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Abstract
With the rising complexity of our electricity infrastructure, smart grid simulations
increasingly rely on co-simulation, which involves jointly executing independent
subsystem simulations. However, in large-scale simulation scenarios, such as
those involving costly power-flow analysis, co-simulation may experience
computational-performance issues. Quantum computing offers a potential
solution through quantum–classical co-simulation, in which one or more
simulators of an otherwise classical co-simulation are executed on quantum
hardware. However, there is no practical realization of this concept that
establishes its feasibility. To address this gap, we integrate a quantum power flow
simulator with a smart grid co-simulation and conduct an exploratory simulation
study using a fictitious case-study scenario. The experiments demonstrate the
feasibility of quantum–classical co-simulation; at the same time, they highlight
four obstacles to the concept’s realization in practice: 1) To use quantum
computing for co-simulation, session-based scheduling is required. 2) Distributed
simulation limits possible applications and requires proximity of computing
resources. 3) For the efficient extraction of classical information from the
quantum states, we need carefully designed operators. 4) Current hardware
limitations—such as noise susceptibility and the lack of quantum random access
memory—limit practical near-term uses of quantum power flow; therefore,
attention should be turned to alternative applications that are more promising in
the near term. These findings pave the way for future research on
quantum–classical co-simulation and its potential applications in smart grids.
Keywords: quantum power flow; power-systems simulation; quantum
computing; distributed simulation; HHL algorithm

Introduction
Modern electricity infrastructure faces various challenges, including the electrifica-
tion of transport, and climate change. In response to these challenges, smart grids
are being developed, which rely on Information and Communications Technology
(ICT) for pervasive monitoring and automated control. These smart grids facili-
tate more efficient utilization of energy, reduce costs, and enable better integration
of renewable energy sources, resulting in enhanced resilience and sustainability in
electricity production and distribution [2].

Co-simulation has emerged as a promising paradigm for overcoming these chal-
lenges, especially the heterogeneity and trans-domain nature of subsystems, as well
as their operational independence [3]. With co-simulation, independent subsystem
simulators are coordinated to simulate the coupled system [4]. However, large-scale
co-simulation with complex simulators can be computationally expensive. Some
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power-system problems require repeated execution (e.g. for analyzing different con-
tingency scenarios [5]), which further exacerbates the computational cost. While
co-simulation can be parallelized and distributed [6], some subproblems may still
be prohibitively expensive. For example, large-scale power-flow computations pose
significant computational challenges [7].

Quantum computing may provide a solution. It is a novel computing paradigm
that harnesses quantum-mechanical effects for information processing that promises
drastic speed-up for many fundamental computational problems [8]. In recent years,
research has identified the potential value of quantum computing for power sys-
tems [9]. For example, quantum mixed binary optimization was applied to unit com-
mitment [10], and the viability for quantum annealing–based phasor-measurement
unit placement was analyzed [11]. Furthermore, a quantum algorithm for solving
linear systems of equations—the HHL algorithm [12]—promises exponential speed-
up of power-flow analysis, both DC [13] and AC [14]. For more examples on the
state of the art of quantum power-systems engineering, see [1] and [15].

Vereno et al. have proposed utilizing the potential of quantum computing in smart-
grid co-simulation by introducing quantum–classical co-simulation, where ”one or
more simulators of an otherwise classical co-simulation are executed on quantum
hardware” [16, p. 2]. They specifically propose the use case of applying quantum
power flow in a smart grid co-simulation. Quantum–classical co-simulation can be
seen as a form of hybrid quantum-classical approaches, as discussed in [17]. Ref. [16]
only discusses the concept in theory, however, the authors highlight the need for a
proof-of-concept study to determine its feasibility and to assess its usefulness. In
our research, we address this need by conducting an exploratory case study–based
proof-of-concept study where we integrate quantum power flow in a smart grid co-
simulation. We opted for DC power flow in our experiments due to its simplicity and
suitability for co-simulation scenarios involving quantum computing. DC power flow
is attractive for applications requiring speed, which could benefit especially from
quantum speedup. The limitations of quantum AC power flow, such as the need for
Quantum Random Access Memory (QRAM) for efficient retrieval of intermediate
results [15], further support our decision to use DC power flow instead.

The paper’s two main goals and research contributions are:
1 We provide a proof of concept for quantum–classical co-simulation and its

application to smart grids, using a quantum power flow simulator.
2 We identify and assess potential obstacles to the practical implementation of

this concept, and their impact on its utility; we further provide recommenda-
tions on how to address them.

