

Anomaly Detection in Smart Grids with
Imbalanced Data Methods

Christian Promper
Information Technology & Systems

Management
Salzburg University of Applied Sciences

Puch/Salzburg, Austria
cpromper.its-m2015@fh-salzburg.ac.at

Dominik Engel
Information Technology & Systems

Management
Salzburg University of Applied Sciences

Puch/Salzburg, Austria
dominik.engel@fh-salzburg.ac.at

Robert C. Green II
Computer Science Department

Bowling Green State University
Bownling Green, OH, USA

greenr@bgsu.edu

Abstract—The research of anomaly-based intrusion detection
within smart grids is a current topic and is investigated by many
researchers. Thus, little experience is available on how to address
the problem of detecting anomalies in smart grids. Another
problem emerges when one tries to use common approaches of
pattern recognition. As the data in such systems is typically highly
imbalanced – there are many more normal instances than attack
instances – there is often a high rate of misclassification when
considering the attack, or minority class. In order to study this
issue, this paper investigates the use of resampling techniques for
intrusion detection inside of a hierarchical, three-layer smart grid
communication system using a relatively new data set called
ADFA-LD (this dataset includes contemporary attacks and is well-
known for evaluating the performance of anomaly-based intrusion
detection systems). Results compare the performance of typical
and resampled techniques, demonstrating that the use of
resampling leads to improved detection of attacks with a smart
grid communication system.

Keywords—smart grid, anomaly-based intrusion detection,
imbalanced data, cost-sensitive learning, under- and over-sampling

I. INTRODUCTION
Over 100 years ago, the world’s largest engineered system,

the electric grid, was built. The electric grid consists of many
different systems, components and owners but was not built for
the requirements of the 21st century. Thus, the electric grid
struggles with many weaknesses. For instance, as it is difficult
to match the energy generation to the demand, energy utilities
need to over-generate electricity to ensure a complete supply.
Nonetheless, power outages can occur and these outages are
usually recognized only after a customer complaint.
Additionally, due to the unidirectional architecture of the grid, it
is difficult to integrate renewable energy power plants (e.g.,
wind farms or photovoltaic systems) into the electric grid. To
overcome these shortcomings, the so-called “smart grid” has
emerged. Within a smart grid, intelligent communication and
information systems are used, for instance, to flatten peak
demands, to predict demand while balancing power generation
or to transmit price information so that intelligent devices can be
activated automatically. This intelligent system is comprised of
a variety of sensors and communication devices, resulting in
data flows between all grid components, utility providers and
customers of the grid. This leads to various algorithms for
estimation, control and pricing [1].

 Unfortunately, through the integration of such systems many
vulnerabilities arise [1]. Therefore, it is suggested in [2] to use
methods from data analytics to monitor the communication in a
smart grid to detect potential anomalies. But since most of the
data is in a system such as the smart grid is typically associated
with normal behavior and not disturbances or attacks, one must
deal with an imbalanced data problem, where algorithms
typically fail to classify the minority class with a high accuracy
rate. However, methods exist to overcome these shortcomings.

Within this paper, these improved methods for the
classification of imbalanced datasets will be investigated
comprehensively using the Australian Defense Force Academy
Linux Dataset (ADFA-LD). These methodologies are then
transferred, using the same dataset, to a hierarchical
communication model for the smart grid in order to develop an
intrusion detection system that is capable of handling
imbalanced data.

 The remainder of the paper is organized as follows: In
Section II, a thorough literature review will be presented; In
Section III, the ADFA-LD will be discussed in detail; Section
IV will describe the proposed methodology for the evaluation
process of the ADFA-LD and the construction of a prototypical
hierarchical smart grid intrusion detection system, in which a
test for the ADFA-LD with the best common approaches and the
best imbalanced data method will be executed; In Section V, the
results for the evaluation process and the smart grid IDS will be
presented and compared; Finally, the paper is concluded in
section VI.

II. LITERATURE REVIEW

A. Intrusion Detection for Smart Grids
An Automated Metering Infrastructure (AMI) represents a

communication network including smart meters, monitoring
systems, computer hard- and software, data management
systems and lots of sensors. An AMI is used for the bidirectional
communication in a smart grid between utilities and the demand
side. Since an AMI will consist mainly of wireless (mesh)
networks with a lot of nodes, it is on the one hand more
vulnerable for network-related attacks and unauthorized
physical access and on the other hand it is more difficult to
monitor such topologies [2].

978-1-5386-2726-6/17/$31.00 ©2017 IEEE

But it is learned from information technology security that a
comprehensive security system needs to include monitoring
systems. So, this study considers using an IDS within the smart
grid network for monitoring purposes. To deploy an IDS within
a smart grid, one must consider the requirements (e.g.,
encryption and real-time transmissions) and constraints (e.g.,
topology and bandwidth) of smart grid communication systems.
These considerations can help to define impacts and limitations
on functionalities and security for the communication
architecture and the monitoring system. For example, a
constraint for the implementation of an IDS in a smart grid is a
high detection rate including zero-day attacks while causing
only a low overhead [2].

However, it is a challenge to apply the knowledge of
intrusion detection systems to smart grids to cover the
vulnerabilities and yet to consider industry strengths. The main
limitation of a traditional IDS architecture is to make it scalable
for the size of a smart grid network since the processing of the
data from millions of nodes on a central system would be too
inefficient. To circumvent this problem, it would be for example
possible to outsource some of the processing load directly to the
sensors whereby the central management station is only
responsible for coordinating sensors and collecting high-level
alerts. Another requirement is the robustness against failures and
attacks. So, the system is supposed to operate even when a
subset of sensors or the management station are unavailable or
compromised. While sensors can be protected through
virtualization or by using a separate hardware, the approach for
management stations is to use redundant systems. To detect
compromised systems, various methods exist (e.g., a reputation
system or a distributed proof system). Finally, it is suggested to
use separated communication networks between sensors and
management servers [2].

