
Update: Lessons Learned from Implementing a
Privacy-Preserving Smart Contract in Ethereum

Andreas Unterweger, Fabian Knirsch, Christoph Leixnering,
Dominik Engel

November 27, 2017

In October 2017, we submitted a paper titled Lessons Learned from Imple-
menting a Privacy-Preserving Smart Contract in Ethereum [1] to the Blockchains
and Smart Contracts workshop (BSC)1 for review. Due to the fast-paced changes
in the Ethereum network, especially the ones introduced through the so-called
Byzantium Hard Fork2 from October 16, 2017, our results as well as two of our
conclusions require an update.

Since we were unable to re-evaluate all of our results and rewrite the paper
in time before the submission deadline of the workshop, this technical report is
intended to provide (i) a summary of all changes that we made to the original
paper [1] and (ii) the new version of our paper with the updated results and
conclusions.

The updated version of our paper differs from the original as follows:

• Due to the change in fees, we re-deployed our smart contract and up-
dated the table of costs as well as all other cost-related calculations, in-
cluding the total costs. Since the latter are now about only half of what
they used to be in our original test, we also updated the cost-related con-
clusions. More precisely, we remarked that the costs are now only about
one order of magnitude off instead of two. In addition, we added a new
bullet point to the list of traps and pitfalls mentioning the change in fees
with a refernce to the date and costs of our previous test. Note that be-
tween our re-evaluation on November 12 and the time of writing – a period
of two weeks – the price of Ether increased further by more than 50%.

• As the EVM gained new low-cost instructions for cryptographic
primitives, in particular operations relevant for RSA and ECC, we weak-
ened our conclusion to state that not all, but only certain types of privacy-
preserving protocols are costly to implement in Ethereum. More pre-
cisely, for homomorphic encryption, embeddings and other cryptographic
methods which allow computations like the Euclidean distance in the ci-
pherspace domain, our original conclusions still hold.

1http://www.ntms-conf.org/ntms2018/call-for-workshops/bsc2018
2https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

1

http://www.ntms-conf.org/ntms2018/call-for-workshops/bsc2018
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

• Due to the significantly shorter transaction delays, we updated the
correspondingly named bullet point in our list of traps and pitfalls. Be-
sides changing the raw time values to what we observed, we removed our
comment on high gas prices relative to the transaction time. It is no longer
valid considering the improved transaction delays.

• Since we no longer observed differences between the costs in the test net-
work and the productive Ethereum blockchain, we removed the bullet
point on staging costs in our list of traps and pitfalls.

In addition, we deployed a slightly modified version of our smart contract (com-
pared to our original paper) which allows it to be reused directly by others for
the purpose of testing, saving the repeated deployment costs. While the code
changes are negligible, also in terms of total cost, there is now a distinction
between the deployment and the execution costs of the smart contract. This is
reflected in the paper, together with the updated block number and address of
our deployed smart contract.

The updated version of our paper can be found on the next pages. This tech-
nical report will be updated once the original paper is either accepted to or re-
jected from the workshop. Please direct any questions to andreas.unterweger@en-
trust.at. A document highlighting the changes between the original version of
the paper and the new one is available upon request.

References
[1] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel, “Lessons Learned

from Implementing a Privacy-Preserving Smart Contract in Ethereum,” in
9th IFIP International Conference on New Technologies, Mobility and Se-
curity (IFIP NTMS), submitted.

2

mailto:andreas.unterweger@en-trust.at
mailto:andreas.unterweger@en-trust.at

Updated: Lessons Learned from Implementing a
Privacy-Preserving Smart Contract in Ethereum

Andreas Unterweger, Fabian Knirsch, Christoph Leixnering, Dominik Engel
Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Urstein Süd 1, Puch/Salzburg, Austria

Email: andreas.unterweger@en-trust.at

Abstract—Real-world smart contracts which preserve the pri-
vacy of both, their users and their data, have barely been pro-
posed theoretically, let alone been implemented practically. In this
paper, we are the first to implement a privacy-preserving protocol
from the energy domain as a smart contract in Ethereum. We
elaborate on and present our implementation as well as our
practical findings, including more or less subtle traps and pitfalls.
Despite major optimizations to our implementation, we find that
while it is currently possible, it is not feasible to implement certain
types of privacy-preserving protocols in the Ethereum blockchain
due to the high cost of operation and the lack of privacy by design.