The next chapter offers background on the involved disciplines of quantum com-
puting, power-systems engineering, and co-simulation. Chapter Research Approach
describes how the proof-of-concept study is conducted. In Experiments, we lay out
the experimental setup and show the results. After that, the chapter Discussion of
obstacles presents four main issues we encountered in our experiments and ways of
addressing them. Finally, we conclude the paper by highlighting the key takeaways
and giving an outlook to future research.



Dominik Vereno et al. Page 3 of 20

|ψ⟩

x1

x2

x3

|0⟩

|1⟩

ϕ

θ

Figure 1 Representing the quantum state |ψ⟩ in the Bloch sphere

Background
This chapter provides an overview of the key concepts and theories relevant to the
research. First, a brief introduction to quantum computing is given; it forms the
basis for the consequent section on the HHL algorithm, a quantum algorithm for
solving systems of linear equations. Then, we cover how said algorithm is used to
perform quantum DC power flow analysis. Finally, we explain co-simulation and its
application in smart grid applications.

Quantum computing
Quantum computing leverages properties described by quantum mechanics to per-
form computation [18]. The fundamental unit of information in quantum computing
is the quantum bit (qubit in short), which is analogous to the bit in classical com-
puting. In contrast to a classical bit, a qubit can exist in a superposition of basis
states |0⟩ and |1⟩ which can be described by a linear combination of the basis states
with coefficients α, β ∈ C:

|ψ⟩ = α |0⟩ + β |1⟩ , where |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
. (1)

When measuring the state of a quantum system, the superposition collapses,
resulting in one of the basis states. According to the Born rule (2), the probability
of the measurement yielding either basis state is proportional to the square of the
corresponding coefficient in the state vector [19]. In other words, by estimating the
probability one can make inferences about the superposition coefficients.

|α|2 + |β|2 = 1 (2)

To visualize the state of a qubit, the Bloch sphere can be used (see Figure 1). It
is a complex unit sphere where the antipodes correspond to the basis states, and
its surface represents all possible states.
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Figure 2 Illustration of width and depth of a quantum circuit

Alongside superposition, entanglement and tunneling are two fundamental quan-
tum phenomena that have important applications in quantum computing. These
principles are used in general-purpose circuit-based quantum computing and
optimization-focused quantum annealing. In this paper, we deal with circuit-based
computation. A circuit consists of a series of quantum operators (so-called gates)
that act on the circuit’s qubits. The width of a circuit refers to the number of qubits
it contains, while the depth refers to the number of gates applied to these qubits
(these dimensions are illustrated in Figure 2). As the width and depth of a circuit
increase, so does its ability to perform complex computations; this, in turn, requires
more precise control which is difficult to achieve in practice.

Recently, there has been a significant development in platforms and tools for quan-
tum programming that provide access to cloud-based quantum hardware. Popular
providers are IBM Quantum [20], Google Quantum AI [21], and D-Wave [22]. This
development has facilitated researchers and practitioners to experiment with quan-
tum algorithms and circuits. The steep growth of the discipline increases the need
for software-engineering practices in quantum programming. This trend has led to
the emergence of quantum software engineering [23] and architecture [24]. The de-
velopment of standardized software development methodologies, design patterns,
and software tools will be key to realizing the full potential of quantum computing.

HHL algorithm
The HHL algorithm is a quantum algorithm for solving linear systems of equations
by Harrow, Hassidim, and Lloyd [12]. It has generated much excitement since it may
provide exponential speedup for many problems in science and engineering. Its goal
is to prepare a quantum state that encodes the solution to a system of equations.

Given the linear system

Ax⃗ = b⃗, (3)

where A ∈ CN×N is a square matrix, and b⃗, x⃗ ∈ CN are vectors. If A is a sparse,
well-conditioned Hermitian matrix—meaning it is its own conjugate transpose—
the algorithm prepares the normalized quantum state |x⟩ that is an approximate
solution to

A |x⟩ = |b⟩ , where |.⟩ = .

||.||
. (4)
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Figure 3 Quantum circuit for HHL algorithm

Figure 3 depicts the circuit for the HHL algorithm, including four quantum reg-
isters. It can be subdivided into six main steps [25]:

1 loading the input vector |b⟩ to a quantum register,
2 estimating the eigenvalues of A using quantum phase estimation,
3 adding an ancilla qubit and applying conditioned rotation,
4 performing uncomputation using inverse quantum phase estimation,
5 determining whether the computation was successful by measuring the ancilla

qubit, and
6 applying the observable M to query the output state.
The time complexity of the algorithm is O(log (N)s2κ2/ε), where s is the sparsity,

meaning at most s non-zero entries per row. Since A is a Hermitian matrix, the
condition number κ represents the ratio of largest and smallest eigenvalue |λmax|

|λmin| .
The precision is given by ε. Childs et al. [26] have further improved the scalability
from poly(1/ε) to poly(log 1/ε). The classical equivalent to the HHL algorithm is the
conjugate gradient method; it also approximately solves a sparse, well-conditioned
matrix, but exhibits a complexity of O(Nsκ log (1/ε)) [27].