Existing approaches and concepts to implement an intrusion
detection system within smart grids include a Model-Based IDS
[3], a Behavior-Rule-Based IDS [4], an IDS with Domain
Knowledge [5] and the Smart Grid Intrusion Detection System
(SGDIDS) [6]. Since this paper considers the anomaly-based
approach for the intrusion detection and the SGDIDS is based
on an anomaly-based approach, this concept will be used as
reference model later. Basically, the SGDIDS works with the
three layers Home-Area Network (HAN), Neighborhood-Area
Network (NAN) and Wide-Area Network (WAN) as detection
architecture with a top-down and vice versa communication and
information flow [6].

B. The Imbalanced Data Problem
An imbalanced data problem means that a dataset has an

unequal distribution between the classes. The issue thereby is to
achieve the same performance as for balanced datasets since
common algorithms or classifiers are only optimized for
balanced datasets or equal misclassification costs. In case of a
two-class problem, an imbalanced data problem means that one
class has significantly more instances than the other class. As
example, consider the real-world medicine problem of detecting
cancer with the two occurring classes healthy (negative) and
cancerous (positive). This domain has imbalanced data in its
nature since more healthy than cancerous patients exist. For
example, the real-world “Mammography Data Set” contains

10,923 negative examples, denoted as the majority class, and
only 260 positive examples, denoted as minority class. Usually,
one wants to achieve a high classification performance for both
classes. But with such a dataset the performance might be very
high for the majority class (close to 100% correct classifications)
and tends to be bad for the minority class (e.g., between 0% and
10% correct classifications). This implies, that from the 260
cancerous patients 90% to 100% would be classified as healthy.
Since within the medical domain it is costlier to classify a
cancerous patient as healthy than vice versa, it is important to
improve the accuracy of the minority class. This problem can be
assigned to other domains such as fraud detection or network
intrusion, too [7].

A lot of different solutions to address the imbalanced data
problem exist. They can be categorized by data-level solutions,
algorithm-level solutions and ensemble solutions [8]. The data-
level and algorithm-level solutions will be used within this paper
and will be explained subsequently.

1) Data-level solutions
The approach for data-level solutions is to change the

distribution of an imbalanced dataset to build a (more) balanced
set. A sampled dataset is then used for the learning procedure
and then the classifier might achieve better classification results.
In a lot of studies, it was proved that some classifiers achieved a
better overall performance with a sampled and (more) balanced
dataset [7].

In general, one can distinguish between under-sampling and
over-sampling. While under-sampling removes data from the
majority class in the original imbalanced dataset, the over-
sampling algorithm adds data to the minority class. Both
sampling techniques have their own pros and cons. While under-
sampling might lose some important concepts through removing
instances from the majority class but might achieve a better
performance in terms of the processing time, over-sampling
might have a better detection performance but might lead to
overfitting since some instances might be simply duplicated
through the randomness. Therefore, some intelligent approaches
exist to overcome these shortcomings [7].

In addition to various under- and over-sampling approaches,
hybrid-sampling approaches exist, too. Basically, hybrid
sampling combines under- and over-sampling in diverse ways to
improve the performance [7]. The different approaches for
under-sampling, over-sampling and hybrid-sampling will be
explained following.

a) Under-Sampling
 First, the RandomUnderSampler (RUS) simply chooses and
removes majority samples randomly until the classes are
balanced. To start with the more intelligent approaches, the
CondensedNearestNeighbour (CNN) is based on the nearest
neighbor rule. But a shortcoming of this method is that the
classifier must store all training instances. So, CNN under-
sampling is an improved method of the nearest neighbor rule
which needs finally less space for storing. The
EditedNearestNeighbours (ENN) under-sampling is based on
the k-nearest neighbor rule. Basically, under-sampling
performed by ENN creates a more balanced dataset distribution
by accepting only instances which were correctly classified by

the k-nearest neighbor rule. RepeatedEditedNearestNeighbor
(RENN) works identically as ENN. The only difference is that
the process of removing wrongly classified instances is repeated
infinite times resp. as long as no more eliminations are possible.
However, this method has no proof of performance
improvement in comparison to the ENN under-sampling [9].
The next under-sampling approach, All-KNN, iterates from k=1
to n over a given distribution of a dataset. For each round, the k-
nearest neighbors are calculated and then each instance within
the distribution is classified. If most of the n predictions for an
instance are wrong, then this instance will be removed [10]. The
InstanceHardnessThreshold (IHT) assumes a value denoted as
hardness for each instance within a dataset. This value indicates
the probability of misclassification. So, this method comprises
an algorithm to measure the hardness to filter the instances based
on a given threshold. NearMiss consists of three different
versions, but all focus on the relation between minority and
majority class. While version 1 selects instances with the lowest
average distance between majority instances and three minority
instances, version 2 calculates the distance to all minority
instances and selects then the instances with the average distance
to the three farthest minority examples. Finally, version 3 selects
majority instances which are surrounded by minority instances.
The under-sampling technique TomekLinks is based on CNN.
Since CNN might have some shortcomings (e.g., random
selection of instances at the beginning of the algorithm, which
might lead to a disregarding of boundary instances),
TomekLinks uses two modifications for an increased
consideration of boundary instances. The OneSidedSelection
(OSS) method creates subsets of all minority instances and only
a single majority instance. Then, the original dataset is
reclassified by the one-nearest neighbor rule and the
misclassifications are added to the generated subset. Finally,
TomekLinks under-sampling is used to remove noisy and
borderline instances of the majority class. Finally, the
NeighbourhoodCleaningRule (NCR) works like OSS but
changes the one-nearest neighbor rule since the rule might be
too sensitive to noise in the data. So, NCR under-sampling uses
ENN under-sampling for the majority class to remove noisy
instances. Then, misclassified instances are removed from both
the minority and majority class with the 3-nearest neighbor rule
[9].

b) Over-Sampling
First, the RandomOverSampler (ROS) is simply the reversed

version of the RandomUnderSampler. ROS replicates minority
instances randomly until the dataset is balanced [9].