I. INTRODUCTION

Since the inception of Bitcoin [1], [2], the capabilities
of blockchains have been significantly expanded [3]. Three
noteworthy examples are Zerocash [4], Ethereum [5] and the
protocol proposed by [6]. While Zerocash and the protocol
from [6] extend the privacy properties of blockchains limited
in their computational capabilities, Ethereum allows for much
more complex (Turing-complete) operations, referred to as
smart contracts [7], [8]. However, Ethereum by itself is not
privacy-preserving since all calculations are publicly visible to
all participants, similar to Bitcoin [9].

In [10], an approach for privacy-preserving smart contracts
is presented, but requires a trusted party, which in many use
cases is undesired. As an alternate approach to achieve privacy
for complex operations in existing blockchains, an additional
layer of cryptography can be added [11]. Even though some
authors propose privacy-preserving smart contracts, e.g., [11]–
[13], none of them show practical implementations. While [12]
does not provide an implementation, [11] only discusses a
game of rock-paper-scissors as a toy example and [13] does
not consider privacy.

In this paper, we implement a smart contract from the
energy domain initially proposed in [14], which is both,
privacy-preserving and of a practical level of complexity. This
protocol solves a problem in a way that is representative
for state-of-the-art privacy enhancing technologies, as will
be shown. To the best of our knowledge, ours is the first
paper to describe such an implementation. In order to facilitate
similar implementations for others, we provide insights from
our hands-on experiences in developing and deploying a smart
contract in the (public) Ethereum blockchain. This includes a
discussion ranging from implementation pitfalls to deployment
and execution costs.

This paper is structured as follows: In Section II, we
describe the privacy-preserving protocol that we implement
in Ethereum in Section III. In Section IV, we summarize
our observations from the implementation and evaluation
processes, before concluding the paper in Section V.

II. PRIVACY-PRESERVING LOAD PROFILE MATCHING

In [14], a protocol for privacy-preserving smart grid tariff-
decisions is described. The protocol allows a customer to
choose an optimal tariff based on their energy consumption
from a variety of tariffs offered by different utility providers.
Among other guarantees, the implementation of the protocol
assures that neither the customer’s energy consumption data
nor their final tariff choice is revealed.

This is achieved by the use of embeddings [15], oblivious
transfer [16], and commitment schemes [11]. Embeddings
allow transforming energy consumption data into a binary
representation that is hard to reverse, but still allows for the re-
quired comparisons. For permanent storage, transparency and
immutability this comparison is handled in a smart contract
which returns (simplified) a once usable pointer to the best-
matching tariff to the customer. Oblivious transfer is then
used (off-chain) by the customer for retrieving the actual
tariff without revealing the decision to the utility provider.
To guarantee non-repudiation, i.e., values that are not fully
revealed at the time of submission cannot be changed later, a
commitment scheme based on cryptographic hashes is used. A
formal description of the protocol can be found in Appendix
A. Further details of the protocol as well as a detailed privacy
analysis can be found in [14], [17].

The smart contract implementing the protocol must be
structured as follows [14]:

• create(sender, energy_data_hash): This method
is called upon the initial creation of the smart contract.
The customer (sender) calculates an embedding of the en-
ergy consumption data used as the basis for matching and
provides the hash to the smart contract as a commitment.

• commit(sender, tariff_data_hash): This method
is called after create by each utility (sender) wanting
to offer a tariff. The utility calculates an embedding of
the energy consumption data corresponding to each of its
offered tariffs and submits the hashes as a commitment.
This method can only be called once per utility for this
instance of the smart contract.

Utility providerSmart contractCustomer

create

commit*
smopen

uopen*

evaluate

Pointer to best tariff

Oblivious transfer

Fig. 1. Sequence diagram that illustrates the function calls between the
participants of the implemented protocol. * denotes that every utility provider
calls the function.