Despite the potential advantage of the HHL algorithm, it has several caveats and
limitations that restrict its practical utility (for a more detailed discussion, see [28]).
For our research, four caveats are particularly relevant:

1 Expensive state preparation for input vector: To maintain the exponential
advantage of HHL, we need a method to prepare the quantum state for |b⟩
(Step 1) that scales at most logarithmically. In theory, quantum random ac-
cess memory (QRAM)—as described in [29]—could help with this task [28],
however, it was not yet realized in practice. Alternatively, the algorithm can
be used as a subroutine where another component prepares |b⟩ [12].

2 Precise eigenvalue representation: In Step 2, we apply quantum phase estima-
tion to estimate eigenvalues of A by applying the operator U = eiAt; deter-
mining a suitable time t can be a difficult task that diminishes the quantum
speedup of the algorithm. An inappropriate value negatively affects both the
performance and solution accuracy [30].
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3 Circuit depth and noise susceptibility: The number of required operations and
the circuit depth rises drastically as system size increases. Therefore, the noisy
nature of current hardware makes larger systems infeasible [31].

4 Solution vector extraction: Reading all components of the solution vector
would take linear time, which defeats the purpose of HHL’s sublinear perfor-
mance [12]. Often, however, only a subset of information is required. Conse-
quently, we need a way to efficiently extract the required subset of information
from the prepared quantum state |x⟩ in Step 6.

Quantum power flow
Power-flow analysis is a fundamental tool in the operation and planning of power
systems. It is used to compute the steady-state voltages, currents, and power flows
in a network, given the network topology, component parameters, and load de-
mand [32]. The analysis can be carried out for both AC and DC power systems.

Pi =
N∑

j=1
|Vi||Vj |(Gi,j cos θi,j +Bi,j sin θi,j) (5)

Qi =
N∑

j=1
|Vi||Vj |(Gi,j cos θi,j −Bi,j sin θi,j) (6)

• Pi and Qi are the injections of real and reactive power at bus i
• |Vi| is the voltage magnitude at bus i
• θi,j = θi − θj is the voltage angle difference between bus i and j

• Gi,j and Bi,j are the conductance and susceptance of the line connecting bus
i and bus j

In practice, the non-linear equations are solved approximately using approaches
such as the Newton–Raphson method, where an initial estimate is iteratively refined
using linear approximations. However, for some problems, such as transmission sys-
tem planning and economic dispatch, the non-linear AC system can be treated as
a DC system, under several simplifying assumptions, such as neglecting reactive
power flows, voltage magnitudes, and line losses [33]. This results in the simplified
power flow equation

Pi =
N∑

j=1
Bi,jθi,j , (7)

which can be formulated as an equivalent linear system of equations including the
vector of nodal power injections P, the nodal voltage angles θ and the susceptance
matrix B. By removing the row and column corresponding to the slack bus, we
make B invertible:

P = Bθ ⇐⇒ B−1P = θ. (8)
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We can then use the voltage angles θ to calculate the flow of a specific line Pi,j :

Pi,j = Bi,j(θj − θi). (9)

Since both AC and DC power flow come down to solving systems of linear equa-
tions, they are amenable to be conducted using the HHL algorithm. For quantum
AC power flow, Feng et al. [14] have proposed an approach that was later exper-
imentally realized by Sævarsson et al. [31]. In contrast, Eskandarpour et al. [13]
showed that the HHL algorithm can be used to perform quantum DC power flow.
Their work was later expanded with a hybrid approach by Gao et al. [34].

Smart grid co-simulation
In a co-simulation, independent simulators are coupled that differ regarding their
simulation tool, solver algorithm, or step size [35]. The paradigm allows for jointly
executing independent simulations to simulate a larger system. It is therefore pos-
sible to perfrom the modeling on the subsystem level “without having the coupled
problem in mind” [36, p. 516]. The coupling of the simulators can either be done
bilaterally or they can be connected to a central orchestrating framework, yielding
orchestrated co-simulation. When a larger number of simulators is involved, this
simplifies the simulation architecture [37]. The orchestrating framework has three
main tasks: initializing the simulators, synchronizing them, and facilitating data
exchange between them [38]. A simulator comprises a simulation model together
with a simulation kernel for executing it [39]. For this study, we assume simulators
to have the capability of instantiating multiple homogeneous entities; for example, a
power-plant simulator can handle multiple simulated power plants, each connected
to a different bus in the grid. The topology of data exchange between simulated
entities is specified in the simulation scenario.

