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Abstract. Modeling of the smart grid architecture and its subsystems is a basic 

requirement for the success of these new technologies to address climate change 

effects. For a comprehensive research especially on effects of demand response 

systems, the integration of consumers’ decisions and interactions is essential. To 

model consumer participation in demand response programs this paper intro-

duces an agent-based approach using the Consumat framework. The implemen-

tation in NetLogo provides high scalability and flexibility concerning input pa-

rameters and can easily interact with other simulation frameworks. It also forms 

a possible basis for an overall demand response consumer model. As a so-called 

toy model, simple correlations in this socio-technical scenario can already be ex-

plored.  
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1 Introduction 

The establishment of demand response systems as a key application of smart grid ar-

chitectures represents one of the most important measures to address climate change 

effects. The corresponding technologies have to be enabled in the residential sector to 

meet the European targets for a reduction of greenhouse gas emissions by 2030 (40% 

compared to 1990) and a greater share of renewable energy of at least 27% [1]. Demand 

response in this context refers to “changes in electric usage by end-use customers from 

their normal consumption patterns in response to changes in the price of electricity over 

time, or to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized” [2]. Based on data 

from the US energy market (2014) demand response in the residential sector contributes 

20% of the total peak demand savings and 61% of the overall energy savings [3].  

As shown in, e.g., [4] and  [5], the success of a demand response program essentially 

depends on the end consumers’ participation and their behavior when configuring and 

using a DR system. Based on an own comprehensive structural analysis of the corre-

sponding complex socio-technical system [6] Fig. 1 gives an overview on relevant con-

sumer decisions in this context.  
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Fig. 1. Consumer decisions in the context of demand response 

A simulation model that integrates all these aspects would be very helpful to support 

the deployment of a new energy infrastructure. Analyzing such socio-technical systems 

is a major research field in social sciences and agent-based models can be considered 

as a preferred simulation tool (see, e.g., [7]–[9]). A general concept to model the con-

sumers’ behavior was developed by our group and presented in [10] focusing on the 

long/mid-term decision concerning general participation in a demand response program 

(see Fig. 1). This work is based on the Consumat framework of Jager and Janssen first 

published in [11]. Several other publications already exist which use this approach to 

model sustainable behaviors but also other types of decision making like farmer crop 

choices (see, e.g., [12], [13]). Based on [14] also the perspective of innovation diffusion 

and transition theories (e.g., Rogers theory on innovation diffusion, as cited in [14]) can 

be considered with Consumat. The aim of this work is to extend and refine the existing 

approach and to implement it in a simulation environment. As a so-called toy model, it 

may support the finding of simple correlations in the complex socio-technical demand 

response system and provides the basis for further implementation in an overall socio-

technical demand response consumer model. 

The following Section 2 first introduces relevant demand response knowledge espe-

cially concerning the role of consumers. After a brief general overview on human de-

cisions in agent-based models, in Section 2.2 the Consumat framework is shortly de-

scribed and some outcomes of relevant existing implementations are presented. The 

ODD+D based model description and results of the implementation can be found in the 

following two main sections 3 and 4. A summary and an outlook on future work is 

given in the final Section 5.    

2 Related work 

The section on the theoretical background of this work is divided in two parts: (1) a 

short review on demand response models with focus on the role of consumers and (2) 

an introduction to the Consumat framework including some background knowledge on 

human decision making in agent-based models. 
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2.1 The role of consumers in demand response models 

There exists a huge amount of publications about demand response systems and corre-

sponding models to simulate their efficiency and their role in future energy systems. 