• smopen(sender, energy_data, random_number):
This method is called by the customer (sender) in order
to open the commitment with the required random
number. It is verified whether the commitment is valid
and, if so, the embedded energy data is stored for later
matching.

• uopen(sender, tariff_data, random_numbers):
Similar to smopen, each utility (sender) opens its
commitment.

• evaluate(sender): This is method is called by the
customer (sender) after smopen and uopen have been
called by all participants. The best-matching tariff is
determined using the embedded values and a once-usable
pointer for the oblivious transfer is returned.

The sequence of calls to functions of the smart contract
is illustrated in Figure 1. While the smart contract in [14]
is only provided in pseudo-code, here we describe an actual
implementation in Ethereum in the following section.

III. IMPLEMENTATION IN ETHEREUM

We implemented the smart contract from Section II in So-
lidity 0.4.0 (https://solidity.readthedocs.io/en/develop/), which
allows to design such contracts with public and private meth-
ods and provides a set of basic data types. Programs compile to
EVM (Ethereum Virtual Machine) code that can be deployed
as a smart contract into the Ethereum blockchain [3].

Each smart contract and each caller of such a contract is
assigned a unique address. Smart contracts can communicate
with each other through messages. The caller of a function,
i.e., the sender of a message, is implicitly available in the
function body as msg.sender in Solidity and therefore does
not need to be passed as an additional argument. Thus, the
signatures of the implemented smart contract differ from the
ones from Section II in that they do not need an explicit
sender parameter.

In order to call smart contracts, each party of the protocol
needs to create an Ethereum account. For the proposed pro-
tocol, this means that the customer as well as each individual
utility provider are assigned a unique ID. For privacy, the

customer can either create one account for each execution
of the smart contract or change its ID frequently so that it
cannot be tracked. Conversely, the utility providers should (but
not necessarily need to) re-use their IDs for transparency and
accountability for their offered tariffs.

The data types used in the implemented smart contract are
• uint: a 256-bit unsigned integer type used to store

distance values. When smaller values are stored, types
such as uint8 or uint16 are used;

• bytes32: an array of 32 bytes, i.e., 256 bits, size used
to store the output of a cryptographic hash function;

• address: a special data type used to store the address
of a message caller;

• mapping: a hashmap used to store the commitments of
each utility provider’s tariff-related data;

and arrays of the aforementioned types, e.g., bytes32[].
The actual implementation closely follows the pseudo-code

from [14]. Since storing and executing EVM code incurs fees
depending on the data size and type (specified in detail in [5]),
some implementation details differ from the original version
in order to reduce these costs. The three major optimizations
are:

• Use of built-in cryptographic primitives: Since the
EVM provides a relatively cheap instruction for comput-
ing a SHA-3 hash, the latter is used in favor of SHA-
2. The availability of cryptographic primitives for smart
contracts is favorable for the implementation of privacy-
preserving protocols.

• Mathematical tweaks: Calculating the absolute differ-
ence between two binary vectors is equivalent to an
element-wise xor operation. The Hamming distance of
the difference vector can be calculated by counting the
number of bits set to one in this vector, which can be
simplified with a lookup table for groups of elements.
The lookup table size is a trade-off between storage costs
(larger tables require more storage) and execution costs
(larger tables require less lookups and iterations). Using
such mathematical tweaks can be essential to keep costs
low, similar to any other programming language.

• Avoiding unnecessary storage: uopen computes and
saves distances to the customer’s embedding instead of
saving the larger embedding data in a variable and com-
puting the distance at the call of evaluate. Conversely,
evaluate just computes the smallest distance from the
ones stored. This reduces costs since the large embed-
dings (kilobytes in size each) from the utility providers
do not need to be saved in the blockchain. In general,
refining the program flow in order to avoid storage costs
is desirable.

Note that, in addition to these optimizations as well as further
minor optimizations, embeddings are already calculated off-
chain as originally proposed in [14] and therefore induce no
execution costs. In order to illustrate the syntax as well as
the aforementioned optimizations, Appendix B shows sample
code in Solidity for selected portions of the implemented

smart contract. The full source code is available at https:
//www.en-trust.at/downloads/.

