
Paving the Way for Reinforcement Learning in

Smart Grid Co-Simulations⋆

Dominik Vereno[0000−0002−7930−6744], Jonas Harb[0000−0001−8018−4732], and
Christian Neureiter[0000−0001−7509−7597]

Josef Ressel Centre for Dependable System-of-Systems Engineering,
5412 Puch/Salzburg, Austria

{firstname.lastname}@fh-salzburg.ac.at

Abstract. This paper identi�es and addresses a gap in research on using
reinforcement learning (RL) in co-simulation. Co-simulation is an e�ec-
tive simulation paradigm for systems of systems such as smart grids. It
relies on combining heterogeneous simulators into a coupled simulation.
RL is a promising machine-learning tool for complex grid applications�
for instance, demand-side management. However, existing literature does
not speci�cally address challenges of integrating RL with a co-simulation
environment. Therefore, we focus on two challenges: how an RL agent is
best integrated into a co-simulation architecturally, and to what extent
typical RL frameworks are interoperable with orchestrated co-simulation
tools. First, we introduce, categorize, and evaluate four approaches of ar-
chitecturally integrating RL into co-simulation. Additionally, we provide
guidance on selecting an appropriate approach. Second, we conduct a
case study where we use and incorporate a framework-based RL agent
into a co-simulation framework for a simple demand-side management
scenario; we identify the need to change the control �ow traditionally
used in RL frameworks to achieve interoperability. In conclusion, our
work is a basis for future academic or industrial applications of RL in
co-simulation. Our architectural and framework-speci�c advice facilitates
the implementation of RL in smart-grid co-simulations.

Keywords: Model-based systems engineering · Power-grid simulation ·

Demand-side management · Software architecture · Arti�cial intelligence.

1 Introduction

Recently, traditional power grids are evolving into so-called smart grids. They
combine electrical infrastructure with information and communications tech-
nology to enable intelligent monitoring and control [10]. Contemporary power-
systems engineering faces many challenges: The increasing share of hard-to-
predict and volatile renewable-energy generation forces grids to become more

⋆ The �nancial support by the Austrian Federal Ministry for Digital and Economic
A�airs and the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association as well as the Federal State of Salzburg
is gratefully acknowledged.



2 D. Vereno et al.

�exible. In addition, the rising number of electric vehicles (EVs) is straining
electrical infrastructure with high peaks in consumption [7]. This stress may be
alleviated by intelligently controlling the charging process as part of demand-
side�management strategies [6]. Demand-side management includes measures for
improving the power-grid operation from consumer side [24].

Data-based methods�such as machine learning�have proven to be an e�ec-
tive tool for such tasks [2]. A promising branch of machine learning that has been
gaining traction recently is reinforcement learning (RL) where an agent learns
optimal behavior by trial and error. RL has the potential of �nding new state-
of-the-art algorithms that surpass expert knowledge [23]. The machine-learning
paradigm shows great application potential for many smart-grid tasks [37]. Train-
ing an RL agent is usually done in a simulation. For RL training in smart grids,
we need a realistic simulation that is both extensive and detailed. However, com-
prehensive simulations of smart grids, which constitute systems of systems ac-
cording to the criteria de�ned by DeLaurentis [8], present particular challenges.
This is because systems of systems span across multiple domains and have het-
erogeneous and independent subsystems. Co-simulation is capable of addressing
these challenges by coordinating multiple heterogeneous simulators [22]. It is the
coordinated execution of models with di�erent representations and runtime en-
vironments [28]. To obtain a realistic co-simulation environment for RL, models
that contain domain knowledge are required. Dealing with the heterogeneity of
modeling paradigms and notations of cyber-physical systems of systems�such
as modern power grids�is challenging [12]. Model-based systems engineering
(MBSE) is an established discipline that deals with the modeling of such sys-
tems [20].

Scenario and simulator
generation

Training and
parameterization

Goal and constraint
specification

DeploymentModeling
Real-world 


system

Co-simulationSystem model Reinforcement-
learning agent

Fig. 1: Overview of discipline artifacts and their interactions



Reinforcement Learning in Co-Simulations 3

It follows, that to exploit the potential of RL for smart-grid tasks such as
demand-side management, four research disciplines must be considered. Fig-
ure 1 illustrates the four disciplines' central artifacts as well as their interactions.
Power-systems engineering, represented by the real-world system, is needed to
gain domain knowledge. This knowledge must be captured in system models us-
ing methods of model-based systems engineering. The models then facilitate the
creation of a co-simulation and implementation of reinforcement learning algo-
rithms. The co-simulation serves as the environment for developing and training
the RL agent. This agent may then be deployed to the real-world system. To the
best of our knowledge, existing research does not address how RL agents can be
trained and validated in co-simulations. In particular, no research discusses ar-
chitectural integration and framework-speci�c interoperability concerns between
the respective tools.