The Synthetic Minority Over sampling TEchnique
(SMOTE) uses synthetic instances to achieve a more balanced
dataset. The regular version calculates the distance between an
instance and the nearest neighbor and then multiplies this
distance with a random number between 0 and 1. SMOTE
borderline 1 and 2 assume that borderline instances are more
likely to get misclassified. Thus, they are more important and so
these over-sampling methods try to synthetize only borderline
instances. Last, SMOTE SVM focuses on the borders of the
minority and majority class. Finally, Adaptive Synthetic
(ADASYN) over-sampling is based on SMOTE. The key
difference is that ADASYN uses the k-nearest neighbors of an
instance from the majority class and decides then, based on a

weighting algorithm, how many minority instances the
algorithm should synthetize. This is done with the intention to
reduce bias through imbalance and to shift boundaries towards
harder examples [9].

c) Hybrid-Sampling
The first approach, SMOTETomek, starts with over-

sampling the dataset using SMOTE and then uses Tomek to
under-sample the dataset. Since both under- and over-sampling
have their shortcomings, the idea is to improve the results with
a combination of both methods. The other hybrid-sampling
approach, SMOTEENN, performs a similar procedure like
SMOTETomek except using ENN to remove samples after the
SMOTE over-sampling process. Since ENN is used instead of
Tomek, this might lead to more removed instances which might
further lead to a better performance [9].

2) Algorithm-level solutions
Beside cost-sensitive learning methods, the kernel-based

learning framework, one-class learning and active learning
approaches exist. However, this paper will focus only on cost-
sensitive learning methods [7][8].

Regarding cost-sensitive learning, a misclassification of a
data instance might be associated with different costs. These
costs are represented as so-called cost-matrix. A cost-matrix
contains numerical values with costs/penalties for
misclassifying a pattern whereby there are usually no costs
assigned for classifying a class correctly. However, if the actual
cost values are unavailable, a common way to build a cost matrix
for imbalanced data problems is to assign the imbalanced ratios
inversely. Then, as soon as the cost matrix is built, the goal for
cost-sensitive learning is to minimize the overall costs for the
training set [7].

In general, methods for cost-sensitive learning can be
distinguished by three distinct categories. These categories are
data-space weighting, meta-techniques and classifiers with
built-in cost-sensitive functions or features.

a) Data-space weighting
To apply cost-sensitive learning through data-space

weighting, the misclassification costs are used to change the
training data distribution. This approach is strongly based on the
theoretical foundations of the Translation Theorem in [11]. So,
the training distribution is changed to minimize the costs and to
get the best possible distribution by multiplying each case by its
relative cost. This can be performed either as transparent box or
black box [12].

The transparent box passes the cost-matrix directly to the
classifiers while the black box performs a re-sampling with the
same cost-matrix before handing the data over to the classifier.
However, this method might lead to overfitting [12].

b) Meta-techniques
The second category is built on theoretical foundations of the

MetaCost Framework by [13]. In contrast to data-space
weighting, a meta-technique does not sample the data
distribution and is also called non-sampling cost-sensitive meta-
learning. With cost-sensitive meta-learning it is possible to
convert cost-insensitive classifiers into cost-sensitive classifiers

without modifying them. This is done either with pre-processing
the training data or post-processing the output. However, this
category can be further divided into the subcategories relabeling,
weighting and threshold adjusting.

The first subcategory, relabeling, changes the classes of
single instances by the minimum expected cost criterium.
Relabeling can be either done for the training or test data. The
next method, weighting, basically assigns a given weight (based
on the cost-matrix resp. misclassification costs) to classes and so
classes with higher weights get more consideration. The last
method, threshold adjusting or also referred to as Thresholding,
investigates the output probabilities and optimizes the threshold
to minimize the total misclassification costs based on a given
cost-matrix. In general, the output probabilities from the training
instances are used to calculate a new optimal threshold. Then,
the new calculated threshold is used as decision criterion to
classify the output probabilities from the test instances. If the
probability of a pattern is above the new threshold, the instance
is predicted as positive and if the probability is lower than the
new threshold then the instance is labelled as negative. This
method avoids overfitting, too [14].

c) Built-in cost-sensitive functions
The last category integrates cost-sensitive learning methods

directly into various classifiers. Since the way how functions are
integrated or features are changed are very different, no unifying
framework is available [7]. Classifiers used for such
modifications are for example decision trees [7] [15], neural
networks [7], random forests [15], bagging classifier [15],
pasting classifier [15] and random patches classifier [15].

C. Performance Metrics
The performance of a two-class classification problem can

be generally represented with a so-called confusion matrix
including True Positives (TP), False Positives (FP), False
Negatives (FN) and True Negatives (TN) and in general, all
metrics are based on these values [7]. The most common metrics
to evaluate the performance are the accuracy (ACC) and the
error rate. While the error rate is just 1 − the accuracy is ,ܥܥܣ
expressed as seen in (1) where equation expresses the correct
classification rate over all instances and is calculated by adding
up all correct classifications and then dividing them by all
instances.