An overview is, e.g., given in [15]. The authors classify demand response programs 

into different categories based on classifiers like control mechanism and motivations 

offered to consumers. The latter one includes different pricing schemes (price-based or 

incentive-based) as strategies to motivate consumers to the desired behavior related to 

demand response. Potential actions are reduction or time shifting of electricity usage, 

known as direct load control and reducing the peak to average ratio, respectively. Load 

management can be performed either in a multi-user scenario, where the schedules of 

energy consumption will be optimized for a group of users (see, e.g., [16]) or in a single-

user scenarios (see, e.g., [17]). Considering the large number of contributions on de-

mand response, the following algorithm classes are frequently employed: game theory, 

linear programming, particle swarm optimization, arrival processes and multi-agent 

based models. In our meta-analysis evaluating the data communication requirements of 

common demand response models a more detailed overview can be found [18]. De-

mand response decisions are not made by the consumers in a case-to-case-manner but 

usually an algorithm implemented in a technical demand response system optimizes the 

performed actions. Nevertheless, corresponding modeling and simulation approaches 

in most cases require presumptions concerning consumers’ decisions and behavior. 

There are some proposals, which explicitly integrate this perspective. As one of the 

relevant aspects, the preferences of optimal appliance scheduling are one focus of the 

approaches presented, e.g., in [19] and [20].  

In most of the considered studies related to consumers in demand response scenarios 

the main focus is on dynamic short-term behavior concerning load management itself. 

Regarding the relevance of the mid/long-term decision to even participate in such a 

program Miller et al. [5] show the high impact of humans’ decision to participate in a 

direct load control program. This finding could be confirmed by our own simulations 

where the role of user interaction and acceptance for a cloud-based DR model has been 

investigated [4]. It was found that the number of participating users has a strong effect 

on cost cutting for a certain load reduction. Within this setup the user acceptance did 

not increase with more configuration options and higher amount of possible user inter-

actions. In order to avoid complex configuration of a demand response system with 

autonomous appliance scheduling, as, e.g., proposed in [21], there is no need of user 

interaction. In this model, time of use probabilities of the appliances will be learned 

automatically from energy consumption patterns under varying weather conditions, day 

of week, etc. The method proposed in  [22] also uses such a forecasting approach. 

2.2 The Consumat approach 

Human decisions in agent-based models. Agent-based models address a wide range 

of simulation challenges in very different research areas. They are used both for social 

simulations and for models focusing on technical aspects. This is possible due to the 

generic characteristic of multi-agent systems: they are particularly suited for situations 
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characterized by autonomous entities whose actions and interactions determine the 

overall system [23]. For simulating human systems with agent-based modeling, Bona-

beau states the following three benefits in [8]: (1) it captures emergent phenomena, (2) 

provides a natural description of the system and (3) is flexible. In general, agent-based 

modeling has been considered as a promising methodology for social science research 

in the last two decades (see, e.g., [24]). Different frameworks exist to integrate the pro-

cess of human decision making in agent-based models. They differ in aspects like level 

of complexity, research questions that may be answered with their help and psycholog-

ical background. In [25] five main dimensions are distinguished to classify human agent 

architectures: 

• Cognitive level (reactive, deliberative…) 

• Affective level (representation of emotions) 

• Social level (representation of complex social concepts, status…) 

• Norm consideration (agents’ ability to reason about social and formal norms) 

• Support of learning 

Using these description categories, the Consumat approach, which is used in this pro-

ject, simulates reactive/deliberative agents, who are able to consider values and moral-

ity on the affective level. Their social focus is on success comparison with others. Con-

sumat agents are able to learn and norms may be represented as model input parameters. 

 

Background to Consumat and related implementations. Consumat is a socio-psy-

chological framework which allows the agent-based simulation of human decision 

making in situations related to consumption of goods or opportunities such as doing a 

specific activity, deciding where to live, and others. Details of the model and its updates 

as well as the underlying theoretical background can be found in [11], [26]–[28]. In  

[12] different applications of the Consumat approach are discussed. Some results re-

lated to consumer behavior are briefly described below: 

Household lighting. Based on a Consumat model the purchase decision concerning 

lighting technology were simulated in order to explore different policies for an in-

creased market share of LED lamps. The observed behavior show that the pure appear-

ance of a new product on the market does not strongly influence the consumers' deci-

sion but additional incentives do. 