This paper contributes to the state of the art by addressing the challenges
and obstacles of integrating an RL agent into a smart-grid co-simulation. The
fundamental requirements for RL when it comes to interfacing with a simula-
tion are quite basic and should be unproblematic in principle. However, we have
identi�ed two areas in need of research: First, we identify a lack of research
about how to integrate an RL agent into a co-simulation architecturally. Thus,
we identify architectural approaches, classify them, and give guidance for apply-
ing them. Second, there is no literature demonstrating the practical challenges
of using RL in a co-simulation regarding their respective software tools. Conse-
quently, we conduct case study�based experiments using a co-simulation and an
RL framework to uncover integration obstacles and issues. We describe one such
issue concerning the incompatibility of the typical control �ow of RL frameworks
and the typical control �ow of orchestrated co-simulation. Consequently, we pro-
vide a solution for the particular tools used in the study. Our work intends to
facilitate future industrial and academic applications of RL in co-simulation by
providing guidance on overcoming architectural and tool-based challenges.

2 Background and Related Work

In the introduction, we highlight four important disciplines for using RL in
co-simulations. This sections now provides important background information
on RL, co-simulation, and MBSE. Furthermore, it elaborates on related work
regarding the intersections between these disciplines and the fourth discipline:
power-systems engineering.

RL is a class of machine learning algorithms characterized by learning through
trial and error. In RL, the goal is for an agent to take favorable sequences of ac-
tions to a�ect the state of its environment. The agent decides on an action based
on data describing the environment's state, so-called observations. Additionally,
the agent is provided with a real-valued reward that quanti�es how favorable an
action is, given a certain state. This interaction between agent and environment
is depicted in Figure 2. We refer interested readers to Sutton and Barto [32],
who provide a comprehensive overview of RL.



4 D. Vereno et al.

Agent

Environment

Reward
Action

Observation

Fig. 2: Interaction between an RL agent and its environment

Since smart-grid systems are crticial infrastructure, they require a high degree
of dependability. Therefore, real-world exploration of an untrained RL agent via
trial and error is too risky to be feasible. Consequently, we need a simulated
environment to train the agent.

Table 1: System-of-systems traits, their simulation challenges, and advantages
of co-simulation for addressing the challenges
System-of-

systems trait

Simulation challenge Advantage of co-simulation

Heterogeneity Subsystems are modeled with dif-
ferent tools that support their re-
spective algorithmic and compu-
tational needs.

Coupling is done on solver level,
removing the need for model con-
solidation.

Operational and
managerial inde-
pendence

Simulators of various organiza-
tions are combined. Some under-
lying models may be con�dential.

Co-simulation facilitates black-
box integration of simulators.

Trans-domain Experts of speci�c domains do
not have in-depth knowledge of
the entire trans-domain system of
systems.

Domain experts can work on an
appropriate simulation of the sub-
system without regard for the en-
tire coupled simulation.

Simulation is well-established in the grid domain; in fact, Palensky et al. [25]
describe it as "fundamental in power engineering". Simulating smart grids is
a demanding task; in addition to being complex systems, smart grids can be
classi�ed as systems of systems [18]. Thus, they exhibit all their de�ning traits
introduced by Sage and Cuppan [27] and expanded by DeLaurentis [8]. We deem
three of them to be particularly problematic for simulation: heterogeneity of
subsystems, their operational and managerial independence, and that they span



Reinforcement Learning in Co-Simulations 5

multiple domains. These traits and some of the simulation challenges they exac-
erbate are listed in Table 1. An e�ective simulation paradigm for dealing with
theses challenges is co-simulation. With co-simulation, a coupled system is sim-
ulated by coordinating stand-alone simulations of the constituent systems [13].
A simulation can be regarded as co-simulation if the coupled simulations di�er
regarding the used simulation tool, the solver algorithm, or the step size [15].
Co-simulation allows subsystems to be modeled and simulated in an environment
native to them [21], [25]. Independently-developed simulations can be combined
into large-scale scenarios [26]. Therefore, "modeling can be done on the sub-
system level without having the coupled problem in mind" [28]. In Table 1, we
explain how co-simulation can alleviate smart-grid simulation problems. Further-
more, simulators can either be coupled with bilateral interfaces or by using an or-
chestrating framework that handles data exchange between simulators and syn-
chronizes their execution [31]. With bilateral interfaces, the data exchange and
synchronization becomes increasingly complex. According to Nguyen et al. [21]
framework-based, orchestrated co-simulation simpli�es the simulation architec-
ture. For more information on co-simulation in general, Schweiger et al. [30] give
an empirical insight into the usage and prevalence of co-simulation while Gomes
et al. [13] and Hafner and Popper [15] have each surveyed the �eld extensively.

A comprehensive co-simulation requires specifying the behavior of the subsys-
tems and the simulated scenario, i.e. the entities and their connections to each
other [30]. Such speci�cations can be supplied by models used in power-grid
engineering�for example, the mathematical description of power �ow, a model
containing electric lines, buses, and transformers, or the architecture description
of control software. However, MBSE provides a comprehensive methodology for
managing these models "beginning in the conceptual design phase and continu-
ing throughout development and later life cycle phases" [36]. It is inherently well
suited to dealing with the complexity of smart grids [20]. In the context of this
paper, we use the term model as an artifact containing a purposeful abstraction
of a system. Creating detailed models that are a suitable basis for co-simulation
requires modeling know-how as well as smart-grid domain expertise.