ܥܥܣ = ்ା்ே்ାிேା்ேାி
Since in this paper, the performance for imbalanced data are

evaluated, this metric is not very meaningful. Let us assume that
an imbalanced ratio of 1:99 is present, which means that the
minority class consists only of 1% of all data instances and the
majority class consists of the remaining 99%. If an accuracy of
99% is achieved, that could mean that all majority instances
were classified correctly but all minority instances wrongly [12].
To overcome this shortcoming, various other evaluation metrics
exist which are more suited for the imbalanced domain [12] [16].
These metrics include Precision, True Positive Rate
(TPR)/Recall/Sensitivity, True Negative Rate (TNR)/Specifity,

False Positive Rate (FPR) and False Negative Rate (FNR) which
are shown in (2)-(6).

݊݅ݏ݅ܿ݁ݎܲ = ்்ାி
ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ / ݈݈ܴܽܿ݁ / ܴܲܶ = ்்ାிே

ݕݐ݂݅݅ܿ݁ܵ / ܴܰܶ = ்ே்ேାி
ܴܲܨ = ிிା்ே
ܴܰܨ = ிேிேା்

Precision measures the exactness which means how many of
all predicted positives are classified correctly. On the other hand,
TPR or Recall/Sensitivity measures the completeness which
means how many instances of all real positives are predicted
correctly [16]. Intuitively, TNR computes how many instances
of all real negatives are predicted correctly. FNR and FPR have
an inverse relationship to TPR and TNR respectively. FNR
states how many instances of all real positives are predicted
wrongly and FPR calculates how many instances of all real
negatives are predicted wrongly.

In addition to these metrics, other measures such as the F-
Measure and G-Mean are commonly used and are shown in (7)-
(8).

ܨ − ݁ݎݑݏܽ݁ܯ = (ଵାßమ)∗ோ∗௦ßమ∗ோା௦
ܩ − ݉݁ܽ݊ = ඥݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ∗ ݕݐ݂݅݅ܿ݁ݏ

The F-Measure combines Recall and Precision as a weighted
ratio to represent the effectiveness of the classifier. The weight
is based on the ß parameter. Usually, this parameter is set to 1
and so a balanced weight of Precision and Recall is achieved
(so-called “F1-Measure”). Even though this metric gives more
insight than the accuracy metric, it is still sensitive to
imbalanced data distributions. Finally, the G-mean calculates
the ratio of positive accuracy and negative accuracy which
represents the degree of inductive bias [16].

Additionally, the Receiver Operating Characteristics (ROC)
curve plots the TPR against the FPR. Each point within this
graph represents a single classifier at a specific data distribution.
This means, that such a graph yields to a visual representation
between benefits (TPR) and costs (FPR) for various data
distributions. A single point within the plot originates from hard-
type classifiers which are only able to produce a single {ܴܶܲ, pair. On the other hand, a series of ROC points {ܴܲܨ
produced by a threshold can generate full-featured ROC curves,

which are provided by soft-type classifiers. To compare the
average performance of different classifiers, the area under
curve (AUC) can be calculated [7].

III. THE ADFA-LD
The ADFA-LD was made for anomaly based intrusion

detection systems and created due to missing datasets containing
contemporary attack protocols. One example of an outdated
dataset is the Knowledge Discovery and Data Mining (KDD)
dataset which was generated in 1998. The KDD dataset was
historically the most used dataset for IDS research [17] [18].

To generate the ADFA-LD, an Ubuntu Linux Server Version
11.04 was used as operating system. To allow different attacks,
Apache Version 2.2.17 with PHP Version 5.3.5 and MySQL in
Version 14.14 were installed and started. The File Transfer
Protocol (FTP) and the Secure Shell (SSH) services were
enabled, too. To add additional vulnerability, TikiWiki Version
8.1 was installed and started. After the full installation of the
software and the installation of all available patches, different
payloads to attack the operating system were generated. These
payloads include password brute forcing, adding new
superusers, a Java Based Meterpreter, a Linux Meterpreter
Payload and a C100 Webshell. The vectors used for the
password brute force attack were FTP by Hydra and SSH by
Hydra. A client-side poisoned executable vector was used for
both adding new superusers and to transfer the Linux
Meterpreter Payload. To get a Java Based Meterpreter session,
a TikiWiki vulnerability exploit was sent to the server. Finally,
for the C100 Webshell payload a PHP Remote File Inclusion
vulnerability was exploited [17] [18].

Altogether, these payloads and attack vectors represent
current practices to exploit a system. Considering the
preparation of the server, a realistic defense environment was
provided, too. Through several tests with different algorithms
and the comparison with the KDD dataset, the ADFA-LD was
validated as challenging and representative dataset for current
cyber-attacks [17] [18].

A. Structure
During normal operations like web browsing or document

operations, 833 traces of system calls for normal training data
and 4373 traces of system calls for normal validation data were
collected. The normal training data traces contain only traces
with a file size between 300 Bytes and 6 Kilobytes while the
normal validation data traces contain traces with a file size
between 300 Bytes and 10 Kilobytes. The separation was done
as trade-off between data fidelity and processing time. Since the
goal of this paper is to gain the best detection rate, all normal
data traces were combined. This results in a total of 5206 normal
behavior traces. For the generation of the attack data, ten attacks
were executed for each attack vector, which results in totally 746
attack data traces. Consequently, the imbalanced ratio is
approximately 1:7 [17].

B. Processing
Each single data instance is an individual file and equals a

system call trace whereby the term “trace” refers to a sequence
of single system calls for a privileged process. Each different

system call has a different unique system call identification (ID).
In the dataset, a sequence of system call IDs is saved for each
system call trace and is therefore a single data instance. Since
system call traces have different lengths, it is not possible to
process them directly with a machine learning algorithm.
Different solutions to bypass this problem consider for example,
trace lengths, the usage of common patterns or to count the
frequencies. In [18] the author stated, that the trace length is not
an effective way to find anomalies. Whereas common patterns
like consecutive system call IDs are effective but highly time-
consuming. Thus, a frequency based counting to gain a common
sample length for system call traces was used.