Diffusion of electric car. Similar simulations were made to investigate the diffusion of 

electric cars using policies, such as taxing fuel cars and subsidising electric cars. The 

results generally show the slowness of that process and indicate the high relevance of 

an optimal mixture and timing of different policies.  

The developers of the Consumat framework used their approach to model the diffusion 

of green products with low environmental impacts simulating the behavior of both, 

consumers and firms [14]. The results represent the high relevance of social interactions 

and also reproduce empirical data. Also in [29] scenarios of green consumption are 

modeled with Consumat. The authors mainly explored effects of increasing prices for 
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non-green products and an increasing environmental awareness of the consumers. Stud-

ies like [13] and [30] confirm the suitability of the Consumat framework to analyse and 

optimize policies and other measures to improve the market share of green products 

and services. In [10] the general concept of modeling demand response consumers as 

'consumats' is already presented. Relevant details of the framework related to its appli-

cation in this socio-technical environment will be considered within the model descrip-

tion (see Section 3.2). 

3 Demand response consumers as 'consumats': model 

description 

In this section, the application of the Consumat model to simulate the decision of con-

sumers concerning participation in a demand response program is presented. The model 

description is based on ODD+D which extends the original Overview, Design Concepts 

and Detail (ODD) protocol with human decision-making aspects [31]. 

3.1 Overview 

Purpose. This model aims to represent the decision-making of consumers to generally 

participate in demand response programs. Depending on the selected decision strategy 

other agents' behavior may be integrated into the corresponding cognitive process. The 

model was created to prove the suitability of the Consumat framework within this con-

text and to identify relevant dependencies of the variables for further research. 

Entities, state variables and scales. The model includes agents representing demand 

response consumers and the human and natural environment. Agents can decide to gen-

erally participate in demand response programs or not. They are characterized by indi-

vidual levels of need satisfaction concerning their financial, personal and social state. 

The discrete time steps of the model are called ticks. Typical time scales for one tick 

can be daily to weekly. 

Process overview and scheduling. With each tick, agents make their decision con-

cerning participation and all attributes and parameters will be updated. 

3.2 Design Concepts 

Theoretical and empirical background. The agents' decision-making is based on the 

Consumat approach due to its ability to simulate consumers' behavior in different do-

mains including social aspects (see Section 2.2). The simulated consumers have exis-

tential, social and personal needs and they are equipped with abilities and opportunities 

to satisfy these needs with a certain behavior.  

The corresponding decision strategies are: 
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• Optimization: maximize the level of need satisfaction (LNS) based on own calcula-

tions 

• Inquiring: check behavior of peers, compare possible imitation of their decision with 

own calculations to decide for maximum LNS 

• Repetition: repeat decision of last tick 

• Imitation: copy last behavior of peers (peers: agents with similar attributes) 

The Consumat approach also integrates uncertainty of an agent as a relevant factor for 

decision making which leads to the following key rules for the engagement in a specific 

cognitive process [28]: 

• with decreasing satisfaction, an agent accepts more effort to find the optimal behav-

ioral option 

• with increasing uncertainty, the behavior of other agents becomes more relevant 

Fig. 2 illustrates the adaption of the underlying Consumat model (see [26], [28]) on the 

decision behavior of a demand response consumer. Based on own results published in 

[4], [10], [32], [33], the following driving forces on the micro level were identified and 

implemented: 

• Needs: financial state, personal state (comfort and environment), social state 

• Opportunities and abilities: participation in demand response program  

• Uncertainty 

More detailed descriptions of individual decision making will follow in the subsection 

below.  