For this researcher endeavor, we must examine how the discussed disciplines�
co-simulation, RL, and MBSE�interface with each other and with the power-
systems domain. For RL, various research projects have demonstrated the e�-
cacy of the paradigm for smart-grid applications. According to Zhang et al. [37],
RL was used in numerous grid-related areas, such as cyber-security defense, load
forecasting, anomaly detection, and demand-side management; Vázquez-Canteli
and Nagy [35] survey the available literature on RL in demand-side management
speci�cally. Cabot et al. [5] state that system models could also be used to sup-
port AI methods, although they identify a lack of research on that topic. Binder
et al. [3] show that system models can be used as a basis for (semi-)automatic
generation of co-simulation simulators. Regarding the simulation of smart grids,
Palensky et al. [25] and Steinbrink et. al. [31] outline the open challenges of
smart-grid co-simulation while highlighting its necessity. Even though the co-
simulation paradigm is bene�cial for many smart-grid simulations [25], to the



6 D. Vereno et al.

best of our knowledge, its use with RL is very sparsely discussed in literature.
Some examples that make use of co-simulation to train RL agents are Fischer
et al. [11] and Veith et al. [33]. They present a specialized form of RL called Ad-
versarial Resilience Learning and train it using co-simulation. Their work serves
as an implicit demonstration that RL can be used in a co-simulation context. Al-
though Veith et al. [33] go into more detail about their speci�c implementation,
neither discuss the general architectual and tool-interoperability considerations
explicitly.

3 Research Approach and Methodology

The overarching goal of this study is to explore and examine the challenges of
integrating an RL agent into a smart-grid co-simulation. Achieving this goal facil-
itates future academic and industrial applications of RL training in co-simulation
environments�for example, to develop an intelligent charging algorithm for
demand-side management by training an RL agent. This goal includes an in-
depth analysis of the approaches for inserting the agent into an orchestrated
co-simulation architecture. Furthermore, a closer look at the compatibility and
interoperability of RL and co-simulation tools is necessary.

Concerning architectural integration, we started with a descriptive approach
of identifying architecture candidates and devising a classi�cation scheme. First,
we determined components and the required information �ows for developing
viable architecture candidates. Following that, we clustered the candidates and
removed redundant ones. Thus, we arrived at a set of four candidates. Then, an
extensive analysis of the candidates was conducted, which led to a categorization
scheme that may be used as an aid for architectural decision making. In Section 4,
a detailed discussion of the architectural integration can be found.

To address the goal of integrating RL and co-simulation tools (see Section 5)
we �rst established an overview of widely used tools in both disciplines. Then,
we selected one co-simulation and one RL framework that we have deemed to
be representative. Our further examinations strongly hinge on a simple �cti-
tious case-study scenario: conducting demand-side management for a smart EV-
charging scenario using RL. Crozier et al. [6] describe smart charging as the
"coordinated scheduling of the charging time and power of EVs". We imple-
ment a simple distribution-grid co-simulation in which we integrate an RL agent
which controls the charging process. The agent's task is to avoid peaks in demand
while keeping average charge rates as high as possible. The case study serves two
purposes in the context of our research: On the one hand, we want to uncover
framework integration issues and obstacles. Ideally, the �ndings should identify
issues that do not just occur with the speci�c pair of frameworks, but issues that
relate to how co-simulation tools and RL tools are generally structured. On the
other hand, we use the case study to evaluate our architecture candidates. This
evaluation allows us to better assess the characteristics of each candidate to give
more comprehensive and accurate guidance on using them.



Reinforcement Learning in Co-Simulations 7

4 Architectural Integration of Reinforcement Learning

Agents With Co-Simulation

In this section, we discuss architectural considerations and options for integrat-
ing RL agents in a co-simulation context. We identify and classify four �exible
candidates for architectural integration and contrast them with a more naïve
alternative. Finally, we provide guidance on choosing an appropriate candidate
depending on di�erent requirements and situations.

4.1 Introducing Terms and Notation

To facilitate discussion about the architecture candidates and their classi�cation,
we de�ne their constituent components:

� The RL agent is the component that encapsulates the RL algorithm as
well as any pre- and postprocessing of input and output data respectively.
The reward may be passed together with the observation or is alternatively
calculated internally. It should be noted that the literature is not clear on
what exactly the boundaries of the agent are; there is no unanimous opinion
whether aspects like pre- and postprocessing are part of the RL agent.

� In this context, a simulation model is a formal description of the simu-
lated system's approximate behavior. It can be agnostic to its use in a co-
simulation framework and does not have to adhere to a particular modeling
paradigm or language. To emphasize that the model in question is the one
controlled by the RL agent, we use the term controlled (simulation) model.

� The (co-simulation) framework interface enables data exchange be-
tween a simulation model and the orchestrating framework and allows the
framework to control the simulation model (e.g. via a step function).