To represent embeddings of 8192 bits size in Solidity, there
are several possibilities, e.g., using fixed-sized arrays of base
data types like uint256 or bytes32, both of which are
capable of storing 256 bits. We found that operations on these
types are significantly cheaper than on variable-length types
like string or bytes, which is why we used fixed-sized
arrays of bytes32 for our main computations.

As mentioned above, each operation in the EVM induces
costs in a unit called gas. These costs are a fee paid to
the miner for executing the code of the smart contract.
The fee is payed in the built-in crypto-currency Ether. The
conversion rate between gas and Ether is set by each miner
individually before executing the smart contract. For testing
smart contracts, a test net exists which allows executions
free of charge. In contrast, using the Ethereum blockchain
induces non-negligible costs. Thus, in the following section,
we implemented, deployed and assessed our smart contract in
the (pay-to-use) Ethereum network.

IV. LESSONS LEARNED

This section describes the lessons learned from deploying
the smart contract from Section III to the Ethereum network.
We determine the total amount of fees required to deploy
and run the smart contract with example data from [17].
Furthermore, we report our insights from this experiment with
respect to the practicability of running a privacy-preserving
smart contract in Ethereum.

We used the default tariffs from [17] to get representa-
tive example data for calling the smart contract. For sim-
plicity, each of the three utility providers (denoted U1
to U3) is assigned two of the six sample tariffs each
(denoted T1 and T2). The smart contract was deployed
into the Ethereum blockchain in block 4538517 with ad-
dress 0x8e9c8624cb7986f7adc170bd7d1374dfd9f600bd

and its reusable part in block 4438303 with address
0xfad26e55c6a616c57e428e1beb6cdc6b8c42bb10. Note
that this smart contract is not limited to specific customers,
utilities or tariffs and is available to anyone for running the
protocol. The source code and tariff data are available at
https://www.en-trust.at/downloads/.

Table I summarizes the processing costs for our experimen-
tal setup in gas as well as the respective value in ETH and e
for convenience. We used http://etherscan.io to determine the
actual gas costs for each call to the smart contract. The cost
for 1 unit of gas was on average 20 Gwei = 20 · 10−9 ETH,
which is also the average gas cost listed by https://ethstats.net/
and others at the time of execution for “fast” processing, i.e.,
the rate at which the transaction only takes little time to mine.
The exchange rate between e and ETH as of November 12,
2017 is 263.60 e/ETH according to https://www.coingecko.
com/en/price charts/ethereum/eur. Note that we execute the
smart contract only once. While future fees (and exchange
rates) may differ, their order of magnitude can be determined
by our experiment.

As can be seen from Table I, the deployment of the smart
contract through create by the customer requires 4.75 e
worth of gas. commit is called by each utility once, as
described in Section II, and costs each utility 0.51 e on
average for two tariffs. smopen is called by the customer at
the price of 3.90 e. Each utility needs to call uopen for each
tariff individually, resulting in costs of 6.47 e on average per
utility. Finally, evaluate is called by the customer at the rate
of 0.19 e. In total, the customer needs to pay 8.83 e and each
of the three utilities pays on average 6.98 e. This results in
total costs of 29.77 e for deploying and executing the smart
contract. While it is clear that this is much more than any
party in this protocol would be willing to pay (to potentially
find a better energy tariff likely to reduce the energy bill by
only a fraction of this amount), these costs may be acceptable
in other use cases.

In addition to these execution costs, the deployment of the
reusable smart contract costs 1061688 gas (ETH 0.010616880
at 10 Gwei), which is equal to 2.80 e. Note that these costs
occur only once, meaning that future use of this smart contract
only requires the execution costs for one run of the protocol.

Even though it may be possible to further reduce the amount
of required gas in our implementation, the actual costs in e
above are at least one order of magnitude higher than would be
acceptable for this use case. In addition, further optimizations
would be time-consuming and therefore also cost-intensive,
illustrating that the total costs for implementing and executing
privacy-preserving protocols are far too high for practical use.

Despite the popularity of Ethereum, we would like to
point out that this issue is not specific to Ethereum. There
are privacy-preserving blockchains, e.g., HAWK [10], but no
public implementation of them is available at the time of
writing (November 2017). We expect the costs to decrease
significantly when using blockchains which provide privacy
by design, since many computations are performed implicitly.

