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Abstract—Data science has great potential in smart grids, but
applying it must not jeopardize dependability—thus requiring
high-quality data. Ideally, quality is ensured in early development
stages. To enable this, we propose using architecture models for
data quality assessment. The study focuses on a domain-specific
language based on the Smart Grid Architecture Model and
models created with it. The first goal is to evaluate how suitable
such models are for assessing contextual data quality—the data’s
fitness for use. We discovered the assessability is mainly limited
by the modeling language not facilitating standards-independent
data definition. Consequently, we set out to improve the language.
We arrived at three proposed modifications using a case study—
based design-science approach: including an element for generic
data definition, separating data and information, and adding
attributes to data flows. Our research demonstrates the feasibility
of model-based data-quality assessment and takes a step towards
integrating data science into smart-grid architecture.

Index Terms—Data science by design, Dependability, Informa-
tion quality, Model-based systems engineering, SGAM

I. INTRODUCTION

In recent decades, major global trends have affected electric-
ity grids. For example, a worldwide surge in electric vehicles
places increasing demand on grids [1]]. Additionally, the rising
percentage of renewable energy in the energy mix forces power
grids to become more flexible. One promising approach for
achieving greater flexibility is to transform existing grids to
so-called smart grids. They are grids intimately linked with
information and communications technology, which enables
widespread automated control and monitoring [2]. Data sci-
ence has the potential to improve these tasks, as shown by
Zhang et al. [3]. However, power grids are critical infrastruc-
ture and hence need to be dependable. Consequently, any data-
driven decision making also needs to be dependable and thus
requires high-quality data [4]; in particular, contextual data
quality—the fitness-for-use of data [S]]—is necessary to ensure
the data is suitable for its intended application.

In addition to smart grids having to be dependable, they
are also highly complex. Designing and engineering such
complex systems dependably, requires a suitable engineering
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approach; [model-based systems engineering (MBSE)| has es-
tablished itself as an effective method for dealing with such
tasks [6]. is a branch of the interdisciplinary field
of systems engineering combined with concepts from model-
driven engineering [7]. In the smart-grid domain, the
[Grid Architecture Model (SGAM)| framework is the basis for
most [MBSE] approaches. Notably, Neureiter et al. [§] made the
framework usable for concrete engineering task by developing
a[domain-specific language (DSL)| for [SGAM]

Thus far, we have established the need for high-quality data
in smart grids, making the assessment of data quality neces-
sary. However, most methods for data quality assessment rely
on data content, as opposed to just metadata [9]]. Thus, at least
a prototype or a simulation are required which are available
only in later development stages. Unfortunately, significant
changes to a complex system so late in the development
process are time consuming and costly. [MBSE] provides a
potential solution to this problem: Since models already play
a vital role in the engineering of complex systems, they could
be used for assessing data quality in early development stages.
These assessments would then enable timely countermeasures
to data quality issues. This helps ensuring that the completed
system facilitates sufficient data quality—thus establishing a
basis for data science by design. However, we are not aware
of any assessment method that only utilizes system models.
Therefore, we set out to determine to what extent contextual
data quality can be assessed based on a model created using
the Additionally, we investigate which changes
to the language are necessary to improve assessability.

This paragraph outlines the remainder of this paper: The
next chapter—Relevant Background—provides basic knowl-
edge of in smart grids and data quality. Subsequently,
the research approach is presented in Chapter After that,
Chapter [[V| discusses the current data quality assessability of
the Next, in Chapter[V]we propose changes to the
And finally, [Conclusions and Future Work] summarizes
this paper’s findings and prompts further research.

II. RELEVANT BACKGROUND

This paper occupies the intersection of data quality research
and [MBSE] in smart grids. The following chapter provides the
necessary background in both fields.



A. Smart Grid Architecture Model

SGAM]| is a framework for describing smart-grid architec-
tures in a three-dimensional cuboid which is depicted in Fig-
ure[I] It was originally conceived by European standardization
bodies with the intent of identifying gaps in standardiza-
tion [[10]. The framework comprises five projections of the
plane, spanned by two axes: the domain and zone
axes represent the energy-conversion chain and the automation
pyramid, respectively. Since the precise meaning of each
domain and zone is not relevant to this paper, they will not be
discussed, but a detailed elaboration is available in [[11]].
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Fig. 1. The Smart Grid Architecture Model (figure based on [11]])

Each of the five projections of the plane deals with
different interoperability concerns—from enterprise consider-
ations on the business layer down to technical elements on the
component layer. For this research, two layers are especially
significant: the function and the information layer. The former
contains functions and services which may be derived from use
cases and the involved actors. The latter deals with information
objects, their flow throughout the system, and the data model
standards that define them.