C. Previous performance
Regarding [19], the highest percentage achieved for the

ADFA-LD measured by the area under the curve for a ROC
curve is 95.32%. This value was achieved by a classification
with a semantic Extreme Learning Machine [20]. In comparison,
88.93%, 76.22% and 86.87% were achieved with a semantic
SVM, a syntactic Hidden Markov Model [21] and the Sequence
Time-Delay Embedding 10 method [19] respectively.

IV. PROPOSED METHODOLOGY
For this study, all evaluation tasks were executed with the

Python programing language and all performances for the
common approaches were achieved with the help of NumPy,
SciPy, Matplotlib and especially Scikit-Learn [22]. To execute
the cost-sensitive learning methods, the
CostsensitiveClassification package [15] includes the stated
cost-sensitive classifiers and was also used to perform
Thresholding. To add weights to the classifiers, the classifiers
within the Scikit-Learn package could be used. Finally, for all
sampling methods, the Imbalanced-Learn package [23] was
used.

The main goal of this study – implementing improved
anomaly detection methods for imbalanced datasets in a smart
grid communication hierarchy – was achieved through multiple
steps.

 First, common approaches and the mentioned imbalanced
data methods were evaluated considering the ADFA-LD. The
used classifiers included the k-nearest neighbor (k-NN) rule, a
Multilayer Perceptron (MLP) classifier, the Quadratic
Discriminant Analysis (QDA), Support Vector Machines
(SVM), a boosting ensemble classifier with decision trees as
base learner (“DTBoost”), a bagging ensemble classifier with
decision trees as base learner (“DTBagg”) and a Random Forest
classifier (“RForest”) To improve the performances for these
classifiers, a grid search within their hyper-parameter space was
executed. Additionally, a Plurality Voting classifier (“PlurVt”)
and a Weighted Voting classifier (“WeighVt”) were used, too.

 While the common methods and all sampling methods can
use all stated classifiers, the cost-sensitive learning methods
have restricted possibilities. The cost-sensitive weighting
method is only executable for selected classifiers such as
decision trees and SVMs. Therefore, the weighted classifier set
consists of the classifiers SVM, DTBoost, DTBagg, RForest and
the two voting classifiers PlurVt and WeighVt. Since
thresholding is only possible for classifiers which can produce

probability outputs, the classifier set is restricted to the
classifiers k-NN, MLP, QDA, SVM, DTBoost, DTBagg and
RForest (voting classifiers cannot produce probability outputs).
The cost-sensitive classifier set, with directly built-in cost-
sensitivity, consists of a decision tree and Bagging, Pasting,
Random Forests and Random Patches classifiers.

 To execute the imbalanced methods, some individual
changes in the common classification process are necessary. Let
us start with the changes for cost-sensitive weighting and cost-
sensitive classifiers. The only relevant change is that a cost-
matrix is created which is either directly integrated into the
classifier (weighting) or passed to train the cost-sensitive
classifier. More changes are necessary for cost-sensitive
thresholding. Once the original classifier is trained, the classifier
is used to predict probabilities for test and training data. Then, a
cost-matrix is created and the thresholding classifier is trained
by the predicted training data probabilities and the cost-matrix.
Finally, the targets are predicted with the thresholding classifier
by the predicted test data probabilities. To execute the evaluation
process with sampling methods, only a single change is
necessary. The training data is sampled with the according
sampling method and then the classifier is trained with the
sampled training data. Then, each round is executed with a 5-
fold cross validation and 20 repetitions to create robust
classifiers and performances.

 The next task is to build a hierarchical smart grid IDS to
simulate a communication flow within a smart grid. To evaluate
the performance of this communication system, the ADFA-LD
is used to provide normal and attack data. One simulation round
will use the unchanged dataset and another simulation round will
use the previously chosen best imbalanced data method. Then,
the two performances for the smart grid IDS will be compared.

So, a three-layer hierarchy smart grid architecture will be
built similar to the hierarchical smart grid IDS system as
described in [6]. Since the used architecture and communication
flow for this hierarchical smart grid IDS are very complex, a
prototypical implementation with a more simplified
communication flow will be created. Therefore, the created
prototype uses only a single IDS at each layer and is simulated
only with if/else decisions.

For a better understanding of the created three-layer smart
grid architecture, a single decision process for a single data
instance will be described. This process illustrates the
communication flow of a single data instance. First, a single data
instance is passed to the HAN layer. Since the devices used in
HANs (e.g., smart meters) have usually a low-performance, just
the two fastest but still well performing classifiers were chosen
for the HAN IDS. The used classifiers are the k-NN rule and the
SVM classifier. The single data instance is then predicted with
both classifiers. If both the k-NN rule and the SVM classifier
predict the same class, then this prediction is a final decision. If
they disagree in their decision, the data instance is passed to the
next layer. Within the NAN layer, the data instance is now
predicted from an IDS with four different classifiers, namely k-
NN, MLP, SVM and Random Forests. If most of the classifiers
decide for one class, then this class is the final decision. On the
other hand, if two of the classifiers predict one class and the
other two classifiers predict the other class, then the data

instance is again forwarded to the next and last layer. In the
WAN layer, the data instance is predicted by the plurality voting
classifier. Since this is the last layer, no further decision is
necessary. Consequently, this prediction is the final decision.

V. RESULTS
For all results, the F1-Measure is denoted as “F1” and the

G-mean is denoted as “G”.

A. Performance Evaluation
The results for the performance evaluation task can be found

in Table I. Since the comparison of all imbalanced data methods
would be beyond the scope of this study, only the best method
for each sampling type and the cost-sensitive methods are stated.