 

Fig. 2. Conceptual demand response consumer model based on Consumat 
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Interactions and individual decision-making, sensing and prediction. In the origi-

nal model the engagement in one of the four decision rules depends on current uncer-

tainty of the agent and its level of need satisfaction (LNS). In [26] uncertainty is de-

scribed as the difference between expectations and the real outcome of an action. The 

updated version of the Consumat framework [28] directly couples uncertainty to the 

existence and social needs. With Consumat II different uncertainties concerning the 

several needs may have different weights within the overall uncertainty. However, the 

authors of [13] state that househoulders rather consider inconsistencies between needs 

and its satisfaction level than perform a statistical evaluation of uncertainty. Due to the 

similarity of the research domain (residential energy efficiency), we transfer this crite-

ria-based approach and define the following rules to select the suitable decision mode 

within the model: 

• For each of the three needs (financial, social, personal) a threshold of the LNS is 

defined as a criterion which is met or not 

• The overall satisfaction and uncertainty of an agent depend on the fulfillment of 

these criteria 

• The selection of a decision strategy is based on satisfaction and uncertainty follow-

ing the assumptions of the original Consumat approach (see also Fig. 2) 

This leads to the following logic (see Table 1): 

Table 1. Criteria-based agent’s decision logic  

no. of fulfilled  

criteria 

0 1 2 3 

level of satisfaction unsatisfied unsatisfied satisfied satisfied 

level of uncertainty  certain uncertain uncertain certain 

decision strategy optimization inquiry imitation repetition 

Heterogeneity, stochasticity and observations. For most of the agent's own parame-

ters, both a global and an individual randomized configuration is possible. For details 

on the different performed simulation runs and the output data analysis, see Section 4. 

3.3 Details 

Implementation, initialisation and data input. The model is implemented in 

NetLogo version 6.0.4. The presented code is roughly based on an existing Consumat 

implementation [34] and available at https://www.en-trust.at/downloads/. An initial 

setup procedure activates all parameters. If heterogeneity/variability is activated, it cal-

culates the individual variables within configurable ranges. Although the current ver-

sion of the model does not integrate import of data from external files this option could 

be easily included. 
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Submodels. Within this section model parameters and submodels are described. 

Model parameters.  Table 2 gives an overview on the relevant parameters used in the 

model. 

Table 2. Model parameters. 

Variable Scope Range/Condition Explanation 

number of agents global Natural number  

initial participants global 
percent of number of 

agents 

configurable during setup 

DRincome global 0…1 profit of participation 

initial participation individual 0 or 1  

γneed individual 

0…1, with 

γcomfort + γenviron = 1 

γsimilar + γsuperior = 1 

weight of a certain need, 

randomly assigned during setup 

Needs. At each tick an agent calculates its overall level of need satisfaction (LNS) as a 

sum of the existential (financial), personal and social need: 

 𝐿𝑁𝑆 =  𝐿𝑁𝑆𝑓𝑖𝑛  +  𝐿𝑁𝑆𝑝𝑒𝑟𝑠  +  𝐿𝑁𝑆𝑠𝑜𝑐  (1) 

with 

 𝐿𝑁𝑆𝑓𝑖𝑛 =  𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 ∗  𝐷𝑅𝑖𝑛𝑐𝑜𝑚𝑒  (2) 

 LNS𝑝𝑒𝑟𝑠 =  LNS𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 + LNS𝑐𝑜𝑚𝑓𝑜𝑟𝑡   = {
𝛾𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = 0

𝛾𝑒𝑛𝑣𝑖𝑟𝑜𝑛 , 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = 1
 (3) 

 𝐿𝑁𝑆𝑠𝑜𝑐  =  𝛾𝑠𝑖𝑚𝑖𝑙𝑎𝑟  ∗  𝑛𝑒𝑒𝑑𝑠𝑖𝑚𝑖𝑙𝑎𝑟  +  𝛾𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟  ∗  𝑛𝑒𝑒𝑑𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟  (4) 

The level of social need satisfaction is composed of the agent’s need of being similar 

respectively superior compared to its peers/other agents balanced by individual 

weighting factors γsimilar and γsuperior: 