Since its inception, has outgrown its original pur-
pose; it now serves as the basis for architecture-development
approaches. Neureiter et al. [§] have published one such
approach: an [SGAM}based modeling language. This
conveys smart-grid architectures in a way that is understood—
and thus accepted—by domain stakeholders. The is im-
plemented using [Unified Modeling Language (UML)| profiles
and is tool independent; it is accompanied by a tool-specific
add-infl] for Enterprise Architect. However, this research only
deals with the tool-independent modeling language.

B. Data quality

The following section is a small overview of data quality
research relevant to this paper. It establishes data quality as a
hard-to-define, multi-dimensional concept. Moreover, it deals
with approaches for data quality assessment.

lavailable at https://sgam-toolbox.org

1) Defining data quality: For this research paper, the ISO-
derived definition of data quality as being “the degree to
which data conform to data specifications” [12, p. 192] is
appropriate. However, we must clarify what we mean by
data and differentiate it from information. This examination
is necessary since the data quality literature does not agree on
the distinction between data and information [[13]] and conse-
quently the distinction between data quality and information
quality [12]. For example, Wang et al. explicitly state that
they are using data and information synonymously [[14] and
Lee et al. implicitly use data quality and information quality
interchangeably [15]. In contrast, Zhu et al. mention the
tendency to use data quality for technical issue and information
quality for non-technical issues [13[]. We think this distinction
is useful and necessary. Thus, we refer to data as the technical
representation and possibly redundant carrier of information.
In contrast, information is the technology-neutral, redundancy-
free resolution of uncertainty [16].

2) Data quality dimensions: Pipino et al. have labeled
data quality a multi-dimensional concept. Each dimension
describes ”a general, measurable category for a distinctive
characteristic (quality) possessed by data” [[17]. Wang and
Strong have identified 15 such dimensions relevant to data
consumers and split those dimensions into four categories:
intrinsic, contextual, representational, and accessibility data
quality. The framework is established in the data quality
community and provides a suitable taxonomy for this study.

3) Assessing data quality: To adequately define data quality
assessment, a distinction has to be made: Batini et al. differ-
entiate between data-driven and process-driven data quality
improvement [9]]. This concept may also be applied to data
quality assessment. Data-based data quality assessment refers
to evaluating, to what extent data meets the relevant re-
quirements. In contrast, process-based data quality assessment
refers to evaluating, to what degree a data-generating or
data-modifying process is capable of producing requirements-
satisfying data. This distinction is closely related to that made
by Aljumaili et al. between content-based and metadata-based
assessment [18]. Since model-based data quality assessment
does not directly assess the data content, but the metadata,
we argue that a model-based approach can be categorized
as process- and metadata-based assessment. Furthermore, it
should be noted that for Batini et al., assessment includes
measurement of data quality followed by the comparison to a
reference value. Since many others do not explicitly make the
distinction between assessment and measurement— [[17]], [[15]]
and [18]], for instance—this paper will also not do so.

III. RESEARCH APPROACH

We have identified clear value in model-based data quality
assessment in smart grids. Therefore, we set out to evaluate
how suitable the is for such assessments, specifi-
cally of contextual data quality. Then we intend to improve the
assessability of the [DST]by modifying its defining metamodel.
In this chapter, we briefly describe our research approach and
the case study on which we evaluate the language.



A. Methodology

Due to the nature of this research endeavor, we have
deemed the design-science research methodology by Peffers
et al. [[19] to be a suitable approach; it is based on the design-
science research paradigm by Hevner et al. [20]. By following
the process model by Peffers et al., we first evaluate the
current qualitatively to identify problems regarding data
quality assessability. Then, requirements for the modification
of the language are specified: All five contextual data quality
dimensions must be assessable. After the objective-definition
step, multiple iterations of three activities are performed: The
language is modified, the changes are demonstrated in a case
study, and the modified language is evaluated to judge if it
meets the previously specified objectives. Since the focus of
the evaluation is mainly on feasibility, we classify this study as
a proof of concept for model-based data quality assessment.