The emergence of complex cyber-physical systems and systems of systems has
brought with it an increased research interest in co-simulation. A broad state-of-the
art analysis can be found in [35] whereas Gomes et al. [4] provide an in-depth techni-
cal discussion. The simulation paradigm has proven promising in various application
domains, among them maritime and automotive engineering as well as robotics [40].
The most prominent domain for co-simulation seems to be power grids. Palensky
et al. [38] provide an extensive primer on co-simulation of power systems together
with ICT. For an empirical analysis of smart grid co-simulation see [41] and for a
literature review see [42].

Co-simulation requires synchronizing simulators with varying step sizes and even
time paradigms, e.g. discrete-event or continuous time. It further requires facili-
tating complex, at times asynchronous, data exchange. Therefore, frameworks are
usually used that take care of these difficult tasks and provide interfaces to both
connect already developed simulators and also define the scenario. A comprehensive
overview of different frameworks can be found in [43]. One critical aspect of such
frameworks is their adherence to the two most important co-simulation standards:
First, the High-Level Architecture enables the reuse and interoperation of simula-
tions [44]. Second, the Functional Mock-Up Interface (FMI) allows for interchange
of dynamic co-simulation models [45].
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Research Approach
This study aims to demonstrate the technical feasibility of quantum–classical co-
simulation and identify potential issues. The integration of quantum DC power flow
with smart grid co-simulation is the primary area of focus. The evaluation of the
integration’s scalability and usability will determine its practical applicability.

Case-study scenario selection
To conduct the study, an exploratory approach was adopted, which relies on a fic-
titious case-study scenario. The scenario involves a highly simplified load-shedding
situation, in which a power line in a transmission system is monitored for potential
overloads. If an overload is detected, the power of a solar farm is throttled and
instead provided by a different generator. The scenario is implemented on a simple
5-bus test system, details of which are provided in the next chapter. The scenario
was chosen based on the following criteria:

1 Small scale: A 5-bus transmission system with a low number of interacting
sub-systems was used. The limited scale makes it easier to find freely available
quantum hardware that is compatible.

2 Low complexity: The scenario was simplified to be suitable for a proof-of-
concept study; domain-specific aspects are of little relevance. For example,
time series replay was used for the solar generation and aggregate loads.

3 Suitability of DC approximation: DC simplification is appropriate for fre-
quently computed line overload detection in transmission systems.

4 Sign negligibility: The direction of flow is not important when monitoring
overload. This is necessary since we have no way of efficiently recovering sign
information when using HHL.

5 Bi-directionality: The computed line flow is influenced by the other simulators,
and vice versa.

Assessment criteria
The study involves the implementation of the chosen case-study scenario, followed
by simulation runs in three main configurations: classical power flow, HHL run on
simulated quantum hardware, and HHL run on real quantum hardware. The results
obtained from each configuration will be compared to evaluate the accuracy and
usefulness of quantum–classical co-simulation for real-world applications. Although
the primary motivation for quantum–classical co-simulation is to make smart grid
co-simulations faster, the timing analysis is not the main criterion at this stage of
research. This is because of the overhead introduced by cloud-based quantum com-
puting in a small-scale scenario, which vastly outweighs the potential advantage of
improved scalability. Furthermore, the current implementation does not fully realize
the logarithmic scalability promised by HHL due to inefficient circuit preparation
(HHL caveat 1 in the background section on HHL algorithm). In addition to dis-
cussing timing aspects, the evaluation will also qualitatively assess how well the
quantum solutions correspond to the classical ones, with an emphasis on feasibility
not quantitative analysis. The main focus of the study is to use the implementation
and simulation runs to identify and assess potential issues to determine the utility
of the concept for near- to mid-term applications with real-world grid sizes.
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Designing observables for information extraction
A central goal of DC power flow is computing the flow of active power for trans-
mission lines based on grid characteristics and nodal injections. This computation
is usually done via the voltage angles, which are then used to compute line flows.
Since (at least) one bus—in our case Bus 0—serves as a slack bus and is therefore
our reference angle with θ0 = 0, our goal is to find the remaining angles

θ =
[
θ1 θ2 θ3 θ4

]T
. (10)

With the HHL algorithm we can approximately prepare a normalized quantum state

|x⟩ =
[
x1 x2 x3 x4

]T
:= θ

||θ||
. (11)