It is crucial to note that our conclusions regarding costs
are also not specific to the protocol from [14] that we
implemented. The embeddings used therein are, in terms of
ciphertext size and complexity, comparable to state-of-the-art
cryptography in the energy domain which allow ciphertext
operations [18], [19]. For example, comparisons to the more
commonly used Paillier cryptosystem [20] as in [14], [17]
show that embeddings require fewer computations and less
overhead, i.e., the costs for using the Paillier cryptosystem
or similar privacy-preserving technologies are expected to be
even more costly than the embeddings used in our evaluation.

Although it may be possible to redesign the protocol,
e.g., such that uopen can be performed once for multiple
customers, this would impact privacy and a rigorous secu-
rity re-evaluation of the protocol would be required. We do
not consider it to be feasible to modify proven and well-
tested protocols so that they minimize (gas) costs. Thus, we
conclude that it is currently not feasible to use Ethereum to
implement state-of-the-art privacy-preserving protocols. This
may change in the future, if more cheap EVM instructions
for cryptographic primitives, like the one for built-in SHA-

TABLE I
COSTS FOR GAS FOR EACH FUNCTION OF THE IMPLEMENTED SMART CONTRACT FOR THE DEFAULT TARIFFS USED FOR EVALUATION [17]. THE GAS

PRICE IN ETH AS WELL AS THE CONVERSION RATE FROM ETH TO e IS FROM THE DATE OF EXECUTION, SUNDAY, NOVEMBER 12, 2017.

Method Gas U1T1 Gas U1T2 Gas U2T1 Gas U2T2 Gas U3T1 Gas U3T2 Price (ETH) Price (e)
create 900448 0.018 008 960 4.75
commit 97241 97241 97241 0.005 834 460 1.54
smopen 739364 0.014 787 280 3.90
uopen 618517 618236 603261 617980 603517 619324 0.073 616 700 19.41
evaluate 35167 0.000 703 340 0.19

Sum 0.112 950 740 29.77

3 computation, are offered. Until then, the costs exceed any
practical bounds for many potential use cases.

Apart from costs, we observed the following traps and
pitfalls that we would like to share with future developers
of privacy-preserving smart contracts:

• Determining gas limit: Each call to a smart contract is
assigned a caller-specified gas limit, which, once reached,
terminates the execution of the EVM. Since the amount of
gas the caller is willing to spend determines whether and
when a transaction is executed by a miner, in practice, it
is hard to set proper limits. One needs to find a tradeoff
between cost-effectiveness and throughput. Since gas is
a non-refundable fee to the miner, setting the gas limit
too low results in a costly and aborted function call.

• Undocumented language limitations: At the time of
writing (November 2017) Solidity comes with a number
of limitations, only some of which are documented. Ex-
amples are very limited stack size, which is problematic
when dealing with multiple ciphertext variables, e.g.,
embeddings.

• Handling large data: Ethereum is not inherently de-
signed to handle larger amounts of data within smart
contracts. As discussed above, custom solutions for this
are necessary, which might be cost intensive.

• Transaction delay: It takes between around 15 and 90
seconds for each transaction to be confirmed. Reducing
the gas price and limit would increase this delay further,
which would be unacceptable for this use case. Con-
versely, increasing the gas price and limit would make the
transactions even more expensive without significantly
reducing the delay.

• Changing fees: We deployed our smart contract multiple
times during October and November 2017. Costs changed
significantly each time (e.g., on October 15, we payed
approx. 60 e). This makes it hard to predict the actual
costs for smart contract users over longer periods of time.

In summary, smart contracts are a promising way to imple-
ment complex privacy-preserving protocols without the need to
rely on a single trusted third party. However, for practical use,
there are still many limitations to overcome, especially when
advanced state-of-the-art privacy-enhancing technologies are
required for the use case. This shows that a blockchain that
has not been designed with privacy in mind cannot be ex-

tended with arbitrary privacy-enhancing technologies without
imposing significant additional costs.