B. Case Study

To evaluate the modifications to the artifact, we use the
following smart-grid use case as a fictitious case study: A
[distribution system operator (DSO)| wants to predict the energy
demand of electric-vehicle charging processes to avoid having
to buy expensive balancing energy and instead buy it on the
intraday market. A charging-station management system sends
various data about each charging process to the [DSO] who
computes the demand estimation. The scenario is modeled
with the following the process proposed by
Neureiter et al. [8]. As a result, various artifacts are created.
They describe the smart-grid system surrounding the case-
study scenario from different viewpoints. All evaluations done
in this research paper are based on these artifacts.

IV. EVALUATING THE CURRENT ASSESSABILITY

This section describes, to what extent contextual data quality
can be assessed in an model. For each of the
five contextual dimensions identified by Wang and Strong [J5]],
the assessability is evaluated. All evaluation center around
information object since they are the only [DSL}provided
modeling elements representing data. Furthermore, this section
aims at identifying, what prevents better assessability.

A. Completeness

Pipino et al. describe completeness as “the extent to which
data is not missing and is of sufficient breadth and depth for the
task at hand” [17, p. 212]. Breadth is the number of attributes,
whereas depth describes the number of rows or samples [21]].
Pipino et al. differentiate between three types of complete-
ness: schema, column, and population (i.e. row) completeness.
Measuring schema completeness is inherently well suited for
metadata-based approaches, since schemata are metadata. In
an [DS[}-based model, such a measurement is not
directly possible, since the only way to define an information
object is through a data model standard. Therefore, if a suitable
standard is specified, the appropriate data model must be
identified in that standard; if none exists, the assessment must

rely on guesswork based on the information object’s name and
its context.

Furthermore, model-based assessment of column complete-
ness is not possible, because a missing value is a deviation
from the schema, not an inadequacy of the schema. Population
completeness, however, can partly be evaluated based on a
model: It is possible to evaluate if the modeled number of
samples meets the requirements.

B. Appropriate Amount of Data

This quality dimension is a measure for how well the
volume of the data fits a given task [5]. Even though this
dimension is similar to completeness, there are two major
differences: First, completeness is concerned with missing
data. Second, completeness refers to the amount of data being
sufficient for a task, but this dimension refers to the amount of
data being appropriate. Therefore, the completeness measure
would not suffer from there being too much data, whereas the
appropriate-amount-of-data measure would. Despite their dif-
ferences, the model-based assessment of these two dimensions
is quite similar. In both cases, one has to rely on a schema for
evaluation, since the number of columns and the multiplicities
between entities is the only sound basis for an assessment.
Thus, the same issue as with completeness arises: If no ap-
plicable data model standard exists for an information object,
judging if the amount of data is appropriate, is guesswork.

C. Timeliness

According to Kahn et al., data is timely, if it is sufficiently
up-to-date [22]. For some tasks, data cannot be older than a
few milliseconds, for others, week-old data is sufficient. The
itself does not address timing aspects. However,
in sequence diagrams, time values can be assigned to
all interactions. These diagrams are used to specify use-case
behavior in an model. Therefore, one can assess
the timeliness of an information object by tracing its path
through one or more sequence diagrams.

D. Relevancy

Data is to be classified as relevant, if it is applicable and
helpful for its intended use [Sf]. To judge if data is relevant,
knowledge about the task as well as the data itself is required.
The latter may be provided by the data model standard
assigned to the information object. If none is available, one
is left with looking at the information object’s name and its
context. As with completeness and appropriate amount of data,
the assessability of relevancy is constrained by the availability
of a standardized data model.

E. Value-Added

Data adds value, if it is beneficial for the task at hand and
provides advantages from its use [5]]. This definition is similar
to that of relevancy; in fact, evaluating the relevancy of a
piece of data—Iike an information object—is a prerequisite
to determining if it adds value. However, data can be relevant
without adding value: If an information object conveys relevant



information but that information is already available, it is
not valuable. Therefore, assessing the value of data requires
an overview over the relevancy of all data available for a
task. Furthermore, a more detailed trade-off analysis could be
conducted: For example, two information objects could convey
the same relevant information, but one can be transmitted in a
more timely manner, making it more valuable. In the end,
assessing this dimension suffers from the same limitations
as relevancy: having no way to specify a non-standardized
information object.