� A simulator contains one or more simulation models as well as a frame-
work interface. It further comprises a simulation kernel on which the model
is run [9] to make it an "independently executable piece of software that im-
plements a simulation model" [31]. In a co-simulation, multiple simulators
are coupled and coordinated.

4.2 Naïve Architecture Candidate

The most basic way of implementing an architecture for RL in co-simulation is
direct integration of all RL logic into the simulation-model component. The RL
agent receives observation data directly from the simulation model and passes
the calculated action right back to it. This does not require any explicitly de�ned
interface. Figure 3 depicts this architecture candidate.

This approach is intuitive; putting the system and its controlling algorithm
into the same component makes sense, because they represent aspects of the
same entity. This also does not require a lot of overhead and may be an attractive
starting point for initial exploration. However, the tight coupling between the
two components may lead to several issues. It may be di�cult for di�erent teams



8 D. Vereno et al.

Simulation 

model

RL agent

Co-simulation
framework
interface

observation,

(reward)

action

Fig. 3: Naïve approach for architectural integration

to work on the simulation model and RL agent independently. Furthermore,
an existing simulation model may have to be changed signi�cantly. Also, the
simulation model is not reusable for other simulation scenarios without RL.

4.3 Alternative Architecture Candidates

To address the issues with the naïve approach, we introduce four architecture
candidates for RL integration into co-simulation. We classify them based on two
independent categories, and give suggestions on when to use each approach.

Classi�cation Matrix and Architecture Candidates We consider two in-
dependent binary categories. One the one hand, we di�erentiate if the RL agent
receives its own framework interface. This creates an independent RL simulator
in the co-simulation that can be individually coupled to other simulators. On
the other hand, the agent may either be limited to receiving observation and re-
ward only from the simulation model or, alternatively, be open to receiving this
information from other sources. If not limited, the RL agent can be supplied
with data not available through the controlled simulation model. With these
distinctions, we can create a classi�cation matrix, as depicted in Figure 4. Each
square in the matrix contains one architecture candidate:

� Candidate A: The interface component only exchanges data with the sim-
ulation model, while the RL agent only communicates with the simulation
model. Comparing it to the naïve approach, the simulation-model compo-
nent is loosely coupled with the RL agent. There must be a clearly de�ned
interface for exchanging observation and action. This candidate does not
require the framework interface to be altered due to the addition of RL.

� Candidate B: In contrast to Candidate A, the RL agent does not receive
observation data from the simulation model. Instead, it receives the data
directly from the framework interface. In this case, the interface must be
changed to accommodate this data �ow. However, the data �ows to the
agent can be de�ned and adapted more freely. For example, the simulation



Reinforcement Learning in Co-Simulations 9

model might only receive voltage data from other simulators whereas the
RL agent is additionally supplied with temperature data; in this case the
simulation model does not need to be altered to support the additional data
�ow.

� Candidate C: The RL agent receives its own framework interface, making
it an independent simulator that must be coupled to the co-simulation. Sim-
ilar to Candidate A, the RL agent only exchanges data with the simulation
model. However, their communication is handled by the orchestrating frame-
work and therefore passes through their respective framework interfaces.

� Candidate D: In contrast to Candidate C, the RL-agent simulator is now
connected to an arbitrary number of simulators in addition to the simulation-
model simulator. Optionally, the RL agent may receive data from the con-
trolled system. However, the gathering of observation data can be largely
independent of the simulation-model simulator.

Co-simulation
framework
interface

RL agent

Co-simulation
framework
interface

Simulation
model

RL agent

C

Simulation
model

RL agent

Other simulators Other simulators

B

D

observation,

reward

observation,

reward

Simulator Simulator

Simulator

Simulation
model

Co-simulation
framework
interface

Co-simulation
framework
interface

Co-simulation
framework
interface

observation,

reward

RL agent

Co-simulation
framework
interface

A

observation,

reward

Simulation
model

Sh
ar

ed
 si

m
ul

at
or

D
ed

ic
at

ed
 si

m
ul

at
or

 fo
r R

L 
ag

en
t

Observation via simulation model Observation independently gathered

observation,

reward

action

action action

Simulator Simulator Simulator

Other simulators

action

Other simulators

Fig. 4: Classi�cation matrix for architecture candidates



10 D. Vereno et al.

Guidance on Candidate Selection When deciding on how to integrate an
RL agent into a co-simulation architecturally, one is faced with multiple con-
siderations that are speci�c to the project at hand. We deem the presented
classi�cation scheme to be a helpful support for such a decision-making process.
The two distinct binary categories shown in Figure 4 represent two independent
binary decisions:

1. Should the observation (and the reward) for the RL agent be gathered inde-
pendently from its simulation model?

2. Should the RL agent receive a dedicated co-simulation framework interface?

Regarding the �rst decision: An advantage of having independent data �ow
is that it allows for �exibility. This is especially useful for exploratory and exper-
imental projects where the input data for the agent is not yet carved in stone.
For example, a project may try to �nd which data can improve the RL agent's
performance. Another project may attempt to evaluate the bene�t of supplying
the RL agent with an additional piece of information. Furthermore, the existing
simulation components need less modi�cation and are instead mostly extended,
adhering to the open-close principle [19]. Also, the RL agent may be substituted
for any other form of decision-making component that is not based on observa-
tion data. However, if the �exibility is not needed�in case of having unalterable
and clearly de�ned data �ow�the additional complexity of both information
�ow as well as dependencies, and implementation e�ort may be unnecessary.
In the architecture candidates B and D shown in Figure 4, the agent gathers
observation data independently. A summary of these considerations is presented
in Figure 5a.

