013 

TABLE II.  SMART GRID HIERARCHY IDS PROCESSES INSTANCES 

 HAN 
passed 

HAN 
acc. 

NAN 
passed 

NAN 
acc. 

WAN 
passed 

WAN 
acc. 

original 1161.54 97.92% 19.14 83.32% 10.32 74.22% 

sampled 1143.56 97.03% 32.04 82.92% 15.40 69.57% 

 

 Regarding the best method among them, the decision is not 
easy to make. Compared only based on the AUC metric, 
ADASYN over-sampling has the best performance even when 
RENN under-sampling achieved just a 0.50% lower AUC score 
while having generally a higher detection rate for the minority 
class. Nevertheless, ADASYN over-sampling achieved with the 
plurality voting classifier the best AUC performance (95.10%). 

B. Smart Grid Hierarchy IDS 
The processed data instances and the achieved accuracy for 

each hierarchy layer are stated in Table II. In total 1,191 test data 
instances were processed. Since the smart grid IDS detection 
process was repeated 100 times, the amount of processed data 
for each hierarchy layer has decimals. In the simulation process 
with un-sampled training data, on average 1,161.54 data 
instances were processed in the HAN layer. This means, that less 
than 30 instances were passed to next layer. For the simulation 
round with over-sampled training data, the number of processed 
instances at the HAN layer is 1,143.56 averaged. Less than 48 
data instances were passed to the next layer. But this fact is only 
remarkable since the total accuracy at this layer is very high. So, 
the simulation with the original training data achieved an 
accuracy of 97.92% and the simulation with the over-sampled 
training data achieved an accuracy of 97.03% within the HAN 
layer. The first comparison of this accuracy already implies, that 
the behavior for the over-sampled data might be similar as 
described in the previous section. However, for the scenario with 
the original data, the NAN layer processed over 19 data 
instances from the approximately remaining 30 (approximately 
65% of the remaining instances). This was accomplished with a 
total accuracy of 83.32%. On the other hand, the scenario with 
the over-sampled training data processed over 32 instances from 
the averaged 47.44 remaining instances (approximately 67.50% 
of the remaining instances). The total accuracy at the NAN layer 
for these instances is 82.92%. The WAN layer processed only 
10.32 data instances for the round with original data with an 
accuracy of 74.22% and only 15.40 data instances for the round 
with over-sampled data with an accuracy of 69.57%. 

The performance metrics for the complete smart grid 
communication model are stated in Table III. As assumed, the 
behavior of the smart grid communication system is similar to a 
common prediction process from the previous section. For the 
simulation round with unchanged methods, the detection rate for 
the minority class is 88.04% and for the majority class 98.82%. 
This leads to an AUC score of 93.46%. Through ADASYN 
over-sampling, the AUC score was raised to 94.90%. This score 
was achieved with a minority class detection rate of 93.03% and 
a majority class detection rate of 96.77%. So, a 1.44% higher 
AUC score with 5% more detected minority instances was 
achieved. Finally, the authors compared this performance to the 
results from the previous section. The smart grid IDS could 
achieve the same performance as their respective best classifiers. 

TABLE III.  SMART GRID HIERARCHY IDS PERFORMANCE RESULTS 

 FPR FNR AUC ACC F1 G 

original 1.18% 11.96% 93.46% 97.48% 89.68% 93.27% 

sampled 3.23% 6.97% 94.90% 96.30% 86.34% 94.88% 

VI. CONCLUSION 
The goal of this study was to investigate imbalanced data 

methods and to use these methods for anomaly detection in 
smart grids. For this purpose, various classifiers were tested for 
the ADFA-LD with common approaches and imbalanced data 
methods. While the performance for the cost-sensitive learning 
methods were disappointing, the sampling methods fulfilled 



their expectations. Especially through over-sampling they could 
improve the detection rate of the minority class while the 
detection rate for majority class nearly remained. This behavior 
led to an overall improved AUC score.  

After the exploration of all methods, the best method for the 
ADFA-LD was chosen to build a smart grid IDS. To build the 
smart grid IDS, a hierarchical three-layer communication 
system were constructed with if/else conditions. Then, both the 
best common method and the best imbalanced data method were 
evaluated by a simulation with the built smart grid IDS. The 
expectation was, that the imbalanced data method outperforms 
existing approaches. Considering the AUC score and the 
detection rate for the minority class, this goal was definitely 
achieved (at the expense of a little lower detection rate for the 
majority class). But the hierarchical smart grid IDS itself was 
also able to improve the overall performance. So, the 
performance for both methods match their respective best 
performing classifier, namely the plurality voting classifier. 
Consequently, a higher performance was achieved only through 
the use of the hierarchical three-layer smart grid IDS, too. 

To extend this work, one might experiment with various 
combinations of classifiers and structures for the hierarchical 
smart grid IDS to improve the performance. Another possibility 
would be to add some ensemble solution classifiers to the 
classifier set or to add some classifiers from the algorithm-level 
solutions (e.g., kernel-based learning framework, one-class 
learning approach or active learning approach). Finally, one 
could change the prototypical implementation with if/else 
conditions to a real smart grid communication system as created 
in [6]. 
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