V. MODIFYING THE [SGAMIDST]FOR IMPROVED
ASSESSABILITY

The previous chapter deals with what is limiting data
quality assessability. This chapter proposes changing the
to remedy these shortcomings. First, a clear separation of
data and information is proposed. Then, a model element for
generically describing data is introduced. Finally, we suggest
adding attributes to data and information flows.

A. Restructuring the modeling of data and information

The SGAM] framework and its [DSL] provide no clear distinc-
tion between information and data. However, distinguishing
between them is important: For a logical architecture, the
non-technical concept of information is useful. In contrast,
a technical architecture requires defining how to exchange or
store that information; this necessitates the notion of data with
a concrete representation, be it digital or not.

To achieve this separation, we propose altering the DSL
as illustrated by the current and proposed abstract syntax
models in Figure [2] and Figure [3 First, information objects
now represent abstract pieces of information without regard to
their technical representation. Second, a new model element
is introduced: the data object. It is bound to a specific
representation and can be treated as the technical realization
of information. Consequently, the data model standard does
not fit this usage of information objects anymore, it rather
applies to data objects. However, the data model standard will
be replaced with a more generic element, as described in the
following section. Furthermore, a data object flow is added
to represent the transmission of data. Notably, the data object
flow connects technical components, whereas the information
object flow now connects logical actors. Thus, the modeling
of information and its exchange is now limited to the function
layer, whereas data is modeled on the information layer.

B. Facilitating generic specification of data representation

We have revealed that the does not support the

definition of non-standardized information objects. This limi-
tation is lifted by swapping the data-model-standard element
for the more generic modeling element data representation. As
argued previously, a data-representation element fits our defi-
nition of the data object and is not applicable to information
objects. Thus far, it is not clear what means of defining a data-
representation element are appropriate. For one, the modified
should still support the usage of data model standards.

This is easily done by naming the data-representation element
accordingly. For describing non-standardized data objects,
entity-relationship models are suitable. Since the utilizes
the profile mechanism, we strongly recommend using
class diagrams.

C. Adding attributes to data and information object flows

Due to the restructuring of the [DSL] newly introduced data
objects are used for data quality assessment, not information
objects. Therefore, one cannot evaluate the timeliness of data
with use case—specifying sequence diagrams since they model
the exchange of information objects. To ensure the assessabil-
ity of timeliness, we propose adding time-related attributes to
data object flows. The components and their data object flows
would thus become a data-flow graph, for which latency can
even be assessed symbolically [23]. Furthermore, we argue
that timing aspects are also relevant on a functional level
and therefore suggest adding similar attributes to information
object flows. Finally, we recommend specifying a small set of
valid data- and information-flow attributes. This makes formal
data-flow analyses easier to realize.

VI. CONCLUSIONS AND FUTURE WORK

We set out to reveal to what extent an model
can serve as the basis for assessing contextual data quality. We
learned that the assessability is severely limited by the
not providing a way to describe non-standardized information
objects. These findings expose the need to modify the
for improved assessability. To lay the groundwork for such
modifications, we propose a clear separation between informa-
tion and data. Then, a new modeling element for generically
describing data is introduced; it solves the assessability issues
that were uncovered in our research. Additionally, we propose
adding time-related attributes—Ilike latency—to data flows to
enable analyzing the timeliness of data.

On the one hand, this paper furthers data quality research;
it establishes the novel concept of model-based data quality
assessment as a close relative to metadata- and process-based
approaches. On the other hand, our research contributes to
in smart grids. The proposed changes enable evaluating
the fitness-for-use of data in early development stages. Thus,
system architects are able to detect issues sooner to avoid
late and thus expensive changes; they can ensure that the data
created and modified by the implemented system are suitable
for their intended task. Therefore, we have taken an important
step towards enabling data science by design.

Ultimately, subsequent research needs to be conducted to
achieve that goal: First, our findings need to be verified on
other, more comprehensive smart-grid case studies. Then it can
be tested if the results are transferable to other engineering
domains; we assume that frameworks similar to
like RAMI 4.0 [24]—profit from our findings. Moreover, we
have only dealt with contextual data quality so far; other data
quality dimensions also have to be considered. And finally,
formalizing or even automating data quality assessment could
prove valuable for system engineers and architects.
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