If required data
flow is already
defined and static
If low com-
plexity of infor-
mation flow and
dependencies are
desired

For exploratory
scenarios without
predefined
observation data
If RL agent needs
to be inter-
changeable with
arbitrary
decision-making
component

Observation via
simulation model

Observation
independently

gathered

(a) Independence of data gathering

For similar deployment architecture as
simulation architecture
If logical dependence of RL agent to the
simulation model is required
For lower implementation effort

For hard-to-modify simulation models or
simulators
If simulation model and RL agent require
different modeling paradigm, simulation
kernel, or step size
If high interchangeability and reusability of
RL agent is needed

Sh
ar

ed
 fr

am
ew

or
k

in
te

rf
ac

e
D

ed
ic

at
ed

 R
L-

ag
en

t
in

te
rf

ac
e

(b) Simulator dedicated to RL agent

Fig. 5: Considerations for selecting architecture candidates



Reinforcement Learning in Co-Simulations 11

To decide whether to use a dedicated simulator, the primary consideration
is the mutability of the simulator containing the controlled simulation model. If
the simulator is provided as a black-box executable, the only option is to create
a dedicated simulator for the agent. This may be the case if an organization
refuses to share implementation details of its simulation model. A further criti-
cal consideration is to what degree the simulation model is modi�able. Having a
dedicated simulator alleviates the need for editing the simulation model since the
communication runs across a prede�ned connection. Similarly, one must judge
the heterogeneity of the simulation model and the RL agent. If the simulation
model is of a di�erent modeling language or paradigm, or requires a di�erent
runtime environment or simulation step size, it is advantagous to create an indi-
vidual simulator for each. Moreover, having a dedicated simulator for RL leads
to looser coupling and thus easier exchangeability as well as reusability of in-
dividual components. However, it separates components that are fundamentally
conceptually linked and will likely be part of the same system in deployment.
Architecture candidates C and D both use independent simulators, as shown in
Figure 4. Figure 5b compactly presents the discussed trade-o�s.

5 Identifying Framework Integration Problems

This section describes the implementation of an RL agent based on the case
study. First, the co-simulation and RL framework we used are discussed and our
reasons for choosing them are delineated. Next, we uncover an issue with control
�ow when using RL and co-simulation frameworks together. We also provide a
possible solution that works with the tools we use.

5.1 Co-Simulation and Reinforcement Learning Frameworks

Our main requirements for choosing a co-simulation framework were that it be
freely available as open-source, suitable to power-grid simulation, and �exible
in two ways: First, it should allow programmatical scenario de�nition that is
not bound to a graphical user interface. Second, the framework ought to be
�exible in terms of what execution environment the simulators are run in. Among
the 26 frameworks presented by Vogt et al. [34], we chose Mosaik1, a smart-
grid co-simulation framework originally introduced by Schutte et al. [29] and
Rohjans et al. [26]. The framework's goal is to run coordinated simulations of
energy-system scenarios that facilitate the use of existing simulators in a common
context [17]. Mosaik provides two APIs for user interaction: The component API
speci�es the socket connection for data exchange between simulators and the
framework. Via the scenario API, an executable co-simulation scenario can be
created in which the entity instances, their parameters, and their connections
are de�ned [31].

Regarding reinforcement learning, OpenAI Gym [4] presents a general struc-
ture for modeling environments as single classes with speci�ed interfaces. The

1 https://mosaik.o�s.de



12 D. Vereno et al.

agent then exchanges action, observation, and reward with the environment (cf.
Figure 2). Many RL frameworks support OpenAI Gym environments, such as
TensorForce2, Stable Baselines 33, and TF-Agents4. We have chosen to use the
latter for this case study due to its �exibility. TF-Agents is described by Guadar-
rama et al. [14] and is based on the TensorFlow machine-learning library pre-
sented by Abadi et al. [1]. The framework implements several state-of-the-art
RL algorithms and supports user-created environments. It uses modular compo-
nents that are made to be extensible, and allows both high- and low-level access
to many of its features.

5.2 Carrying Out and Implementing the Case Study

We conduct our case-study experiments based on the �ctitious scenario outlined
in Section 3. A small distribution grid was simulated including simulators for the
power grid, the EV charging stations, a charging-station management system,
as well as households. We implemented a Deep Q-Learning [16] agent to control
the charging-station management system which is responsible for limiting the
available charging power for all stations. The agent's learning goal was to de-
termine an appropriate charging strategy that maximizes the available charging
power while avoiding demand peaks. We tested the naïve architecture candidate
(see Section 3) and the four candidates described in Section 4.3 while leaving the
speci�cs of the RL agent unchanged. The experiments uncovered an issue: The
intended control �ow of TF-Agents must be changed for agents to be integrated
into an orchestrated Mosaik co-simulation. This issue, its implications, and a
possible solution are discussed in the following section.