The common approaches were compared to the imbalanced
data methods. All sampling methods were able to improve the
AUC score. But on the other hand, nearly all cost-sensitive
learning methods decreased the AUC performance. The RENN
under-sampling method can best improve the AUC performance
of each single classifier and ensemble learner. An improvement
of the AUC between 0.30% and 1.50% was achieved by a more
balanced detection rate. This means, that there are less detected
majority instances but therefore a lot more detected minority
instances. This behavior is exactly as expected and improves the
overall detection rate (based on the AUC metric) while a much
better detection rate for the minority class was achieved.
Although the RENN under-sampling achieved the best detection
rates for the minority class, with ADASYN over-sampling the
AUC score could be raised again. Comparing the best single
classifiers, the common approach achieved an AUC of 93.58%
with the plurality voting classifier, the RENN under-sampling
achieved an AUC of 94.56% with the weighted voting classifier
and through ADASYN over-sampling the plurality voting
classifier achieved an AUC score of 95.10%. SMOTETomek
hybrid-sampling achieved also for each classifier a better AUC
score than the common approach. But, the detection rate for the
minority class is worse than the detection rate achieved by
under- or over-sampling. Anyway, a slightly better detection
rate for the majority class was achieved. Nevertheless, the best
classifier from SMOTETomek hybrid-sampling achieved in
terms of the AUC metric a 0.10% better performance than the
best classifier from RENN and a 0.50% worse performance than
ADASYN. The cost-sensitive weighting had only insignificant
impact on the performance. While individual classifiers are
slightly better, other classifiers are slightly worse and the voting
classifiers achieve also a worse performance since there are less
single classifiers to consider for the voting. So, the overall
performance of cost-sensitive weighting is worse than the
normal scenario.

All in all, the cost-sensitive classifiers are very
disappointing, since cost-sensitive weighting achieved only a
similar performance to the normal scenario and thresholding and
the cost-sensitive classifiers even decreased the performance.
But the sampling methods compensate this deficient
performance.

TABLE I. ADFA-LD PERFORMANCE RESULTS

ADFA-LD FPR FNR AUC ACC F1 G

C
om

m
on

 a
pp

ro
ac

he
s k-NN 0.0186 0.1251 0.9281 0.9680 0.8728 0.9266

MLP 0.0165 0.1334 0.9250 0.9689 0.8746 0.9232
QDA 0.1661 0.0319 0.9010 0.8507 0.6191 0.8985
SVM 0.0133 0.1443 0.9212 0.9703 0.8783 0.9189

DTBoost 0.0135 0.1487 0.9189 0.9695 0.8751 0.9164
DTBagg 0.0111 0.1444 0.9223 0.9722 0.8852 0.9199
RForest 0.0097 0.1436 0.9233 0.9735 0.8901 0.9209
PlurVt 0.0107 0.1176 0.9358 0.9759 0.9017 0.9343

WeighVt 0.0099 0.1190 0.9355 0.9764 0.9034 0.9339

R
EN

N

U
nd

er
-S

am
pl

in
g

k-NN 0.0663 0.0603 0.9367 0.9345 0.7824 0.9367
MLP 0.0583 0.0660 0.9379 0.9407 0.7980 0.9379
QDA 0.1633 0.0288 0.9040 0.8536 0.6245 0.9015
SVM 0.0542 0.0777 0.9341 0.9428 0.8018 0.9340

DTBoost 0.0546 0.1018 0.9218 0.9394 0.7881 0.9215
DTBagg 0.0435 0.0883 0.9341 0.9509 0.8230 0.9338
RForest 0.0386 0.0839 0.9387 0.9557 0.8384 0.9385
PlurVt 0.0514 0.0613 0.9437 0.9474 0.8173 0.9437

WeighVt 0.0523 0.0564 0.9456 0.9472 0.8174 0.9456

A
D

A
SY

N

O
ve

r-
Sa

m
pl

in
g

k-NN 0.0407 0.0735 0.9429 0.9552 0.8383 0.9428
MLP 0.0347 0.0849 0.9402 0.9590 0.8484 0.9399
QDA 0.2209 0.0392 0.8699 0.8019 0.5487 0.8652
SVM 0.0339 0.0929 0.9366 0.9587 0.8462 0.9361

DTBoost 0.0229 0.1176 0.9297 0.9652 0.8641 0.9285
DTBagg 0.0274 0.0887 0.9420 0.9649 0.8670 0.9415
RForest 0.0237 0.0928 0.9418 0.9677 0.8755 0.9411
PlurVt 0.0283 0.0697 0.9510 0.9665 0.8746 0.9508

WeighVt 0.0254 0.0745 0.9500 0.9684 0.8802 0.9497

SM
O

TE
To

m
ek

H

yb
ri

d-
Sa

m
pl

in
g

k-NN 0.0385 0.0721 0.9447 0.9573 0.8448 0.9446
MLP 0.0263 0.1092 0.9322 0.9633 0.8588 0.9313
QDA 0.1458 0.0464 0.9039 0.8667 0.6420 0.9025
SVM 0.0257 0.1200 0.9272 0.9625 0.8547 0.9260

DTBoost 0.0196 0.1284 0.9260 0.9668 0.8680 0.9244
DTBagg 0.0212 0.1098 0.9345 0.9677 0.8734 0.9334
RForest 0.0175 0.1056 0.9385 0.9715 0.8872 0.9375
PlurVt 0.0212 0.0867 0.9460 0.9706 0.8862 0.9455