𝑛𝑒𝑒𝑑𝑠𝑖𝑚𝑖𝑙𝑎𝑟 = 1 − 𝑎𝑏𝑠(𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑜𝑤𝑛 − 𝑚𝑒𝑎𝑛(𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑝𝑒𝑒𝑟𝑠) (5) 

𝑛𝑒𝑒𝑑𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 = a𝑏𝑠(𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑜𝑤𝑛 − 𝑚𝑒𝑎𝑛(𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑙) (6) 

Agent’s behavior. In order to improve its individual level of need satisfaction, an agent 

evaluates its participation decision at each tick. The underlying strategy for the new 

decision is based on the fulfillment of three criteria concerning thresholds for the finan-

cial, personal and social need satisfaction (see Table 1). Each of these LNS values is 

always between 0 and 1. Due to the fact that individual preferences are already repre-

sented by the weighting factors the criteria are defined as fulfilled when the LNS value 

of the need is above or equal 0.5. Nevertheless, the model is also suitable for individual 

and variable threshold settings.   
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4 Results 

To check the general suitability and logical correctness of the model, two main aspects 

were investigated: (1) variation of the agents' general behavior in time and (2) influence 

of varying input parameters on participation decision. 

4.1 Variation in time 

Fig. 3 exemplarily shows the participation behavior of 500 consumers over 30 time 

steps as provided by the NetLogo interface tab. The DR incentive was set to DRincome = 

0.2, during initialization 25% of agents were configured with participation = YES and 

the individual weights of the needs were randomly distributed (0…1). With this param-

eter setup, the percentage of agent participation and the related decision strategies are 

already stable after five ticks of the simulation run. Other parameter configurations also 

show this short warm up period. 

 

Fig. 3. Variation of behavior in time 

4.2 Varying input parameters 

The NetLogo tool “BehaviorSpace” allows to run a model systematically with varying 

parameter settings and to report selected variables after each run. Using this tool, a 

broad range of value combinations were simulated and analyzed. Fig. 4 exemplarily 

shows the percentage of agent participation depending on the DR income under several 

conditions (varying weights of the needs and different initial participation distribu-

tions). Each simulation run was performed five times with identical settings and the 

measured value reported after 30 ticks (see warm up period in Fig. 3). The graphs vis-

ualize logical effects of increasing income (higher participation rates) but also the im-

portance of different weights of the agent’s needs. In the example a high importance of 

comfort needs (compared to environmental needs) has a high influence on participation, 

especially when the initial participation is low (see the two lower graphs: no participa-

tion when income and/or initial participation is low). All graphs show a broad distribu-

tion of the results for an initial participation of 50%. Additional simulation runs in this 

parameter range confirmed a very high sensitivity of the final participation for the ran-

domized initial settings.  
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Fig. 4. Participation of 500 agents depending on DRincome, initial participation and weights 

5 Conclusion 

This work presents the development and implementation of an agent-based model of 

consumer participation in demand response programs based on the Consumat approach. 

At the current state of the project, the model provides first reproduceable results for a 

large variety of parameter settings. As a so-called toy model, it can be already used to 

find relevant correlations. Due to the simple and scalable parameter definitions, the 

model can easily be calibrated and validated based on empirical data. Additionally, 

considering the general participation in DR programs as a diffusion process offers the 

application of corresponding innovation and transition theories (for an overview see 

e.g., [35]). The model itself is scalable and can be extended by an additional logic con-

sidering the short-term aspects of consumers' interactions in the context of demand re-

sponse (see Fig. 1). The underlying NetLogo tool allows interaction with other simula-

tion frameworks like, e.g., mosaik. Future work will focus on two aspects: (1) improve, 

refine and validate the Consumat approach to model consumer participation in demand 

response programs and (2) integrate it in an overall model of consumer decisions in the 

demand response context. In a final state the model should provide quantifiable results 

for the optimal adjustment of incentives both for general participations and short-term 

energy price adaptions.  
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