5.3 Need for Changed Control Flow

RL frameworks generally implement a control paradigm based on the infor-
mation �ow seen in Figure 6a; these frameworks put the agent in control of
stepping the environment through simulated time. The environment realizes the
action and then returns an observation and usually a reward. In other words,
the environment remains idle until it is prompted by the agent. In contrast, or-
chestrated co-simulation requires both the agent and the environment be part of
the co-simulation; the orchestrator is responsible for stepping the simulators and
exchanging data between them (see Figure 6b). Therefore, the RL frameworks'
typical practice of modeling the environment as a single class and placing the
agent in control of stepping the environment is incompatible with the paradigm
of orchestrated co-simulation. This makes it necessary to consider how a given
RL framework can be adapted to work with co-simulation, or�alternatively�to
use a framework-independent RL implementation.

2 https://github.com/tensorforce/tensorforce
3 https://github.com/DLR-RM/stable-baselines3
4 https://www.tensor�ow.org/agents



Reinforcement Learning in Co-Simulations 13

When integrating an RL framework into an orchestrated co-simulation, sev-
eral modi�cations are necessary. For example, when using TF-Agents, the agent
class may stay intact; however, we suggest removing the environment class al-
together. Instead, the orchestrator gathers observation and reward from other
simulators and passes it to the simulator with the RL agent. As discussed in
Section 4, that could be a simulator exclusively housing the agent or the agent
together with other simulation models. The agent generates the action, which
is collected by the orchestrator the next time it can be processed. Furthermore,
it is necessary to implement some functionality from the environment class in
the agent's simulator. This includes translating observations into a format that
is compatible with the agent and generating a reward for each state-action pair.
With these changes, TF-Agents was successfully integrated with Mosaik.

:Agent :Environment

action

observation, reward

loop

(a) Traditional framework-
imposed control �ow

:Agent :Orchestrator :Environment

observation, reward

action
action

observation, reward

loop

(b) Orchestrator-based control �ow

Fig. 6: Control �ow and information exchange between RL agent and environ-
ment

6 Conclusion and Outlook

RL shows great potential for smart-grid applications such as demand-side man-
agement. However, RL hinges on the quality of simulation, and smart grids, as
systems of systems, are inherently di�cult to simulate. Co-simulation is a promis-
ing tool to address this issue and enable RL in complex systems of systems by
providing a suitable environment for training and testing. However, research on
RL in co-simulation is lacking. With this paper we take a �rst step towards
closing that gap in literature. The paper establishes a preliminary overview of
the disciplines required for using RL in a smart-grid co-simulation and ana-
lyzes co-simulation-speci�c challenges for RL. First, we examined architectural



14 D. Vereno et al.

integration. Second, we conducted a case study to reveal framework-speci�c in-
teroperability challenges.

To address the �rst research goal, we identify and assess a set of four archi-
tecture candidates. We further categorize them in a 2-by-2 matrix using two in-
dependent binary categories: the independence of the data �ow to the integrated
RL agent, and whether the agent receives a dedicated co-simulation framework
interface. We then test the architecture candidates to evaluate them. Next, we
discuss the application scenarios of each candidate according to their categoriza-
tion and give guidance on when which candidate is appropriate. Furthermore, we
tackle the second research goal�identifying framework integration issues�using
a case study�based approach. The co-simulation framework Mosaik was used in
tandem with the RL framework TF-Agents to implement a simple, �ctitious
scenario where smart EV charging is used for demand-side management. The
experiments uncovered an issue: While RL frameworks typically assume a spe-
ci�c control �ow, using RL in an orchestrated co-simulation requires changing
that control �ow. For the frameworks used in the case study, this issue could
be resolved, showing that TF-Agents can be trained in Mosaik co-simulation
scenarios.

Future research should be conducted in several areas. First, we assume that
the framework-integration issue is not just limited to TF-Agents and Mosaik but
instead we postulate that it hints at a general incompatibility of the control �ow
typically found in RL frameworks and the concept of orchestrated co-simulation.
However, further research is required to verify that claim. To this end, it would
be bene�cial to analyze various combinations of tools to check for compatibility.
Moreover, our architectural guidance should be applicable to multi-agent RL as
well as the single-agent RL paradigm discussed here. This could be validated by
applying our �ndings to multi-agent RL in smart-grid co-simulations, ideally in
a more realistic and comprehensive case-study experiment.