V. CONCLUSION

In this paper, we presented the implementation of a tariff
matching protocol from the energy domain in Ethereum. We
highlighted the availability of certain cryptographic primitives
in Solidity and discussed the contrasting lack of privacy by
design. Even though we optimized our implementation with
off-chain pre-computations and on-chain gas-reducing data
handling, we found that the costs for deploying and executing
the implemented smart contract are at least one order of
magnitude higher than would be acceptable for the use case.
This allows for the conclusion that in order to implement
practical privacy-preserving smart contracts like the one in
this paper, either the price for the required privacy-preserving
operations in Ethereum needs to become significantly cheaper
or both, the capabilities and availability of other blockchains
with privacy by design have to increase significantly.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry
of Science, Research and Economy, the Austrian National
Foundation for Research, Technology and Development and
the Federal State of Salzburg is gratefully acknowledged.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
Bitcoin.org, pp. 1–9, 2008. [Online]. Available: https://bitcoin.org/
bitcoin.pdf

[2] F. Tschorsch and B. Scheuermann, “Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies,” IEEE Communications
Surveys \& Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[3] C. Dannen, Introducing Ethereum and Solidity. Apress, 2017.
[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza, “Zerocash: Decentralized Anonymous Payments from
Bitcoin,” in Proceedings – IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 459–474.

[5] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” Ethereum, Tech. Rep., 2017. [Online]. Available: https:
//ethereum.github.io/yellowpaper/paper.pdf

[6] G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy:
Using blockchain to protect personal data,” in Proceedings – 2015 IEEE
Security and Privacy Workshops, SPW 2015, 2015, pp. 180–184.

[7] G. W. Peters and E. Panayi, “Understanding Modern Banking Ledgers
through Blockchain Technologies: Future of Transaction Processing and
Smart Contracts on the Internet of Money,” in Banking Beyond Banks
and Money: A Guide to Banking Services in the Twenty-First Century,
T. Paolo, T. Aste, L. Pelizzon, and N. Perony, Eds. Cham: Springer
International Publishing, 2016, pp. 239–278.

[8] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[9] F. Reid and M. Harrigan, “An Analysis of Anonymity in the Bitcoin
System,” in Security and Privacy in Social Networks, Y. Altshuler,
Y. Elovici, A. B. Cremers, N. Aharony, and A. Pentland, Eds. Springer
New York, 2013, pp. 197–223.

[10] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving Smart
Contracts,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 839–858.

[11] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by
Step Towards Creating a Safe Smart Contract: Lessons and Insights from
a Cryptocurrency Lab.” in Financial Cryptography and Data Security.
Barbados: International Financial Cryptography Association, 2016, pp.
79–94.

[12] F. Knirsch, A. Unterweger, and D. Engel, “Privacy-preserving
Blockchain-based Electric Vehicle Charging with Dynamic Tariff De-
cisions,” Journal on Computer Science - Research and Development
(CSRD), 2017.

[13] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt, “A
blockchain-based smart grid: towards sustainable local energy markets,”
Computer Science - Research and Development, 2017.

[14] F. Knirsch, A. Unterweger, G. Eibl, and D. Engel, “Privacy-Preserving
Smart Grid Tariff Decisions with Blockchain-Based Smart Contracts,”
in Sustainable Cloud and Energy Services: Principles and Practices,
W. Rivera, Ed. Springer International Publishing, 2017, ch. 4, pp.
85–116.

[15] S. Rane, P. Boufounos, and A. Vetro, “Quantized Embeddings : An
Efficient and Universal Nearest Neighbor Method for Cloud-based
Image Retrieval,” SPIE Application of Image Processing, p. 11, 2013.

[16] J. Kilian, “Founding Cryptography on Oblivious Transfer,” in ACM
Symposium on Theory of Computing. Chicago, IL, USA: ACM, 1988,
pp. 20–31.

[17] A. Unterweger, F. Knirsch, G. Eibl, and D. Engel, “Privacy-preserving
load profile matching for tariff decisions in smart grids,” EURASIP
Journal on Information Security, vol. 2016, no. 1, pp. 1–17, 2016.