In order to use the results of the algorithm in any classical routine, we have to
extract information from the quantum state via measurement. Specifically, we have
to apply an operator M (represented by a square matrix) to compute

F (x) = ⟨x|M |x⟩ . (12)

To retrieve the kth element of |x⟩ (which corresponds to θk) we can use a diagonal
matrix with a single 1 at position k:

Mi,j =

1 if i = j = k

0 otherwise
. (13)

For example, to retrieve x3 we can perform the computation

F (x) = ⟨x|M |x⟩ =
[
x1 x2 x3 x4

]
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



x1

x2

x3

x4

 = x2
3, (14)

yielding the square of x3. Note that the information on the sign is lost. Consequently,
we cannot distinguish a negative or positive voltage angle in relation to the reference
angle θ0. This is a critical issue, since we cannot get an accurate estimate of a line
flow if the angles of the involved buses differ in sign. Therefore, we use an alternative
approach: We design the observable in a way that extracts the differences of two
coefficients in the state vector |x⟩. Consider how to compute the power flow Pk,l of
the transmission line connecting buses k to l:

Pk,l = Bk,l(θl − θk) = Bk,l

||θ||
(xl − xk). (15)
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Therefore, if we are able to compute |xl−xk| we are able to estimate the magnitude
of the line flow |Pk,l|. To extract the difference, we define the matrix

Mi,j =


1 if (i = j = k) ∨ (i = j = k)
−1 if (i = k ∧ j = l) ∨ (i = l ∧ j = k)
0 otherwise

. (16)

If we want to compute the voltage-angle difference between the slack bus and any
other bus, we end up with a matrix as defined in (13). To illustrate, let us estimate
the magnitude of the line flow between Bus 2 and Bus 3 which correspond to x2

and x3; therefore, k = 2 and l = 3. Computing F (x) yields

F (x) = ⟨x|M |x⟩ =
[
x1 x2 x3 x4

]
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0



x1

x2

x3

x4


= x2

2 − 2x2x3 + x2
3 = (x3 − x2)2,

(17)

which we can take the square root of to receive |x3−x2|. As in (15) we can multiply
by B2,3/||θ|| to get the magnitude of the line flow |P2,3|. In contrast to (14), the sign
information we lose here is that of the differences and not that of the components,
which allows for a proper estimation of the magnitude of the angle difference and
consequently the line flow. However, the information on line-flow direction is lost;
we are therefore limited to applications that are not dependent on it.

Tool selection
Selecting appropriate tools is crucial for quantum–classical co-simulation. To sup-
port quantum computing and co-simulation, tools that can abstract low-level
complexities and provide high-level programming are necessary. Additionally, the
quantum-computing platform and co-simulation framework must be free and open-
source to facilitate reproducibility and further research. The quantum-computing
tool must provide local and cloud-based quantum simulators to enable efficient de-
velopment and testing. Furthermore, it must allow simulators for both noise-free and
noisy hardware, which is valuable in the Noisy Intermediate-Scale Quantum (NISQ)
era—where noise is a critical aspect—to evaluate algorithm performance. Providing
free access to real quantum computers is another essential criterion. Furthermore,
the tool should offer session-based computing job scheduling to avoid queuing for
each simulation step, prioritizing subsequent jobs after the initial wait. We chose
IBM’s Qiskit platform [46], specifically Qiskit Runtime [47]. For the co-simulation
framework, in addition to being free and open-source, it needs to have an easy-to-use
programming interface to connect simulators to the framework, and a programmatic
interface to specify simulation topology. We have determined the framework Mosaik
(originally introduced by [48] and [49]), specifically Version 3.0 [50]. The framework
is designed for large-scale smart grid scenarios and uses the python programming
language, which makes it particularly suitable for use with Qiskit.
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Figure 4 5-bus test system

Experiments
Based on the determined research approach, simulation experiments were con-
ducted. We describe the details of the case-study scenario and how it was im-
plemented, including co-simulation architecture and quantum computing–specific
configurations. Then, we present the simulation results.

Case-study scenario
As a basis for our experiments we have chosen a 5-bus test system. Our choice of

test-system size hinges on us being able to execute it on freely available quantum
hardware. The test system is derived from one used by Sævarsson et al. [31] in
their quantum AC power flow experiments; however, we use it in a DC setting. It
is depicted in Figure 4. Accounting for the slack bus, the system results in a 4 × 4
modified susceptance matrix:

B′ =


4 −0.03 0 0

−0.03 3 −0.02 0
0 −0.02 1.55 −0.5
0 0 −0.5 1.45

 . (18)

Just as in [31], the admittances are chosen not to correspond to a realistic network,
but to yield eigenvalues that can accurately be represented using a small number of
bits. Therefore, any inaccuracies of eigenvalue representation do not influence the
simulation results. In real-world applications, accurate eigenvalue representation
requires careful consideration. However, the accuracy can be improved drastically
by just a few additional qubits [31]. Here, the eigenvalues of B′ are {1, 2, 3, 4}.