Acknowledgements We thank Katharina Polanec for insightful discussions,
valuable critique, and thorough proofreading.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensor�ow.org/, software available from tensor�ow.org

2. Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis,
A., Flynn, D., Elizondo-Gonzalez, S., Wattam, S.: Arti�cial intelligence and
machine learning approaches to energy demand-side response: A system-
atic review. Renewable and Sustainable Energy Reviews 130, 109899 (2020).
https://doi.org/10.1016/j.rser.2020.109899



Reinforcement Learning in Co-Simulations 15

3. Binder, C., Fischinger, M., Altenhuber, L., Draxler, D., Lastro, G., Neureiter,
C.: Enabling architecture based co-simulation of complex smart grid applications.
Energy Informatics 2(S1) (Sep 2019). https://doi.org/10.1186/s42162-019-0084-0

4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

5. Cabot, J., Clarisó, R., Brambilla, M., Gérard, S.: Cognifying model-driven software
engineering. In: Seidl, M., Zschaler, S. (eds.) Software Technologies: Applications
and Foundations. pp. 154�160. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-74730-9_13

6. Crozier, C., Morstyn, T., McCulloch, M.: The opportunity for smart
charging to mitigate the impact of electric vehicles on transmis-
sion and distribution systems. Applied Energy 268, 114973 (2020).
https://doi.org/10.1016/j.apenergy.2020.114973

7. Das, H., Rahman, M., Li, S., Tan, C.: Electric vehicles standards, charg-
ing infrastructure, and impact on grid integration: A technological re-
view. Renewable and Sustainable Energy Reviews 120, 109618 (Mar 2020).
https://doi.org/10.1016/j.rser.2019.109618

8. DeLaurentis, D.: Understanding transportation as a system-of-systems design
problem. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. pp. 123�
136. American Institute of Aeronautics and Astronautics, Reno, Nevada (2005).
https://doi.org/10.2514/6.2005-123

9. Denil, J., Meyers, B., De Meulenaere, P., Vangheluwe, H.: Explicit semantic adapta-
tion of hybrid formalisms for fmi co-simulation. In: Proceedings of the Symposium
on Theory of Modeling & Simulation: DEVS Integrative & Symposium. p. 99�106.
DEVS '15, Society for Computer Simulation International, San Diego, CA, USA
(2015)

10. Farhangi, H.: The path of the smart grid. IEEE Power and Energy Magazine 8(1),
18�28 (Jan 2010). https://doi.org/10.1109/MPE.2009.934876

11. Fischer, L., Memmen, J.M., Veith, E.M., Tröschel, M.: Adversarial resilience learn-
ing - towards systemic vulnerability analysis for large and complex systems (2018),
https://arxiv.org/abs/1811.06447

12. Fitzgerald, J., Pierce, K., Larsen, P.G.: Co-modelling and co-simulation in
the engineering of systems of cyber-physical systems. In: 2014 9th Interna-
tional Conference on System of Systems Engineering (SOSE). pp. 67�72 (2014).
https://doi.org/10.1109/SYSOSE.2014.6892465

13. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: A
survey. ACM Comput. Surv. 51(3) (may 2018). https://doi.org/10.1145/3179993

14. Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman, S.,
Wang, K., Gonina, E., Wu, N., Kokiopoulou, E., Sbaiz, L., Smith, J., Bartók, G.,
Berent, J., Harris, C., Vanhoucke, V., Brevdo, E.: TF-Agents: A library for re-
inforcement learning in tensor�ow. https://github.com/tensor�ow/agents (2018),
https://github.com/tensor�ow/agents, [Online; accessed 25-June-2019]

15. Hafner, I., Popper, N.: An overview of the state of the art in co-simulation
and related methods. SNE Simulation Notes Europe 31(4), 185�200 (Dec 2021).
https://doi.org/10.11128/sne.31.on.10582

16. Hasselt, H.v., Guez, A., Silver, D.: Deep reinforcement learning with
double q-learning. In: Proceedings of the Thirtieth AAAI Conference
on Arti�cial Intelligence. p. 2094�2100. AAAI'16, AAAI Press (2016).
https://doi.org/10.1609/aaai.v30i1.10295



16 D. Vereno et al.

17. Lehnho�, S., Nannen, O., Rohjans, S., Schlogl, F., Dalhues, S., Robitzky,
L., Hager, U., Rehtanz, C.: Exchangeability of power �ow simulators in
smart grid co-simulations with mosaik. In: 2015 Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES). pp. 1�6 (2015).
https://doi.org/10.1109/MSCPES.2015.7115410

18. Lopes, A., Lezama, R., Pineda, R.: Model based systems engineering for smart
grids as systems of systems. Procedia Computer Science 6, 441�450 (2011).
https://doi.org/10.1016/j.procs.2011.08.083

19. Meyer, B., Milner, R., Bertrand, M.: Object-oriented Software Construction.
Prentice-Hall international series in computer science, Prentice-Hall, Hoboken, NJ
(1988)

20. Neureiter, C., Binder, C., Lastro, G.: Review on domain speci�c systems engi-
neering. In: 2020 IEEE International Symposium on Systems Engineering (ISSE).
pp. 1�8 (2020). https://doi.org/10.1109/ISSE49799.2020.9272214