WeighVt 0.0199 0.0874 0.9464 0.9717 0.8898 0.9458

C
os

t-
se

ns
iti

ve

w
ei

gh
tin

g

SVM 0.0219 0.2355 0.8713 0.9514 0.7976 0.8647
DTBoost 0.0150 0.1543 0.9154 0.9676 0.8674 0.9127
DTBagg 0.0118 0.1451 0.9215 0.9715 0.8826 0.9191
RForest 0.0101 0.1442 0.9228 0.9731 0.8885 0.9204
PlurVt 0.0083 0.1638 0.9140 0.9722 0.8830 0.9106

WeighVt 0.0093 0.1451 0.9228 0.9737 0.8905 0.9203

C
os

t-s
en

sit
iv

e
Th

re
sh

ol
di

ng
 k-NN 0.0415 0.0791 0.9397 0.9538 0.8332 0.9395

MLP 0.0183 0.1830 0.8993 0.9610 0.8402 0.8955
QDA 0.0195 0.1218 0.9293 0.9677 0.8719 0.9279
SVM 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955

DTBoost 0.0183 0.1831 0.8993 0.9610 0.8402 0.8955
DTBagg 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278
RForest 0.0195 0.1221 0.9292 0.9677 0.8719 0.9278

C
os

t-
se

ns
iti

ve

cl
as

sif
ie

rs
 DT 0.0256 0.4955 0.7395 0.9155 0.5996 0.7011

Bagging 0.0864 0.1014 0.9061 0.9117 0.7185 0.9061
Pasting 0.0965 0.0879 0.9078 0.9046 0.7056 0.9078
RForest 0.0879 0.0839 0.9141 0.9126 0.7244 0.9141

RPatches 0.1215 0.0753 0.9016 0.8843 0.6671 0.9013

TABLE II. SMART GRID HIERARCHY IDS PROCESSES INSTANCES

 HAN
passed

HAN
acc.

NAN
passed

NAN
acc.

WAN
passed

WAN
acc.

original 1161.54 97.92% 19.14 83.32% 10.32 74.22%

sampled 1143.56 97.03% 32.04 82.92% 15.40 69.57%

 Regarding the best method among them, the decision is not
easy to make. Compared only based on the AUC metric,
ADASYN over-sampling has the best performance even when
RENN under-sampling achieved just a 0.50% lower AUC score
while having generally a higher detection rate for the minority
class. Nevertheless, ADASYN over-sampling achieved with the
plurality voting classifier the best AUC performance (95.10%).

B. Smart Grid Hierarchy IDS
The processed data instances and the achieved accuracy for

each hierarchy layer are stated in Table II. In total 1,191 test data
instances were processed. Since the smart grid IDS detection
process was repeated 100 times, the amount of processed data
for each hierarchy layer has decimals. In the simulation process
with un-sampled training data, on average 1,161.54 data
instances were processed in the HAN layer. This means, that less
than 30 instances were passed to next layer. For the simulation
round with over-sampled training data, the number of processed
instances at the HAN layer is 1,143.56 averaged. Less than 48
data instances were passed to the next layer. But this fact is only
remarkable since the total accuracy at this layer is very high. So,
the simulation with the original training data achieved an
accuracy of 97.92% and the simulation with the over-sampled
training data achieved an accuracy of 97.03% within the HAN
layer. The first comparison of this accuracy already implies, that
the behavior for the over-sampled data might be similar as
described in the previous section. However, for the scenario with
the original data, the NAN layer processed over 19 data
instances from the approximately remaining 30 (approximately
65% of the remaining instances). This was accomplished with a
total accuracy of 83.32%. On the other hand, the scenario with
the over-sampled training data processed over 32 instances from
the averaged 47.44 remaining instances (approximately 67.50%
of the remaining instances). The total accuracy at the NAN layer
for these instances is 82.92%. The WAN layer processed only
10.32 data instances for the round with original data with an
accuracy of 74.22% and only 15.40 data instances for the round
with over-sampled data with an accuracy of 69.57%.

The performance metrics for the complete smart grid
communication model are stated in Table III. As assumed, the
behavior of the smart grid communication system is similar to a
common prediction process from the previous section. For the
simulation round with unchanged methods, the detection rate for
the minority class is 88.04% and for the majority class 98.82%.
This leads to an AUC score of 93.46%. Through ADASYN
over-sampling, the AUC score was raised to 94.90%. This score
was achieved with a minority class detection rate of 93.03% and
a majority class detection rate of 96.77%. So, a 1.44% higher
AUC score with 5% more detected minority instances was
achieved. Finally, the authors compared this performance to the
results from the previous section. The smart grid IDS could
achieve the same performance as their respective best classifiers.

TABLE III. SMART GRID HIERARCHY IDS PERFORMANCE RESULTS

 FPR FNR AUC ACC F1 G

original 1.18% 11.96% 93.46% 97.48% 89.68% 93.27%

sampled 3.23% 6.97% 94.90% 96.30% 86.34% 94.88%

VI. CONCLUSION
The goal of this study was to investigate imbalanced data

methods and to use these methods for anomaly detection in
smart grids. For this purpose, various classifiers were tested for
the ADFA-LD with common approaches and imbalanced data
methods. While the performance for the cost-sensitive learning
methods were disappointing, the sampling methods fulfilled

their expectations. Especially through over-sampling they could
improve the detection rate of the minority class while the
detection rate for majority class nearly remained. This behavior
led to an overall improved AUC score.

After the exploration of all methods, the best method for the
ADFA-LD was chosen to build a smart grid IDS. To build the
smart grid IDS, a hierarchical three-layer communication
system were constructed with if/else conditions. Then, both the
best common method and the best imbalanced data method were
evaluated by a simulation with the built smart grid IDS. The
expectation was, that the imbalanced data method outperforms
existing approaches. Considering the AUC score and the
detection rate for the minority class, this goal was definitely
achieved (at the expense of a little lower detection rate for the
majority class). But the hierarchical smart grid IDS itself was
also able to improve the overall performance. So, the
performance for both methods match their respective best
performing classifier, namely the plurality voting classifier.
Consequently, a higher performance was achieved only through
the use of the hierarchical three-layer smart grid IDS, too.