In our case-study scenario, a slack generator is connected to Bus 0. It simply
matches the slack power, be it positive or negative; in this simplified example, it
does not have limitations such as a maximum output. On Bus 1 is a solar farm with
a peak generation of 3 MW. It is implemented as a time series that is based on the
synthetic load profiles for a PV module provided by Austrian Power Settling and
Clearing (APSC) [51] for July 1st 2022. The other buses—2, 3, and 4—are aggregate
loads with a peak consumption of 0.5 MW, 0.5 MW, and 1.5 MW respectively. As
with the solar farm, the loads are based on the APSC synthetic load profile of a
household for the same day; it is scaled to the respective maximum power.
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Figure 5 Co-simulation architecture: simulators and their information flows

Co-simulation architecture
For this study, we have chosen the smart grid co-simulation framework Mosaik
(Version 3.0). It provides two programming interfaces: One is responsible for the
interaction between the orchestrator and a simulator. The other specifies how a
simulation scenario can be defined, including instantiating and connecting entities.
A central aspect of co-simulation is the selection of participating simulators and the
nature of their information exchange. Here, we briefly describe each simulator and
Figure 5 shows their connections. Please note that for all but one simulator, there is
only one instance. For example, in our small-scale case-study scenario, there is only
one solar farm even though the solar-farm simulator is capable of handling multiple
instances. In contrast, the aggregate-load simulator handles three instances.

The simulators are:
• Grid: It contains the grid topology and line admittances, and executes power-

flow simulation using information on nodal injection. The simulator is capable
of quantum power flow computation.

• Slack generator: An idealized slack generator that compensates for generation–
consumption mismatch.

• Solar farm: The simulator outputs a scaled pre-recorded generation profile.
The simulator has an input for the amount of power shedding.

• Aggregate load: Like the solar-farm simulator, this simulator also outputs a
scaled-up, pre-recorded time series, specifically of household consumption.

• Slack controller: It aggregates all power generation and consumption to tell
the slack generator how much load to generate or absorb.

• Line monitor: This simulator monitors a transmission line and compares
the power flow to a predetermined threshold and outputs a power-shedding
amount.

• Collector: The co-simulation contains a simulator for retrieving all relevant
data and recording it in a format suitable for analysis. It is an example of a
simulator that has no equivalent in the real-world system but exists purely
for the simulation study.
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Figure 6 Control sequence

Quantum configuration
We utilize Qiskit as our quantum-computing platform and the IBM QASM simula-
tor as our simulated quantum hardware. Using simulated hardware reduces queuing
times and provides a noise-free simulation of a quantum machine. We select the IBM
Oslo quantum computer, which employs the Falcon r5.11H processor, for our HHL
implementation since it requires seven qubits to solve the 4×4 system of equations.
In quantum computing, estimating coefficients—α, β in (1)—involves repeatedly
preparing a quantum state and measuring its outcome, which yields the underlying
coefficients via Born’s rule (2) from the estimated probability. The number of iter-
ations or shots performed impacts the accuracy of the estimation, but also affects
computational expense. For our experiments, we use 105 shots, but the optimal
number of shots is case-dependent and must be evaluated accordingly.

Implementation
The implementation of the HHL algorithm is derived from the one used in [31].
However, we employ Qiskit Runtime primitives, i.e. elementary subroutines. Specif-
ically, we use the Estimator primitive where an operatorM is applied to a repeatedly
prepared quantum state to estimate the expected value. The operator definition is
described in Designing observables for information extraction.

One significant benefit of Qiskit Runtime is session-based scheduling, which avoids
the need to queue each time for every simulation step. In a co-simulation scenario,
for each time step, a new computing job is created, which is then submitted to the
hardware in the cloud. Queuing for each simulation step would be completely un-
workable, and Qiskit Runtime enables starting a session for the entire co-simulation,
prioritizing each job once the session has started. This control sequence is illustrated
in Figure 6. The orchestrator initializes the simulator which in turn queues on the
quantum-computing platform to create a new session, then the actual co-simulation
may start. For each of the simulator’s time steps, a computing job is submitted to
the session with prioritized access to the quantum resources. Only after the entire
simulation run is ended, the session is closed.
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Figure 7 Simulation results

Simulation results
Multiple simulation experiments were conducted to allow for a comparison between
different ways of computing power flow: classical solution, simulated quantum com-
puter, and real quantum hardware. The focal point of this comparison was the
load-shedding behavior of our case-study scenario, determining whether quantum
computing could be a valuable substitute for classical computation.