21. Nguyen, V.H., Besanger, Y., Tran, Q.T., Boudinnet, C., Nguyen, T.L.,
Brandl, R., Strasser, T.I.: Using power-hardware-in-the-loop experiments to-
gether with co-simulation for the holistic validation of cyber-physical en-
ergy systems. In: 2017 IEEE PES Innovative Smart Grid Technologies Con-
ference Europe (ISGT-Europe). pp. 1�6. IEEE, Turin, Italy (Sep 2017).
https://doi.org/10.1109/ISGTEurope.2017.8260122

22. Nguyen, V.H., Besanger, Y., Tran, Q.T., Nguyen, T.L.: On conceptual structura-
tion and coupling methods of co-simulation frameworks in cyber-physical energy
system validation. Energies 10(12) (2017). https://doi.org/10.3390/en10121977

23. Nian, R., Liu, J., Huang, B.: A review on reinforcement learning: Introduction
and applications in industrial process control. Computers & Chemical Engineering
139, 106886 (2020). https://doi.org/10.1016/j.compchemeng.2020.106886

24. Palensky, P., Dietrich, D.: Demand side management: Demand response, intelligent
energy systems, and smart loads. IEEE Transactions on Industrial Informatics 7(3),
381�388 (2011). https://doi.org/10.1109/TII.2011.2158841

25. Palensky, P., Meer, A.A.V.D., Lopez, C.D., Joseph, A., Pan, K.: Cosimula-
tion of intelligent power systems: Fundamentals, software architecture, numerics,
and coupling. IEEE Industrial Electronics Magazine 11(1), 34�50 (Mar 2017).
https://doi.org/10.1109/MIE.2016.2639825

26. Rohjans, S., Lehnho�, S., Schütte, S., Scherfke, S., Hussain, S.: mosaik - a modular
platform for the evaluation of agent-based smart grid control. In: IEEE PES ISGT
Europe 2013. pp. 1�5 (2013). https://doi.org/10.1109/ISGTEurope.2013.6695486

27. Sage, A.P., Cuppan, C.D.: On the systems engineering and management of systems
of systems and federations of systems. Information-Knowledge-Systems Manage-
ment 2, 325�345 (2001)

28. Schloegl, F., Rohjans, S., Lehnho�, S., Velasquez, J., Steinbrink, C., Palen-
sky, P.: Towards a classi�cation scheme for co-simulation approaches in en-
ergy systems. In: 2015 International Symposium on Smart Electric Distri-
bution Systems and Technologies (EDST). pp. 516�521. IEEE (Sep 2015).
https://doi.org/10.1109/SEDST.2015.7315262

29. Schutte, S., Scherfke, S., Troschel, M.: Mosaik: A framework for modular sim-
ulation of active components in smart grids. In: 2011 IEEE First International
Workshop on Smart Grid Modeling and Simulation (SGMS). pp. 55�60. IEEE,
Brussels, Belgium (Oct 2011). https://doi.org/10.1109/SGMS.2011.6089027

30. Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schoeggl, J., Posch, A., Nouidui,
T.: An empirical survey on co-simulation: Promising standards, challenges and



Reinforcement Learning in Co-Simulations 17

research needs. Simulation Modelling Practice and Theory 95, 148�163 (Sep 2019).
https://doi.org/10.1016/j.simpat.2019.05.001

31. Steinbrink, C., Blank-Babazadeh, M., El-Ama, A., Holly, S., Lüers, B., Nebel-
Wenner, M., Acosta, R.R., Raub, T., Schwarz, J., Stark, S., Nieÿe, A., Lehnho�,
S.: CPES testing with mosaik: Co-simulation planning, execution and analysis.
Applied Sciences 9(5), 923 (Mar 2019). https://doi.org/10.3390/app9050923

32. Sutton, R.S., Barto, A.G.: Reinforcement Learning. Adaptive Computation and
Machine Learning series, Bradford Books, Cambridge, MA, 2 edn. (Nov 2018)

33. Veith, E.M., Wenningho�, N., Frost, E.: The adversarial resilience learning ar-
chitecture for ai-based modelling, exploration, and operation of complex cyber-
physical systems (2020), https://arxiv.org/abs/2005.13601

34. Vogt, M., Marten, F., Braun, M.: A survey and statistical analysis
of smart grid co-simulations. Applied Energy 222, 67�78 (Jul 2018).
https://doi.org/10.1016/j.apenergy.2018.03.123

35. Vázquez-Canteli, J.R., Nagy, Z.: Reinforcement learning for demand response: A
review of algorithms and modeling techniques. Applied Energy 235, 1072�1089
(2019). https://doi.org/10.1016/j.apenergy.2018.11.002

36. Walden, D., Roedler, G., Forsberg, K., Damelin, D., Shortell, T.: INCOSE Systems
Engineering Handbook: A Guide for System Life Cycle Processes and Activities,
4th Edition. Wiley, Hoboken, NJ (2015)

37. Zhang, D., Han, X., Deng, C.: Review on the research and practice of deep learning
and reinforcement learning in smart grids. CSEE Journal of Power and Energy
Systems 4(3), 362�370 (2018). https://doi.org/10.17775/CSEEJPES.2018.00520