[18] Z. Erkin, J. R. Troncoso-Pastoriza, R. L. Lagendijk, and F. Perez-
Gonzalez, “Privacy-preserving data aggregation in smart metering sys-
tems: an overview,” IEEE Signal Processing Magazine, vol. 30, no. 2,
pp. 75–86, mar 2013.

[19] V. Bindschaedler, S. Rane, A. E. Brito, V. Rao, and E. Uzun, “Achieving
Differential Privacy in Secure Multiparty Data Aggregation Protocols on
Star Networks.” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. ACM, 2017, pp. 115–125.

[20] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT
’99, ser. Lecture Notes in Computer Science, J. Stern, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, vol. 1592, pp. 223–238.

[21] S. D. Rane and P. Boufounos, “Privacy-Preserving Nearest Neighbor
Methods: Comparing Signals Without Revealing Them,” IEEE Signal
Processing Magazine, vol. 30, no. 2, pp. 18–28, 2013.

[22] P. T. Boufounos and S. Rane, “Efficient Coding of Signal Distances
Using Universal Quantized Embeddings,” 2013 Data Compression Con-
ference (DCC), pp. 251–260, 2013.

APPENDIX A
DETAILED PROTOCOL DESCRIPTION

This section describes the protocol from [17] formally.
Let the set of participating utilities be denoted as U .

Each utility u ∈ {1, . . . , |U|} has a list of tariffs Tu,l with
corresponding template load profiles Lu,l (denoted as set Lu,
where utilities can have different numbers of load profiles
l ∈ {1, . . . , |Lu|}). In order to keep the template load profiles
private, each utility calculates an embedding L̃u,l ∈ {0, 1}m
for each of its original template load profiles Lu,l ∈ Rk:

L̃u,l =

⌈
A · Lu,l + W

∆

⌉
mod 2 (1)

A is a random m×k matrix with i.i.d. Gaussian elements with
mean 0 and variance σ2, and W is a random m-dimensional
vector with i.i.d. uniform elements in the range [0,∆]. ∆ is
both, a quantization and a security parameter, and described
in detail in [21], [22]. The values of k and m are 96 and 8192,
respectively.

Similar to the utilities, the customer calculates an embed-
ding from its load profile forecast F, denoted as F̃.

In order to find the best matching tariff, the template load
profile with the smallest normalized Hamming distance to the
forecast is determined, yielding the template (once usable) load
profile index l∗ as well as the corresponding utility index u∗:

(u∗, l∗) = argmin
u,l

||F̃− L̃u,l||1. (2)

This is possible due to the distance-preserving property of the
embeddings [21], where the Euclidean distance of the original
data vectors is proportional to the normalized Hamming dis-
tance of the embedded vectors with a configurable small error
ε, i.e.,

||F̃− L̃u,l||1 ∼ ||F− Lu,l||2 + ε. (3)

The indices u∗ and l∗ can be shuffled in order to avoid the
collection of statistics that could break privacy.

After the customer has received both indices, it can con-
tact the corresponding utility u∗ and use a one-out-of-many
oblivious transfer for retrieving the actual tariff information
without revealing the decision to the utility at this time [16].
Since this part of the protocol is not intended to be handled
via a blockchain [14], it is not detailed here.

APPENDIX B
SAMPLE CODE

The following sample code shows an optimized version of
calculating the Hamming distance required by the evaluate

function of the implemented smart contract.

//Hamming distance for all 4-bit patterns.
uint8[16] map = [0, 1, 1, 2, 1, 2, 2, 3,

1, 2, 2, 3, 2, 3, 3, 4];

//Computes Hamming distance of two 8192-bit
//binary vectors.
function getDistance(bytes32[32] memory f,

bytes32[32] memory l)
internal view returns (uint16)

{
uint16 distance = 0;
for (uint8 i = 0; i < 32; i++) {

bytes32 xor = f[i] ˆ l[i]; //Bit-wise XOR
for (uint8 ii = 0; ii < 32; ii++) {

//Process upper+lower nibble separately.
distance += map[(uint8(xor[ii] & 0xf0))

>> 0x04];
distance += map[uint8(xor[ii] & 0x0f)];

}
}
return distance;

}