In Figure 7, we have the power flow on the monitored line on top, and the power-
shedding amount on the bottom. In both diagrams, one can see the classical solution
and the two quantum solutions, one with simulated and one with real hardware.
For the power flow, we also include a baseline reference that shows the power flow
in the observed line without having load-shedding measures that curtail overload.
One can observe that the noise-free quantum simulator corresponds closely to the
classical result. However, the flow computed with real quantum hardware deviates
so drastically from the actual solution as to be unusable in practice. The severe
effects from noise become more apparent when looking at the output distribution
of measuring the state of an exemplary HHL circuit: Figure 8 illustrates estimated
probability distributions, which correspond to the squares of the coefficients, and
thus the normalized solution vector—see Borne rule (2). Whereas the noise-free
quantum simulator yields clearly distinguishable values, both the noisy quantum
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Figure 8 Comparison of estimated probabilities

simulator and the real quantum hardware result almost in uniform distributions.
This is to be expected when dealing purely with noise. It is highly likely, that the
large circuit depth of 2620 leads to an overwhelming accumulation of noise and an
execution time that well exceeds the coherence time of the quantum computer.

Finally, we should address the timing aspects. The central motivating fac-
tor for quantum–classical co-simulation is accelerating large-scale smart grid co-
simulations. However, for this early feasibility study, we do not focus on timing
improvement. The simulation experiments have shown that both runs using simu-
lated and real quantum hardware take orders of magnitude longer than the classical
solution. Even with a perfect quantum implementation that preserves the potential
logarithmic scalability of the HHL algorithm, we would expect the overhead intro-
duced by the quantum solution to far outweigh the scalability advantages at a small
scale. Future research should address these issues in an in-depth quantitative way.

Discussion of obstacles
Our experiments have exposed four major obstacles related to quantum–classical
co-simulation and quantum power flow for smart grid co-simulation. In this chapter,
we describe each of the obstacles and their impact, and discuss how they can be
addressed. This is summarized in Figure 9.

Queuing time
Processing time on real quantum hardware is a high-demand, limited resource. A low
number of quantum computers is accessed by numerous users via the cloud. Except
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Figure 9 Overview of obstacles and ways to address them

for specialized scenarios, this paradigm will likely remain for the near- to mid-
term future. As a result, scheduling and prioritizing computing jobs is a constant
challenge. For co-simulations, submitting a single large computing job is not possible
since there are constant interactions between the simulators. Instead, each time step
creates a new computing job, making queuing for each job impractical.

In our study, we have found a simple, easy-to-implement way to deal with this
issue: Using session-based scheduling, we queue only once to start the session and
then submit computing jobs to it. This way, the jobs get prioritized, which minimizes
wait time for all jobs but the first. The session is started when instantiating the
simulator and is ended once it is destroyed; this sequence is illustrated in Figure 6.
Qiskit Runtime has proven to be an effective facilitator for this scheduling paradigm.

Distributed-computing challenges
In the context of quantum computing, cloud-based access is common. Integrating a
quantum computing–based simulator in a co-simulation results in distributed sim-
ulation, where the execution of a simulation is distributed across multiple proces-
sors [52]; specifically, we are dealing with distributed co-simulation. As communica-
tion relies on the internet, high-speed, low-latency connections, such as InfiniBand,
are not viable [53]. Therefore, significant overhead and latency are introduced, which
can either occur within a simulator (e.g. when only the quantum processing is done
on the cloud) or between the orchestrator and a purely cloud-run simulator.

To mitigate these issues, one strategy is to restrict the application of cloud-
based resources to simulators with infrequent interaction, where the data and time
overhead is less critical than for simulators with high-frequency communication.
Palenksy et al. [38] suggest running closely coupled simulators on the same ma-
chine. Another way to address the problem is through geographical proximity. Ac-
cording to Mirz et al. [53], geographical distance is the main factor contributing
to round-trip time, indicating that it is preferable to have quantum resources lo-
cated as close as possible. In an ideal scenario, a local or even an on-site quantum
computer laboratory is available for some industrial or academic applications.