To extend this work, one might experiment with various
combinations of classifiers and structures for the hierarchical
smart grid IDS to improve the performance. Another possibility
would be to add some ensemble solution classifiers to the
classifier set or to add some classifiers from the algorithm-level
solutions (e.g., kernel-based learning framework, one-class
learning approach or active learning approach). Finally, one
could change the prototypical implementation with if/else
conditions to a real smart grid communication system as created
in [6].

REFERENCES
[1] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig und

B. Sinopoli, „Cyber–Physical Security of a Smart Grid Infrastructure,“
Proceedings of the IEEE, Bd. 100, Nr. 1, pp. 195 - 209, January 2012.

[2] R. Berthier, W. H. Sanders und H. Khurana, „Intrusion Detection for
Advanced Metering Infrastructures: Requirements and Architectural
Directions,“ in IEEE International Conference on Smart Grid
Communications, Gaithersburg, MD, USA, 2010.

[3] F. M. Tabrizi und K. Pattabiraman, „A Model-Based Intrusion Detection
System for Smart Meters,“ in International Symposium on High-
Assurance Systems Engineering, Miami Beach, FL, USA, 2014.

[4] R. Mitchell und I.-R. Chen, „Behavior-Rule Based Intrusion Detection
Systems for Safety Critical Smart Grid Applications,“ IEEE
Transactions on Smart Grid, pp. 1254-1263, 29 April 2013.

[5] O. Linda, M. Manic und T. Vollmer, „Improving cyber-security of smart
grid systems via anomaly detection and linguistic domain knowledge,“
in International Symposium on Resilient Control Systems, Salt Lake
City, UT, USA, 2012.

[6] Y. Zhang, L. Wang, W. Sun, R. C. Green II und M. Alam, „Distributed
Intrusion Detection System in a Multi-Layer Network Architecture of

Smart Grids,“ IEEE Transactions on Smart Grid, pp. 796-808, 29 July
2011.

[7] H. He und E. A. Garcia, „Learning from Imbalanced Data,“ IEEE
Transactions on Knowledge and Data Engineering, Bd. 21, Nr. 9, pp.
1263-1284, September 2009.

[8] B. Zhu, B. Baesens und S. K. vanden Broucke, „An empirical
comparison of techniques for the class imbalance problem in churn
prediction,“ Information Sciences, Bd. 408, pp. 84-99, October 2017.

[9] S. Shekarforoush, R. Green und R. Dyer, „Classifying Commit
Messages: A Case Study in Resampling Techniques,“ in International
Joint Conference on Neural Networks, Anchorage, Alaska, 2017.

[10] I. Tomek, „An Experiment with the Edited Nearest-Neighbor Rule,“
IEEE Transactions on Systems, Man, and Cybernetics, Bde. %1 von
%2SMC-6, Nr. 6, pp. 448-452, June 1976.

[11] B. Zadrozny, J. Langford und N. Abe, „Cost-sensitive learning by cost-
proportionate example weighting,“ in Third IEEE International
Conference on Data Mining, Melbourne, FL, USA, 2003.

[12] P. Branco, L. Torgo und R. P. Ribeiro, „A Survey of Predictive
Modeling on Imbalanced Domains,“ ACM Computing Surveys, Bd. 49,
Nr. 2, p. Article No. 31, November 2016.

[13] P. Domingos, „MetaCost: a general method for making classifiers cost-
sensitive,“ KDD '99 Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
155-164, August 1999.

[14] V. S. Sheng und C. X. Ling, „Thresholding for Making Classifiers Cost-
sensitive,“ Proceedings of the 21st national conference on Artificial
intelligence, Bd. 1, pp. 476-481, July 2006.

[15] A. Correa Bahnsen, „Example-Dependent Cost-Sensitive Classification
with Applications in Financial Risk Modeling and Marketing
Analytics,“ University of Luxembourg, 2015.

[16] A. K. Jain, R. P. Duin und J. Mao, „Statistical Pattern Recognition: A
Review,“ IEEE Transactions on Pattern Analysis and Machine
Intelligence, Bd. 22, Nr. 1, pp. 4-37, January 2000.

[17] G. Creech und J. Hu, „Generation of a new IDS test dataset: Time to
retire the KDD collection,“ in Wireless Communications and
Networking Conference (WCNC), Shangai, China, 2013.

[18] M. Xie und J. Hu, „Evaluating Host-Based Anomaly Detection Systems:
A Preliminary Analysis of ADFA-LD,“ in International Congress on
Image and Signal Processing (CISP), Hangzhou, China, 2013.

[19] G. Creech, „Developing a high-accuracy cross platform Host-Based
Intrusion Detection System capable of reliably detecting zero-day
attacks,“ The University of New South Wales, 2013.

[20] G.-B. Huang, Q.-Y. Zhu und C.-K. Siew, „Extreme learning machine: a
new learning scheme of feedforward neural networks,“ in IEEE
International Joint Conference on Neural Networks, Budapest, Hungary,
2004.

[21] L. Rabiner und B. Juang, „An introduction to hidden Markov models,“
IEEE ASSP Magazine, Bd. 3, Nr. 1, pp. 4-16, 1 January 1986.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot und E.
Duchesnay, „Scikit-learn: Machine Learning in Python,“ Journal of
Machine Learning Research, pp. 2825-2830, October 2011.

[23] G. Lemaitre, F. Nogueira und C. K. Aridas, „Imbalanced-learn: A
Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine
Learning,“ Journal of Machine Learning Research, Bd. 18, Nr. 17, pp.
1-5, 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