Efficient information extraction
Our quantum algorithm for solving power flow, the HHL algorithm, promises loga-
rithmic scalability, in principle. However, there are various limitations and caveats
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that threaten this advantage. Importantly, we cannot retrieve all components of the
solution vector, since that would require a linear number of steps. Therefore, we need
an efficient means of extracting the necessary information from the quantum state
that does not diminish the algorithms scalability. Furthermore, when measuring the
quantum state, we lose sign information, meaning we cannot distinguish positive
and negative coefficients; this requires further consideration on how to compute the
required quantities.

The main way to deal with this issue is to only extract a subset of information
from the prepared state. If the subset’s size scales at most logarithmically with
system size, we can theoretically maintain the exponential speed-up of HHL. With
power-flow analysis, for example, often only the power flow in a few lines is of
interest. Efficiently extracting the line flow requires designing suitable observables
that can be implemented in a quantum circuit (for more details, see Designing
observables for information extraction). In our case study, we are only interested in
the magnitude of the line flow, not having its direction is therefore irrelevant. For
other applications, this issue could potentially be a decisive factor.

Hardware limitations
We are currently in the era of NISQ hardware; therefore, we have to deal with noise
and decoherence impeding computation. The impact of these limitations is evident
for the HHL algorithm; it results in excessively large circuits whose size scales poorly
for larger systems. The coherence time of quantum hardware may be much too short
to reliably execute a full circuit, and the noise accumulates over many gates in a
large-depth circuit. In our experiments, the effects of noise and decoherence make
the results basically unusable, resulting in output distributions (Figure 8) barely
distinguishable from pure noise. Currently, quantum error correction and mitigation
techniques are not nearly advanced enough to compensate for this. Although the
number of qubits has been touted as an indicator for the improvement of quantum
computers, for quantum power flow with HHL, it is not a major issue. The number of
required qubits rises only logarithmically; therefore, computing large-scale systems
potentially only requires a few qubits. However, error mitigation and correction
may require additional qubits, increasing the need for quantum hardware with a
large qubit count. Additionally, the lack of QRAM poses a challenge for efficiently
preparing the input vector; it is also a likely prerequisite for an efficient HHL-based
implementation of quantum AC power flow [15].

Even though hardware development is progressing at a rapid pace [54], useful
quantum power flow—in the context of quantum–classical co-simulation or not—is
unlikely in the near-term future. Therefore, a degree of patience is required until
we have large-scale fault-tolerant quantum computing and new technologies like
QRAM. Until then, we can focus on quantum approaches that are more suitable for
NISQ hardware, such as variational algorithms (e.g. Variational Quantum Eigen-
solver) and quantum annealing. Alternatively, Bertels et al. [55] suggest assuming
perfect noise-free qubits for algorithm and application development, to have them
ready once the hardware is sufficiently advanced.
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Conclusion
Co-simulation is a powerful paradigm to address smart grid simulation challenges,
but large-scale scenarios suffer from performance issues. Quantum–classical co-
simulation can alleviate these issues by using quantum computing to run constituent
simulators. Although the approach was previously postulated, a proof-of-concept
study was missing. This study demonstrates the technical feasibility and identifies
potential issues, using a case study–based approach focused on integrating quan-
tum DC power flow with smart grid co-simulation. Four major obstacles are un-
covered, varying in relation to quantum–classical co-simulation, HHL-based quan-
tum power flow, and quantum computing generally: queuing delays, distributed-
computing challenges, the need for efficient information extraction, and hardware
limitations.

The key findings from our proof-of-concept experiments are:
• It is feasible to integrate a quantum computing–based simulator with smart

grid co-simulation using commonly available software tools with moderate
integration effort.

• Session-based scheduling is critical for quantum–classical co-simulation to
avoid significant performance penalties; there are tools that enable this.

• All distributed, network-based co-simulation challenges are inherent to
quantum–classical co-simulation and must be addressed.

• The HHL-based quantum DC power flow works in principle and may be appli-
cable in some co-simulation scenarios given sufficient hardware advancement.

• Efficient solution extraction of a subset of the HHL solution is achievable by
designing appropriate observables without compromising scalability.

• HHL faces significant issues on NISQ hardware and may require large-scale
fault-tolerant quantum computing for practical use.

In conclusion, our study demonstrates the technical feasibility of quantum–
classical co-simulation for smart grid applications, and identified several key chal-
lenges that need to be addressed. While the practical realization of quantum power
flow on NISQ hardware appears unlikely in the near to mid-term, the potential
for using quantum computing to address optimization problems in smart grid co-
simulation is promising. In particular, variational algorithms and quantum an-
nealing show promise for improving the scalability and efficiency of smart grid
co-simulation. We anticipate that further research at the intersection of quantum
computing, co-simulation, and power-systems engineering will open up new oppor-
tunities for solving complex problems in large-scale smart grid systems.
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